P. Lava Kumar, A. T. Jones and F. Waliyar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Sheet on Cowpea Mild Mottle 'Carlavirus'
Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Cowpea mild mottle 'carlavirus' IDENTITY Name: Cowpea mild mottle 'carlavirus' Taxonomic position: Viruses: Possible Carlavirus Common names: CPMMV (acronym) Angular mosaic (of beans), pale chlorosis (of tomato) (English) Notes on taxonomy and nomenclature: CPMMV is serologically closely related to groundnut crinkle, psophocarpus necrotic mosaic, voandzeia mosaic and tomato pale chlorosis viruses and is probably synonymous with them (Jeyanandarajah & Brunt, 1993). It is not serologically related to known carlaviruses, and should possibly be placed in a new sub-group of the carlaviruses. EPPO computer code: CPMMOX EU Annex designation: I/A1 HOSTS Natural hosts include Canavalia ensiformis, groundnuts (Arachis hypogaea), Phaseolus lunatus, P. vulgaris, Psophocarpus tetragonolobus, soyabeans (Glycine max), tomatoes (Lycopersicon esculentum), Vigna mungo, probably aubergines (Solanum melongena), cowpeas cv. Blackeye (Vigna unguiculata), Vicia faba and Vigna subterranea. The virus also occurs in various weeds (Fabaceae), including Stylosanthes and Tephrosia spp. Many more hosts can be artificially inoculated. GEOGRAPHICAL DISTRIBUTION EPPO region: Egypt, Israel. Asia: India (Karnataka, Maharashtra and probably elsewhere), Indonesia, Israel, Malaysia, Thailand, Yemen. Africa: Côte d'Ivoire, Egypt, Ghana, Kenya, Malawi, Mozambique, Nigeria, Sudan, Tanzania, Togo, Uganda, Zambia. South America: Brazil. Oceania: Fiji, Papua New Guinea, Solomon Islands. EU: Absent. BIOLOGY Unlike carlaviruses in general, CPMMV is transmitted in a non-persistent manner (Jeyanandarajah & Brunt, 1993). The ability to transmit CPMMV is usually retained for a maximum of 20-60 min (Muniyappa & Reddy, 1983). Non-vector transmission is by mechanical inoculation. Seed transmission has been demonstrated in a number of hosts in different countries, but there are also negative reports. -
Autographa Gamma
1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ...................................................................................................... -
Plant Pathology Circular No. 261 Fla. Dept. Agric. & Consumer Serv. July 1984 Division of Plant Industry PEANUT STRIPE VIRUS
Plant Pathology Circular No. 261 Fla. Dept. Agric. & Consumer Serv. July 1984 Division of Plant Industry PEANUT STRIPE VIRUS C. L. Schoultiesl During the 1982 peanut growing season, virus symptoms previously unknown to the United States were observed in new peanut germplasm obtained from the People's Republic of China (3). This germplasm was under observation at the regional plant introduction station at the University of Georgia at Experiment. J. W. Demski (2) identified this virus as peanut stripe virus (PStV), which may be synonymous with a virus described recently from the People's Republic of China (5). In 1983, surveys of some commercial fields and many experimental peanut plantings of universities from Texas to Virginia and Florida indicated that the virus problem was predominantly limited to breeding plots (4). In early 1984, at least 40 seed lots from the Florida peanut breeding programs at Marianna and Gainesville and a limited number from foundation seed lots were indexed by J. W. Demski in Georgia (4). Four of the 40 lots were positive for PStV and were not planted this year. The virus was not detected in foundation seed, however. Concurrent with seed indexing, infected peanut plants from Georgia were received in the quarantine greenhouse at the Florida Division of Plant Industry. D. E. Purcifull of the Institute of Food and Agricultural Sciences (IFAS), University of Florida, inoculated healthy peanuts with the virus. The virus was isolated and purified, and antiserum to the purified virus was produced (D. E. Purcifull and E. Hiebert, personal communication). During June 1984, PStV-infected plants were found in IFAS experimental plantings in Gainesville and Marianna. -
Recovery Plan for Cowpea Mild Mottle Virus, a Seedborne Carlavirus (?) Judith K. Brown School of Plant Sciences University of A
Recovery Plan for Cowpea mild mottle virus, a seedborne carla-like virus Judith K. Brown School of Plant Sciences University of Arizona, Tucson and Jose Carlos Verle Rodrigues University of Puerto Rico, San Juan NPDRS meeting APS, Minneapolis-Saint Paul, MN August 10, 2014 Cowpea mild mottle virus (CpMMV) Origin (endemism): Africa: Kenya (1957), Ghana (1973)* Host: groundnut Arachis hypogaea L (1957, 1997, Sudan) cowpea Vigna unguiculata L. (1973) Distribution: now, worldwide in all legume growing locales (27+ documented) but importance in soybean unrealized until recently. Transmission •Whitefly-transmitted in non-persistent manner; Bemisia tabaci (Genn.) sibling species group (Muniyappa, 1983) AAP 10 min, IAP 5 min •Mechanically transmissible, experimentally •Seed borne to varying extents in different species and varieties of same species; particularly severe in certain soybean varieties. *often cited as the first report because the disease went largely unnoticed until then Likely multiple strains, but largely uninvestigated Synonyms: Groundnut crinkle (Dubern and Dollet, 1981) Psophocarpus necrotic mosaic (Fortuner et al., 1979) Voandzeia mosaic (Fauquet and Thouvenel, 1987) in the Cote d'Ivoire, tomato pale chlorosis in Israel (Cohen & Antignus, 1982) Tomato fuzzy vein in Nigeria (Brunt & Phillips, 1981) Bean angular mosaic virus in Brazil (Costa et al., 1983; Gaspar et al., 1985) shown to be serologically most closely related to CPMMV = proposed, distinct strains Isolates from solanaceous hosts in Jordan and Israel, although very similar to West African and Indian legume isolates, considered to be distinct strains – more information needed to confirm and differentiate (Menzel et al., 2010). Wide variation in virulence of CPMMV isolates from other countries also reported (Anno-Nyako, 1984, 1986, 1987; Siviprasad and Sreenivasulu, 1996). -
Cowpea Mild Mottle Virus Infecting Soybean Crops in Northwestern Argentina
Cowpea mild mottle virus Infecting Soybean Crops in Northwestern Argentina Irma G. Laguna, Joel D. Arneodo, Patricia Rodríguez-Pardina & Magdalena Fiorona Instituto de Fitopatología y Fisiología Vegetal, Instituto Nacional de Tecnología Agropecuaria - INTA, Camino 60 Cuadras km 5½, X5020ICA Córdoba, Argentina, e-mail:[email protected] (Accepted for publication on 20/01/2006) Corresponding autor: Irma G. Laguna RESUMO Cowpea mild mottle virus infectando soja no noroeste da Argentina Relata-se a ocorrência natural do Cowpea mild mottle virus (CPMMV, gênero Carlavirus) em culturas de soja [Glycine max (L.) Merr.] na província de Salta (noroeste argentino). Argentina is one of the leading soybean producing observed in samples from asymptomatic soybeans. On and exporting countries in the world. During the 2004/2005 this basis, plants were tested for Cowpea mild mottle virus cropping season, soybean production reached a record (CPMMV, genus Carlavirus) by DAS-ELISA. Leaf samples �8.� million tons. Although soybean is grown mainly in were ground in extraction buffer (PBS pH 6.8 + 0.05% Tween the central Pampas, it is also cultivated in the northwest 20 + 2% polyvinyl pyrrolidone) at a 1:5 (w/v) dilution. of the country, where it plays a significant role in the local Specific polyclonal antisera (DSMZ GmbH, Germany) were economy. Among the biotic factors affecting soybean used. Positive (supplied by DSMZ) and negative (healthy yields in this region, fungal diseases account for the major soybean) controls were included on each microtitre plate. economic losses (Wrather et al., Plant Dis. 81:107. 1997). After incubation with p-nitrophenyl phosphate at room Nevertheless, diseases of viral etiology have also been temperature for 1 h, A405nm values greater than 0.�00 were recorded. -
Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture. -
Evidence That Whitefly-Transmitted Cowpea Mild Mottle Virus Belongs To
Arch Virol (1998) 143: 769–780 Evidence that whitefly-transmitted cowpea mild mottle virus belongs to the genus Carlavirus 1 2 2 2; 1 R. A. Naidu ,S.Gowda , T. Satyanarayana , V. Boyko ∗, A. S. Reddy , W. O. Dawson2, and D. V. R. Reddy1 1Crop Protection Division, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India 2Citrus Research and Education Center (CREC), University of Florida, Lake Alfred, Florida, U.S.A. Accepted October 7,1997 Summary. Two strains of whitefly-transmitted cowpea mild mottle virus (CP- MMV) causing severe (CPMMV-S) and mild (CPMMV-M) disease symptoms in peanuts were collected from two distinct agro-ecological zones in India. The host-range of these strains was restricted to Leguminosae and Chenopodiaceae, and each could be distinguished on the basis of symptoms incited in different hosts. The 30-terminal 2500 nucleotide sequence of the genomic RNA of both the strains was 70% identical and contains five open reading frames (ORFs). The first three (P25, P12 and P7) overlap to form a triple gene block of proteins, P32 en- codes the coat protein, followed by P12 protein located at the 30 end of the genome. Genome organization and pair-wise comparisons of amino acid sequences of pro- teins encoded by these ORFs with corresponding proteins of known carlaviruses and potexviruses suggest that CPMMV-S and CPMMV-M are closely related to viruses in the genus Carlavirus. Based on the data, it is concluded that CPMMV is a distinct species in the genus Carlavirus. Introduction Cowpea mild mottle virus (CPMMV) was first reported on cowpea in Ghana [3]. -
Discovery of a Novel Member of the Carlavirus Genus from Soybean (Glycine Max L
pathogens Communication Discovery of a Novel Member of the Carlavirus Genus from Soybean (Glycine max L. Merr.) Thanuja Thekke-Veetil 1 , Nancy K. McCoppin 2, Houston A. Hobbs 1, Glen L. Hartman 1,2 , Kris N. Lambert 1, Hyoun-Sub Lim 3 and Leslie. L. Domier 1,2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] (T.T.-V.); [email protected] (H.A.H.); [email protected] (G.L.H.); [email protected] (K.N.L.) 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea; [email protected] * Correspondence: [email protected]; Tel.: +1-217-333-0510 Abstract: A novel member of the Carlavirus genus, provisionally named soybean carlavirus 1 (SCV1), was discovered by RNA-seq analysis of randomly collected soybean leaves in Illinois, USA. The SCV1 genome contains six open reading frames that encode a viral replicase, triple gene block proteins, a coat protein (CP) and a nucleic acid binding protein. The proteins showed highest amino acid sequence identities with the corresponding proteins of red clover carlavirus A (RCCVA). The predicted amino acid sequence of the SCV1 replicase was only 60.6% identical with the replicase of RCCVA, which is below the demarcation criteria for a new species in the family Betaflexiviridae. The Citation: Thekke-Veetil, T.; predicted replicase and CP amino acid sequences of four SCV1 isolates grouped phylogenetically McCoppin, N.K.; Hobbs, H.A.; with those of members of the Carlavirus genus in the family Betaflexiviridae. -
Serological and RT-PCR Detection of Cowpea Mild Mottle Carlavirus Infecting Soybean
Journal of General and Molecular Virology Vol.1 (1), pp. 007-011, June, 2009 Available online at http://www.academicjournals.org/JGMV © 2009 Academic Journals Full Length Research Paper Serological and RT-PCR detection of cowpea mild mottle carlavirus infecting soybean 1 2 1 M. Tavasoli , N. Shahraeen and SH. Ghorbani 1Division of Microbiology, College of Science, Alzahra University, Tehran, Iran. 2Plant Virus Research Department, Iranian Research Institute for Plant Protection (IRIPP), Tehran, P.O. Box- 19395- 1454, Iran Accepted 8 April, 2009 During 2006-2007 growing seasons, survey was carried to identify a disease of possible viral etiology causing mosaic of soybean in the soybean field. Leaf samples showing symptoms of mild mosaic were collected from soybean fields in Dezful region (Khozestan province, Southern Iran). Electron microscopy, DAS-ELISA serological tests and RT-PCR assays with specific pairs of primers were applied to identify and determine the viral etiology of the agent. Flexuous particles of ca. 15 x 650 nm were present in the leaf dip preparations examined by electron microscopy. On the basis of serology, RT-PCR assays and reaction of indicator host plants, the causal virus of these mild mosaic symptoms on soybean in the Southern Iran was identified as Cowpea mild mottle virus- CPMMV, a whitefly- transmitted carlavirus. Key words: Cowpea mild mottle virus, serology, RT-PCR, detection, Southern Iran INTRODUCTION As soybean (Glycine max (L.) Merril) cultivation increases ported to be transmitted by the whitefly, Bemisia tabaci in Iran (106000 ha in 2005) (Anonymous 2005) occur- (Homoptera: Aleyrodidae), in a non-persistent manner rence of virus and virus-like diseases can limit production (Jeyanandarajah and Brunt, 1993; Memelink et al., 1990). -
Transmission of the Bean-Associated Cytorhabdovirus by the Whitefly
viruses Article Transmission of the Bean-Associated Cytorhabdovirus by the Whitefly Bemisia tabaci MEAM1 Bruna Pinheiro-Lima 1,2,3, Rita C. Pereira-Carvalho 2, Dione M. T. Alves-Freitas 1 , Elliot W. Kitajima 4, Andreza H. Vidal 1,3, Cristiano Lacorte 1, Marcio T. Godinho 1, Rafaela S. Fontenele 5, Josias C. Faria 6 , Emanuel F. M. Abreu 1, Arvind Varsani 5,7 , Simone G. Ribeiro 1,* and Fernando L. Melo 2,3,* 1 Embrapa Recursos Genéticos e Biotecnologia, Brasília DF 70770-017, Brazil; [email protected] (B.P.-L.); [email protected] (D.M.T.A.-F.); [email protected] (A.H.V.); [email protected] (C.L.); [email protected] (M.T.G.); [email protected] (E.F.M.A.) 2 Departamento de Fitopatologia, Instituto de Biologia, Universidade de Brasília, Brasília DF 70275-970, Brazil; [email protected] 3 Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília DF 70275-970, Brazil 4 Departamento de Fitopatologia, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba SP 13418-900, Brazil; [email protected] 5 The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; [email protected] (R.S.F.); [email protected] (A.V.) 6 Embrapa Arroz e Feijão, Goiânia GO 75375-000, Brazil; [email protected] 7 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa * Correspondence: [email protected] (S.G.R.); fl[email protected] (F.L.M.) Received: 4 August 2020; Accepted: 11 September 2020; Published: 15 September 2020 Abstract: The knowledge of genomic data of new plant viruses is increasing exponentially; however, some aspects of their biology, such as vectors and host range, remain mostly unknown. -
Identification and Incidence of Peanut Viruses in Georgia' Materials And
Identification and Incidence of Peanut Viruses in Georgia' C. W. Kuhn*', J. W. Demski3, D. V. R. Reddy4, C. P. BenneP, and Mandhana Bijaisoradaf ABSTRACT Materials and Methods Surveys of peanuts in Georgia in 1983 detected peanut mot- Two surveys were conducted in the southwestern section of Geo- tle virus (PMV), peanut stripe virus (PStV), and peanut stunt rgia during 1983: (i) July 5 and 6, 6-9 weeks after planting and (ii) Au- virus. The mild strain of PMV was by far the most prevalent gust 22 and 23, 12-15 weeks after planting. Thirty-nine fields in 13 virus in commercial peanuts; it occurred in every field and an counties were evaluated. Different sections of each field were in- average incidence of 15-20%was observed when the growing spected by three and four people on the first and second surveys, re- season was about two-thirds complete. The necrosis strain of spectively. Plants were observed for symptoms typical of the mild st- PMV was noted in 39% of the fields, but the incidence was less rain (M) of PMV, and leaves from a few plants were collected. The in- than 0.1%. A new severe strain of PMV (chlorotic stunt) was cidence of PMV-M was estimated by counting the number of infected identified in two fields. PStV was found at four locations; in plants of 100 consecutive plants in a row (3-4 counts/field/person). A each case the infected plants were near peanut germplasm thorough search was made for plants with symptoms atypical of PMV- lines from The People's Republic of China. -
Incidence and Distribution of Peanut Mottle Virus in Peanut in the United States! J
Incidence and Distribution of Peanut Mottle Virus in Peanut in the United States! J. W. Demski, D. H. Smith, and C. W. Kuhn2 ABSTRACT tion composed of 0.05 g Na 2S03 , 0.10 g diethyldithiocarba mate, 0.5 g Celite, 5.0 ml of 0.1 M neutral potassium Peanut mottle virus (PMV) was isolated from phosphate, and 45 ml of deionized water (one mIl leaf commercially grown peanuts in New Mexico, Okla let). Test plants were dusted with 600 grit silicon car homa and Texas. This is the first report of PMV in bide powder and then rubbed with a cheesecloth pad that the Southwestern United States and shows PMV to had been dipped in the inoculum. be present in all states with major peanut produc tion. The incidence of PMV in Texas and Oklahoma Natural occurrence of PMV in peanut was determined was low in comparison to New Mexico and the South three ways: 1) communication with researchers in spe eastern states. PMV was found in both seed and cific states, 2) growing plants from seed produced in leaves of plants grown in the various states. The certain states, and 3) obtaining leaf samples from plants mild strain of PMV is the predominant strain in the in certain states. Seed were obtained from Florida, New United States. Since the source of primary inoculum Mexico, Oklahoma, and Texas. The seed were planted in is infected plants that have grown from infected a clay-loam Vermiculite mixture in galvanized trays in seeds, it is theorized that the use of seed grown in the greenhouse.