Extending the Reach of Computational Approaches to Model Enzyme Catalysis
Total Page:16
File Type:pdf, Size:1020Kb
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1484 Extending the Reach of Computational Approaches to Model Enzyme Catalysis BEAT ANTON AMREIN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9816-0 UPPSALA urn:nbn:se:uu:diva-314686 2017 Dissertation presented at Uppsala University to be publicly examined in A1:111a, BMC, Husargatan 3, Uppsala, Friday, 24 March 2017 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Prof. Adrian Mulholland (University of Bristol). Abstract Amrein, B. A. 2017. Extending the Reach of Computational Approaches to Model Enzyme Catalysis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1484. 67 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9816-0. Recent years have seen tremendous developments in methods for computational modeling of (bio-) molecular systems. Ever larger reactive systems are being studied with high accuracy approaches, and high-level QM/MM calculations are being routinely performed. However, applying high-accuracy methods to large biological systems is computationally expensive and becomes problematic when conformational sampling is needed. To address this challenge, classical force field based approaches such as free energy perturbation (FEP) and empirical valence bond calculations (EVB) have been employed in this work. Specifically: 1. Force-field independent metal parameters have been developed for a range of alkaline earth and transition metal ions, which successfully reproduce experimental solvation free energies, metal- oxygen distances, and coordination numbers. These are valuable for the computational study of biological systems. 2. Experimental studies have shown that the epoxide hydrolase from Solanum tuberosum (StEH1) is not only an enantioselective enzyme, but for smaller substrates, displays enantioconvergent behavior. For StEH1, two detailed studies, involving combined experimental and computational efforts have been performed: We first used trans-stilbene oxide to establish the basic reaction mechanism of this enzyme. Importantly, a highly conserved and earlier ignored histidine was identified to be important for catalysis. Following from this, EVB and experiment have been used to investigate the enantioconvergence of the StEH1-catalyzed hydrolysis of styrene oxide. This combined approach involved wildtype StEH1 and an engineered enzyme variant, and established a molecular understanding of enantioconvergent behavior of StEH1. 3. A novel framework was developed for the Computer-Aided Directed Evolution of Enzymes (CADEE), in order to be able to quickly prepare, simulate, and analyze hundreds of enzyme variants. CADEE’s easy applicability is demonstrated in the form of an educational example. In conclusion, classical approaches are a computationally economical means to achieve extensive conformational sampling. Using the EVB approach has enabled me to obtain a molecular understanding of complex enzymatic systems. I have also increased the reach of the EVB approach, through the implementation of CADEE, which enables efficient and highly parallel in silico testing of hundreds-to-thousands of individual enzyme variants. Keywords: epoxide hydrolase, enantioselectivity, regioselectivity, enantioconvergence, biocatalysis, empirical valence bond, computational directed evolution Beat Anton Amrein, Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-75124 Uppsala, Sweden. © Beat Anton Amrein 2017 ISSN 1651-6214 ISBN 978-91-554-9816-0 urn:nbn:se:uu:diva-314686 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-314686) /LVW RI SDSHUV 7KLV WKHVLV LV EDVHG RQ WKH IROORZLQJ SDSHUV ZKLFK DUH UHIHUUHG WR LQ WKH WH[W E\ WKHLU 5RPDQ QXPHUDOV , 'XDUWH ) %DXHU 3 %DUUR]R $ $PUHLQ % $ 3XUJ 0 cTYLVW - DQG .DPHUOLQ 6 & / )RUFH )LHOG ,QGHSHQGHQW 0HWDO 3DUDPHWHUV 8VLQJ D 1RQERQGHG 'XPP\ 0RGHO - 3K\V &KHP % ± ,, $PUHLQ % $ %DXHU 3 'XDUWH ) -DQIDON &DUOVVRQ c 1DZRU\WD $ 0RZEUD\ 6 / :LGHUVWHQ 0 DQG .DPHUOLQ 6 & / ([SDQGLQJ WKH &DWDO\WLF 7ULDG LQ (SR[LGH +\GURODVH DQG 5HODWHG (Q]\PHV $&6 &DWDO ± ,,, %DXHU 3 -DQIDON &DUOVVRQ c $PUHLQ % $ 'REULW]VFK ' :LGHUVWHQ 0 DQG .DPHUOLQ 6 & / &RQIRUPDWLRQDO 'LYHUVLW\ DQG (QDQWLRFRQYHUJHQFH LQ 3RWDWR (SR[LGH +\GURODVH , 2UJ %LRPRO &KHP ± ,9 $PUHLQ % $ 6WHIIHQ0XQVEHUJ ) 6]HOHU , 3XUJ 0 .XONDUQL < DQG .DPHUOLQ 6 & / &$'(( &RPSXWHU$LGHG 'LUHFWHG (YROXWLRQ RI (Q]\PHV ,8&U- ± 5HSULQWV ZHUH PDGH ZLWK SHUPLVVLRQ IURP WKH SXEOLVKHUV $GGLWLRQDO 3XEOLFDWLRQV 9 'XDUWH ) $PUHLQ % $ DQG .DPHUOLQ 6 & / 0RGHOLQJ &DWDO\WLF 3URPLVFXLW\ LQ WKH $ONDOLQH 3KRVSKDWDVH 6XSHUIDPLO\ 3K\V &KHP &KHP 3K\V ± 9, 'XDUWH ) $PUHLQ % $ %ODKD1HOVRQ ' DQG .DPHUOLQ 6 & / 5HFHQW $GYDQFHV LQ 4000 )UHH (QHUJ\ &DOFXODWLRQV 8VLQJ 5HIHUHQFH 3RWHQWLDOV %%$ ± *HQHUDO 6XEMHFWV ± 5HSULQWV ZHUH PDGH ZLWK SHUPLVVLRQ IURP WKH SXEOLVKHUV &RQWHQWV ,QWURGXFWLRQ &KHPLVWU\ DQG &DWDO\VLV %LRFKHPLVWU\ %LRFDWDO\VLV DQG (Q]\PHV 5HJLR DQG (QDQWLRVHOHFWLYLW\ 6RODQXP 7XEHURVXP (SR[LGH +\GURODVH 0ROHFXODU 0RGHOLQJ $SSURDFKHV 2XWOLQH 0HWKRGV DQG 7KHRUHWLFDO %DFNJURXQG (Q]\PH .LQHWLFV 6HTXHQFH $QDO\VLV 6HTXHQFH 6SDFH 6WUXFWXUDO $QDO\VLV DQG 7RROV 2EWDLQLQJ 3URWHLQ 6WUXFWXUHV /LPLWDWLRQV RI +LJK5HVROXWLRQ 6WUXFWXUHV 6WUXFWXUHV RI 3URWHLQ 9DULDQWV 7UDQVLWLRQ 6WDWH 7KHRU\ 0ROHFXODU 6LPXODWLRQV 0ROHFXODU 0HFKDQLFDO 6LPXODWLRQV 0ROHFXODU '\QDPLFV 6LPXODWLRQV 4XDQWXP 0HFKDQLFDO 6LPXODWLRQV 0XOWLVFDOH 0RGHOLQJ )UHH (QHUJ\ 3HUWXUEDWLRQ (PSLULFDO 9DOHQFH %RQG $SSURDFK 0HWKRGRORJ\ $GYDQFHV 3DSHU , 3DSHU ,9 0XWDWDJHQVLV (IILFLHQW 3DUDOOHO ([HFXWLRQ $XWRPDWLF $QDO\VLV 6XJJHVWHG :RUNIORZ (9% $SSOLFDWLRQV 3DSHU ,, 3URWRQDWLRQ RI + DQG + &RQVHUYDWLRQ RI ( DQG + 2[\DQLRQ +ROHV (4 +1 DQG 'RXEOH 0XWDQW 3DSHU ,,, (QJLQHHUHG 9DULDQW DQG &U\VWDO 6WUXFWXUH %LQGLQJ 0RGHV &RQFOXVLRQV DQG )XWXUH 3HUVSHFWLYH 3RSXOlUYHWHQVNDSOLJ 6DPPDQIDWWQLQJ $FNQRZOHGJPHQWV 5HIHUHQFHV $EEUHYLDWLRQV c cQJVWU|P −10 P '% 'DWD %DQN ')7 'HQVLW\ )XQFWLRQDO 7KHRU\ HH (QDQWLRPHULF ([FHVV (9% (PSLULFDO 9DOHQFH %RQG IV )HPWRVHFRQG 10−15 V kcat &DWDO\WLF 5DWH 8QGHU 2SWLPXP 6DWXUDWLQJ &RQGLWLRQV V .0 0LFKDHOLV0HQWHQ &RQVWDQW 0' 0ROHFXODU '\QDPLFV 00 0ROHFXODU 0HFKDQLFV 02±40 0ROHFXODU 2UELWDO 4XDQWXP 0HFKDQLFV QV 1DQRVHFRQG 10−9 V 3'% 3URWHLQ 'DWD %DQN SV 3LFRVHFRQG 10−12 V 40 4XDQWXP 0HFKDQLFV 4000 4XDQWXP 0HFKDQLFV 0ROHFXODU 0HFKDQLFV 6W(+ 6RODQXP WXEHURVXP (SR[LGH +\GURODVH , 9% 9DOHQFH %RQG &RPSXWHU 3URJUDPV 8VHG LQ WKLV :RUN 1DPH 'HVFULSWLRQ /LQN %DVK 8QL[ 6KHOO KWWSVZZZJQXRUJVRIWZDUHEDVK &$'(( &RPSXWHU$LGHG 'LUHFWHG (YROXWLRQ RI (Q]\PHV KWWSVJLWKXEFRPNDPHUOLQODEFDGHH &KHP'UDZ 0ROHFXOH (GLWRU KWWSZZZFDPEULGJHVRIWFRPVRIWZDUHRYHUYLHZDVS[ &KLPHUD 0ROHFXODU 0RGHOLQJ 6\VWHP KWWSVZZZFJOXFVIHGXFKLPHUD &OXVWDOΩ 0XOWLSOH 6HTXHQFH $OLJQPHQW KWWSVZZZHELDFXN7RROVPVDFOXVWDOR *520$&6 0ROHFXODU '\QDPLFV 6LPXODWLRQ 3DFNDJH KWWSZZZJURPDFVRUJ *LW 9HUVLRQ &RQWURO 6\VWHP KWWSVJLWVFPFRP 0DHVWUR *UDSKLFDO ,QWHUIDFH IRU 0ROHFXODU 0RGHOOLQJ E\ 6FKU|GLQJHU //& KWWSVZZZ6FKU|GLQJHUFRPPDHVWUR 02/$5,6 0ROHFXODU '\QDPLFV (9% KWWSODHWURXVFHGXVRIWZDUHKWPO 3523.$ 3UHGLFWLRQ RI S.D 9DOXHV RI ,RQL]DEOH *URXSV LQ 3URWHLQV KWWSVJLWKXEFRPMHQVHQJURXSSURSND 3\02/ 0ROHFXODU *UDSKLFV 6\VWHP KWWSVZZZS\PRORUJ 3\WKRQ 6FULSWLQJ /DQJXDJH KWWSVZZZS\WKRQRUJ 4 0ROHFXODU '\QDPLFV 3DFNDJH KWWS[UD\EPFXXVHaDTZZZT 6&:5/ 3URWHLQ 6LGH &KDLQ 3UHGLFWLRQ KWWSGXQEUDFNIFFFHGXVFZUO 90' 9LVXDO 0ROHFXODU '\QDPLFV KWWSZZZNVXLXFHGX5HVHDUFKYPG ,QWURGXFWLRQ &KHPLVWU\ DQG &DWDO\VLV 7KH ZRUOG LV IXOO RI FKHPLFDO UHDFWLRQV DQG WKH SURGXFWV RI FKHPLFDO UHDFWLRQV DUH HYHU\ZKHUH DURXQG XV LQ WKH IRUP RI FORWKLQJ PDGH IURP V\QWKHWLF ILEHUV OLNH Q\ORQ WKH 3(7 ERWWOHV WKDW EHYHUDJHV DUH VWRUHG LQ WKH IXHO WKDW LV EXUQHG ERWK WR SURSHO FDUV DQG WUXFNV RU WR FDUDPHOL]H VXJDU RQ WRS RI GHOLFLRXV WUHDWV 0DQNLQG KDV XVHG FKHPLFDO UHDFWLRQV IRU WKRXVDQGV RI \HDUV 3UHKLVWRULF KX PDQV XVHG FKHPLFDO UHDFWLRQV WKDW UDQJHG IURP VLPSOH FRPEXVWLRQ IRU KHDW DQG FRRNLQJ > @ WR IHUPHQWDWLRQ WR FUHDWH FKHHVH > @ RU WR FUDIW DOFRKROLF EHYHUDJHV > @ $W WKH EHJLQQLQJ RI WKH WK FHQWXU\ D IXQGDPHQWDO FDWDO\VW ZDV GLVFRY HUHG E\ )ULW] +DEHU WKDW ZDV ODWHU EURXJKW WR LQGXVWULDO VFDOH E\ &DUO %RVFK WKH +DEHU%RVFK SURFHVV XVHG IRU WKH LQGXVWULDO IL[DWLRQ RI QLWURJHQ >±@ 7R GD\¶V LQGXVWULDO UHDFWLRQV WKDW LQYROYH KHWHURJHQHRXV FDWDO\VWV DUH XVHGRQYHU\ ODUJH VFDOHV VHH HJ > @ :KLOH LQGXVWULDO VFDOH UHDFWLRQV OLNH WKH +DEHU%RVFK SURFHVV DUH YHU\ LP SRUWDQW UHDFWLRQV D WUHQG WRZDUGV JUHHQ FKHPLVWU\ LV REVHUYHG DQG V\QWKHWLF SDWKZD\V IRU PRUH DWRP HIILFLHQF\ DUH VRXJKW DIWHU SDWKZD\V LQYROYLQJ OHVV WR[LF LQWHUPHGLDWHV IHZHU E\SURGXFWV DQG DYRLGLQJ WR[LF VROYHQWV ,Q WKLV FRQ WH[W ELRFDWDO\VWV KDYH IRXQG WR KDYH JUHDW SRWHQWLDO IRU LQGXVWULDO XVDJH >@ VHH DOVR 7DEOH ,Q JHQHUDO FDWDO\VWV ORZHU WKH DFWLYDWLRQ EDUULHU IRU D UHDF WLRQ FRPSDUHG WR WKH VDPH UHDFWLRQ LQ D GLIIHUHQW HQYLURQPHQW LQ RWKHU ZRUGV FDWDO\VWV DUH LQFUHDVLQJ WKH UDWH DW ZKLFK D UHDFWLRQ RFFXUV RIWHQ E\ PDQ\ RU GHUV RI PDJQLWXGH >@ 8QGHUVWDQGLQJ KRZ D FDWDO\VW IXQFWLRQV FDQ SRLQW WRZDUG KRZ LW FDQ EH LP SURYHG 7KH UHDFWLRQ PHFKDQLVP RI D UHDFWLRQ FDQ SRWHQWLDOO\ OHDG WR DQ XQGHU VWDQGLQJ RI KRZ WKH UHDFWLRQ FDQ EHVW EH LPSURYHG &RQVHTXHQWO\ JUHDW H[SHU LPHQWDO HIIRUWV DUH XQGHUWDNHQ WR LGHQWLI\ UHDFWLRQ PHFKDQLVPV > ±@ 6LQFH WKH HQG RI WKH WK FHQWXU\ VLJQLILFDQW FRQWULEXWLRQV WR WKH ILHOG RIUH DFWLRQ NLQHWLFV DQG VWUXFWXUH GHWHUPLQDWLRQ KDYH EHHQ PDGH E\