The Firebug Pyrrhocoris Apterus (Linnaeus, 1758) (Hemiptera, Heteroptera) New to the Norwegian Fauna – with an Explosive Expansion in Northern Europe

Total Page:16

File Type:pdf, Size:1020Kb

The Firebug Pyrrhocoris Apterus (Linnaeus, 1758) (Hemiptera, Heteroptera) New to the Norwegian Fauna – with an Explosive Expansion in Northern Europe © Norwegian Journal of Entomology. 24 June 2020 The firebug Pyrrhocoris apterus (Linnaeus, 1758) (Hemiptera, Heteroptera) new to the Norwegian fauna – with an explosive expansion in Northern Europe ANDERS ENDRESTØL & STEFFEN ROTH Endrestøl, A. & Roth, S. 2020. The firebug Pyrrhocoris apterus (Linnaeus, 1758) (Hemiptera, Heteroptera) new to the Norwegian fauna – with an explosive expansion in Northern Europe. Norwegian Journal of Entomology 67, 81–90. The Firebug Pyrrhocoris apterus (Linnaeus, 1758) (Hemiptera, Heteroptera) is presented new to the Norwegian fauna. Several hundred individuals were observed in a residential area in southeast Norway, centred around two Tilia trees. P. apterus has had an explosive expansion in Northern Europe the recent years, and its range expansion and means of expansion is discussed. Key words: Hemiptera, Heteroptera, Pyrrhocoridae, Pyrrhocoris apterus, Norway, Northern Europe, range expansion. Anders Endrestøl, Norwegian Institute for Nature Research, Sognsveien 68, NO-0855 Oslo, Norway. E-mail: [email protected] Steffen Roth, University Museum of Bergen, Department of Natural History, P.O.Box 7800, NO-5020 Bergen. Email: [email protected] Introduction coridae) is an example of a true bug that has expanded its range northwards the last decades There are about 470 species of Heteroptera (Voigt 2004, Tolsgaard 2005). Pyrrhocoridae registered in Norway (Ødegaard & Endrestøl Amyot & Serville, 1843 contains about 30 genera 2015). Some of these have become established and 300 species worldwide, with 13 genera and 43 or introduced in Norway the recent years, either species present in the Palearctic Region (Kerzhner as a result of natural range expansion or human 2001). The genus Pyrrhocoris Fallén, 1814 is activity (e.g. Ødegaard & Endrestøl 2007, represented with six species in the Palearctic Staverløkk et al. 2009, Mjøs et al. 2010, Ødegaard (Kerzhner 2001). Since P. apterus is easily bred 2014, Olsen et al. 2017). Many of the human in laboratory condition, its use as an experimental induced introductions of alien insects into Norway tool for biological research is extensive (review and other countries in Europe are a result of trade in Soucha 1993), even research on personality with ornamental plants (e.g. Smith et al. 2007, (Gyuris et al. 2010). Westergaard et al. 2020, Sandvik et al. 2020). We here present P. apterus new to the Many species of true bugs have also been reported Norwegian fauna. This represents not only a new to change their distribution range in general, species to Norway, but also a new family of true presumably due to a warmer climate (see review bug to Norway; Pyrrhocoridae. We also present in Musolin & Fujisaki 2006). data on, and discuss, its range expansion in Pyrrhocoris apterus (Linnaeus, 1758) (Pyrrho- Northern Europe. 81 Endrestøl & Roth: Pyrrhocoris apterus new to the Norwegian fauna The records Several other garden plants and bushes were present around the locality, and a linden hedge The species was first observed by M. Grandahl in (Tilia) (with hawthorn (Crataegus) in between) a garden in a residential area in Sarpsborg, Viken was surrounding the garden. The hedge was more 18. April 2020. Photos where sent to the second than 100 m long, but no individuals of P. apterus author who identified them as P. apterus. Later, seemed to be dwelling on or under this hedge. the first author went to the locality and confirmed The hedge was presumably planted there in the the presence of the species. mid 1970-ies (M. Grandahl pers. com). Several Ø (Viken), Sarpsborg: Klokkerskogen (11. clusters of individuals were found under a bush 18188, 59.25274), 18.IV.2020, 2 ex., leg. M. of Philadelphus coronaries, a few meters from the Grandahl, det. S. Roth; 23.IV.2020, 11♀♀ (brac.) two Tilia trees. 12♂♂ (brac.) 2♂♂ (macr.), leg./det. A. Endrestøl, One record of P. apterus is published on Gbif. coll. Norwegian institute for nature reseach org (2020) from Norway (via naturgucker.de) (NINA) / University Museum of Bergen (UMB); from Innlandet county, Sør-Fron municipality, 25.IV.2020, 5 ex. leg./coll. T.J. Olsen; 27.IV.2020, Gålå 12. July 2018. We expect that to be erroneous 1♀ (brac.) 1♂ (brac.), leg. M. Grandahl, coll. (probably Corizus hyoscyami (Linnaeus, 1758)), NINA; 30.IV.2020, 3♀♀ (brac.) 2♂♂ (brac.) as this is more than 900 m a.s.l., and no Tilia 2♂♂ (macr.), leg. A. Endrestøl, coll. NINA. can be found in the area. This record is thus not From the 34 individuals investigated by the considered. The closest known record from the first author, 30 of the individuals were brachypter new Norwegian population is in Munkedal, (brac. – short-winged) and four of the male Sweden, some 85 km southeast of Klokkerskogen. specimens were macropter (macr. – long-winged). The body size of a pair in copula with an apparent size difference were measured to 7,5 mm (♂) and The species 10,3 mm (♀) (Figure 1c). The species had never been observed in Pyrrhocoris apterus is a very conspicuous the area before, and there were several hundred species, strikingly colored in black and red individuals aggregated there at the time of the (aposematism) (Figure 1). The coloration is first observation. The species was observed somewhat variable (Soucha 1993), and several several times the following days, and the number forms are described (Kerzhner 2001). The species of individuals seemed to decrease (M. Grandahl is given as 9,0 –11,5 mm by Wachmann et al. pers. com). On the 23. April 2020 there were still (2007), and 6,5 –12 mm by Soucha (1993). In probably several hundred individuals present, more Norway it can only be confused with the widely scattered and in smaller aggregates (Figure 1a,b). distributed Corizus hyoscyami (Rhopalidae), but The main population seemed to be distributed the markings are different and ocelli are lacking in an area of about 50 m2, extending to 120 m2 in Pyrrhocoridae (P. apterus). In southern Europe when counting single individuals. After some cold P. apterus could easily be confused with a very days at the end of April, most individuals seemed similar species, Scantius aegyptius (Linnaeus, to have vanished at the 30. April (A. Endrestøl 1758) (Pyrrhocoridae), most easily separated by pers. obs.), and some where later seen burrowing the color of the abdominal sternites (Mata et al. themselves down into the sand (M. Grandahl pers. 2013). Other members of the genus Pyrrhocoris com.). are in general colored in black or brown (Voigt The population was centred around two trees 2004), except P. sibiricus Kuschakewitsch, 1866, (Tilia cordata) (Figure 1d), to a large part on the which is also colored in black and red, but much ground. The ground around the trees was slightly duller compared to P. apterus. Finally, several sloped towards southeast, consisting of a lawn species of Lygaeidae from Central Europe are also with grasses, moss and non-vegetated spots of conspicuously coloured in red and black, but they sand, and some debris of leaves and Tilia seeds. also have ocelli as opposed to Pyrrhocoridae. 82 Norwegian Journal of Entomology 67, 81–90 (2020) a b c d e FIGURE 1. a,b. Aggregations of Pyrrhocoris apterus from Sarpsborg, Norway 23. April 2020. c. A pair of P. apterus in copula (♂:7,5 mm, ♀: 10,3 mm). d. The locality of P. apterus from Klokkerskogen, Sarpsborg, where the majority of individuals were observed under the two Tilia trees. e. P. apterus on the trunk of a Tilia tree. Photos: Anders Endrestøl, NINA. 83 Endrestøl & Roth: Pyrrhocoris apterus new to the Norwegian fauna Another strikingly feature with this species (Fabaceae) (Wachmann et al. 2007) and even on is that it aggregates in large groups as a result of spruces Picea (Spuris 1995). In Europe, Tilia aggregation pheromones and contact pheromones is the most common food source and P. apterus (Wachmann et al. 2007). They also have alert therefore tends to cluster under linden trees, which pheromones that results in an alarm response that coincides with observations on the Norwegian quickly can dissolve aggregations (Soucha 1993, locality reported here. They are adapted to an Wachmann et al. 2007). extremely dry diet of ripe seeds (Soucha 1993). The species lives on various Malvaceae such To some extent they might also be zoophagous, as Tilia, Hibiscus, Malva, Alcea, Althaea and necrophagous and cannibalistic (Soucha 1993, Lavatera (Voigt 2004). They can also be found on Wachmann et al. 2007). This form of polyphagy and around other trees, eg. Robinia pseudacacia is according to Soucha (1993) one of the reasons FIGURE 2. Map of Pyrrhocoris apterus (Linnaeus, 1758) in Northern Europe from 1960 to 2020. Records prior to 1960 are not considered. Green dot is the record presented here. Source: Gbif.org (2020), Fugleognatur (2020), ArtPortalen (2020), FinBif (2020), Dabas Dati (2020), eElurikkus (2020). 84 Norwegian Journal of Entomology 67, 81–90 (2020) the species is widespread and expanding its range. According to Wachmann et al. (2007) the species overwinters as adults under moss, loose bark or leaves. That is in accordance with the observation of adults in mid-April in Norway. The females start to lay eggs in May, and can continue to lay eggs for a longer period (Voigt 2004, Wachmann et al. 2007). One brachypterous female lays about 383 eggs, but with substantial variation (± 208 eggs) (Soucha 2013). The lifespans and total number of eggs laid by females of the two wing morphs do not differ significantly, even though such a difference is found in several other insect-species with wing dimorphism (Soucha 2013 and references therein). Eggs are laid in the FIGURE 3. Number of records (one record per ground (Voigt 2004), and females makes small locality) per year of Pyrrhocoris apterus (Linnaeus, pits in the ground where she lays the eggs before 1758) in total in Norway, Sweden, Finland, Estonia, covering them (Soucha 1993).
Recommended publications
  • Mir-2 Family Regulates Insect Metamorphosis by Controlling the Juvenile Hormone Signaling Pathway
    MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway Jesus Lozanoa, Raúl Montañeza,b, and Xavier Bellesa,1 aInstitut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, 08003 Barcelona, Spain; and bInstitució Catalana de Recerca i Estudis Avançats–Complex Systems Laboratory, Universitat Pompeu Fabra, 08003 Barcelona, Spain Edited by Lynn M. Riddiford, Howard Hughes Medical Institute Janelia Farm Research Campus, Ashburn, VA, and approved February 4, 2015 (received for review September 25, 2014) In 2009 we reported that depletion of Dicer-1, the enzyme that we used the cockroach Blattella germanica as a model, because catalyzes the final step of miRNA biosynthesis, prevents meta- it displays the more primitive hemimetabolan mode of meta- morphosis in Blattella germanica. However, the precise regulatory morphosis, where the juvenile stages already have the adult body roles of miRNAs in the process have remained elusive. In the pres- plan, thus making the transition from nymph to adult much less ent work, we have observed that Dicer-1 depletion results in an dramatic than in holometabolan species. In both hemimetabolan increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile and holometabolan modes the regulation of metamorphosis is ba- hormone-dependent transcription factor that represses metamor- sically ensured by two hormones, the molting hormone (generally phosis, and that depletion of Kr-h1 expression in Dicer-1 knock- 20-hydroxyecdysone), which triggers nonmetamorphic and meta- down individuals rescues metamorphosis. We have also found morphic molts, and the juvenile hormone (JH) that represses the that the 3′UTR of Kr-h1 mRNA contains a functional binding site metamorphic character of the molts (21).
    [Show full text]
  • Effect of the Search Image on the Lizard Ability to Reveal a Batesian Mimic
    University of South Bohemia in České Budějovice Faculty of Science Effect of the search image on the lizard ability to reveal a Batesian mimic Master thesis Bc. Josef Beneš Školitel: RNDr. Petr Veselý, Ph.D. České Budějovice 2016 Master thesis: Beneš, J. (2015). Effect of the search image on the lizard ability to reveal a Batesian mimic. Mgr. Thesis, in English with Czech introduction. – 58 pp., Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic. Annotation: The effect of the search image on the ability of hand reared skinks (Chalcides sexlineatus) to reveal a “fake” Batesian mimic was tested with respect to their previous experience with palatable experimental prey (Guyana spotted cockroach – Blaptica dubia) which served as a motivational prey as well as midsized mealworm beetle larvae (Tenebrio molitor). The red firebug (Pyrrhocoris apterus) was used as an aposematic model. Prohlašuji, že svoji diplomovou práci jsem vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své diplomové práce, a to v nezkrácené podobě elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce. Souhlasím dále s tím, aby toutéž elektronickou cestou byly v souladu s uvedeným ustanovením zákona č. 111/1998 Sb. zveřejněny posudky školitele a oponentů práce i záznam o průběhu a výsledku obhajoby kvalifikační práce. Rovněž souhlasím s porovnáním textu mé kvalifikační práce s databází kvalifikačních prací Theses.cz provozovanou Národním registrem vysokoškolských kvalifikačních prací a systémem na odhalování plagiátů.
    [Show full text]
  • Faune De France Hémiptères Coreoidea Euro-Méditerranéens
    1 FÉDÉRATION FRANÇAISE DES SOCIÉTÉS DE SCIENCES NATURELLES 57, rue Cuvier, 75232 Paris Cedex 05 FAUNE DE FRANCE FRANCE ET RÉGIONS LIMITROPHES 81 HÉMIPTÈRES COREOIDEA EUROMÉDITERRANÉENS Addenda et Corrigenda à apporter à l’ouvrage par Pierre MOULET Illustré de 3 planches de figures et d'une photographie couleur 2013 2 Addenda et Corrigenda à apporter à l’ouvrage « Hémiptères Coreoidea euro-méditerranéens » (Faune de France, vol. 81, 1995) Pierre MOULET Museum Requien, 67 rue Joseph Vernet, F – 84000 Avignon [email protected] Leptoglossus occidentalis Heidemann, 1910 (France) Photo J.-C. STREITO 3 Depuis la parution du volume Coreoidea de la série « Faune de France », de nombreuses publications, essentiellement faunistiques, ont paru qui permettent de préciser les données bio-écologiques ou la distribution de nombreuses espèces. Parmi ces publications il convient de signaler la « Checklist » de FARACI & RIZZOTTI-VLACH (1995) pour l’Italie, celle de V. PUTSHKOV & P. PUTSHKOV (1997) pour l’Ukraine, la seconde édition du « Verzeichnis der Wanzen Mitteleuropas » par GÜNTHER & SCHUSTER (2000) et l’impressionnante contribution de DOLLING (2006) dans le « Catalogue of the Heteroptera of the Palaearctic Region ». En outre, certains travaux qui m’avaient échappé ou m’étaient inconnus lors de la préparation de cet ouvrage ont été depuis ré-analysés ou étudiés. Enfin, les remarques qui m’ont été faites directement ou via des notes scientifiques sont ici discutées ; MATOCQ (1996) a fait paraître une longue série de corrections à laquelle on se reportera avec profit. - - - Glandes thoraciques : p. 10 ─ Ligne 10, après « considérés ici » ajouter la note infrapaginale suivante : Toutefois, DAVIDOVA-VILIMOVA, NEJEDLA & SCHAEFER (2000) ont observé une aire d’évaporation chez Corizus hyoscyami, Liorhyssus hyalinus, Brachycarenus tigrinus, Rhopalus maculatus et Rh.
    [Show full text]
  • Climatic Variation of Supercooling Point in the Linden Bug Pyrrhocoris Apterus (Heteroptera: Pyrrhocoridae)
    insects Article Climatic Variation of Supercooling Point in the Linden Bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae) Tomáš Ditrich 1,* ,Václav Janda 1, Hana Vanˇeˇcková 2 and David Doležel 2 1 Faculty of Education, University of South Bohemia, Branisovska 31a, 37005 Ceske Budejovice, Czech Republic; [email protected] 2 Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; [email protected] (H.V.); [email protected] (D.D.) * Correspondence: [email protected]; Tel.: +420-387-773-014 Received: 30 June 2018; Accepted: 15 October 2018; Published: 19 October 2018 Abstract: Cold tolerance is often one of the key components of insect fitness, but the association between climatic conditions and supercooling capacity is poorly understood. We tested 16 lines originating from geographically different populations of the linden bug Pyrrhocoris apterus for their cold tolerance, determined as the supercooling point (SCP). The supercooling point was generally well explained by the climatic conditions of the population’s origin, as the best predictor—winter minimum temperature—explained 85% of the average SCP variation between populations. The supercooling capacity of P. apterus is strongly correlated with climatic conditions, which support the usage of SCP as an appropriate metric of cold tolerance in this species. Keywords: cold tolerance; supercooling point; overwintering; diapause 1. Introduction Population dynamics of temperate insects can be crucially affected by their survival rates during overwintering [1]. Cold tolerance, a key determinant of insect survival during winter, is thus an important research topic for insect ecologists and physiologists. This importance has increased with the recent climate changes around the world, especially in the Northern Hemisphere [2,3].
    [Show full text]
  • Migrations of Dysdercus Spp. (Hemiptera : Pyrrhocoridae) Related to Movements OP the Inter-Tropical Convergence Zone in West Africa
    Bull. ent. Res. 67, 185-204 185 Published 1977 .. Migrations of Dysdercus spp. (Hemiptera : Pyrrhocoridae) related to movements OP the Inter-Tropical Convergence Zone in West Africa DOMINIQ~DUVIARD * Laboratoire d'EntotnoZogie Agricole, Centre Orstom d'Adiopodoumé, B.P. V51, A bidjan, Zvory Coast Abstract The possibilities of migrations in the West African species of Dysdercus are discussed and a hypothesis of long-range migrations asso- ciated \with the Inter-TTopical Convergence Zone and its wind systems is proposed. Catches of adult Dysdercus in four light-traps distributed from south to north of the Ivory Coast showed that the phenology of assumed migratory activity in D. voelkeri Schmidt differs with latitude and may be correlated with particular types of weather; stainer migrations taking place during the warm, wet and sunny part of the year. The whole life cycle of the insects as well as their flight activity occur under these climatic conditions, prevailing in a belt of 600-900 km width, situated immediately to the south of the Inter-Tropical Front. Colonisation of newly available habitats is thus only possible when climatic factors allow: (i), migratory flight activity and (ii), survival in the colonised area. A close examination of the timing of both migrations in the two main species, D. voelkeri and D. mehoderes Karsch, and of annual movements of the I.T.F. leads to the only logical hypothesis that the transportation of migrating insects is effected by atmospheric convergence, prevailing wind currents and air mass displacements. Introduction Migration of adults of a new generation from one breeding site to another is an important feature of the biology of many insect species (Southwood, 1960; Johnson, 1969; Bowden, 1973; Dingle, 1974) and migrants must therefore be considered as active colonisers of every potential habitat, and not just as individuals leaving an unsuitable environment (Dingle, 1972).
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Pyrrhocoris Apterus (Linnaeus, 1758) - a New Record of Firebug (Hemiptera, Pyrrhocoridae) from Malta
    Correspondence BULL. ENT. SOC. MALTA (2019) Vol. 10 : 106–107 DOI: 10.17387/BULLENTSOCMALTA.2019.12 Pyrrhocoris apterus (Linnaeus, 1758) - a new record of firebug (Hemiptera, Pyrrhocoridae) from Malta Thomas CASSAR1 True bugs of the family Pyrrhocoridae, more commonly known as red bugs, cotton stainers or (in the case of Pyrrhocoris apterus) firebugs, are represented by 43 species from 13 genera in the Palaearctic (AUKEMA & RIEGER, 2001). The Heteroptera of the Maltese Islands have been relatively well-studied, with 141 species recorded (CUESTA SEGURA et al., 2010; CARAPEZZA & MIFSUD, 2015; 2016). Of these, only one species belongs to the family Pyrrhocoridae - Scantius aegyptius aegyptius. However, specimens collected in summer of 2018 were confirmed to bePyrrhocoris apterus, a new Pyrrhocorid record for Malta. Pyrrhocoris apterus (Linnaeus, 1758) Material examined: Malta, Ħaż-Żebbuġ, 20.vi.2018, leg. T. Cassar (1 macropterous); Rabat, Chadwick Lakes, 16.ix.2018, leg. T. Cassar (1 brachypterous); Rabat, Chadwick Lakes, 19.ix.2018, leg. T. Cassar (1 brachypterous). Notes: Pyrrhocoris apterus has a predominantly Palaearctic distribution, being present from the Iberian Peninsula eastwards into Siberia and China, including most of central and southern Europe. In controlled conditions, eggs take seven and a half days to hatch (MATOLÍN, 1973). P. apterus goes through five larval instars, the last of which lasts the longest – typically about seven days R( IZKI & SLÁMA, 1968). Adults can be either brachypterous or macropterous, though various intermediate morphs exist. Brachypters’ wings are reduced to vestigial scales whilst macropterous individuals have well-developed pairs of wings which extend to the abdomen tip or past it (SEIDENSTÜCKER, 1953).
    [Show full text]
  • Die Raupenfliegen (Diptera: Tachinidae) Mitteleuropas: Bestimmungstabellen Und Angaben Zur Verbreitung Und Ökologie Der Einzelnen Arten
    5 download Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Stuttgarter Beiträge zur Naturkunde Serie A (Biologie) Herausgeber: 4fr für Naturkunde, RosensteinV 70 19 l; , Staatliches Museum 1, D- r Stuttgart Stuttgarter Beitr. Naturk. Ser. A Nr. 506 170 S ,4. 9. 19.94 Professor Dr. Bernhard Ziegler zum 65. Geburtstag Die Raupenfliegen (Diptera: Tachinidae) Mitteleuropas: Bestimmungstabellen und Angaben zur Verbreitung und Ökologie der einzelnen Arten The Tachinids (Diptera: Tachinidae) of Central Europe: Identification Keys for the Species and Data on Distribution and Ecology Von Hans-Peter Tschorsnig und Benno Herting, Stuttgart Mit 291 Abbildungen Summary Keys are given for all central and northern European species of Tachinidae (Diptera). The most important data on distribution and ecology (mainly habitat, phenology, and host-range) are listed for the central European species. Zuammenfassung Es werden Bestimmungsschlüssel für alle in Mittel- und Nordeuropa vorkommenden Arten der Tachinidae (Diptera) gegeben. Für jede mitteleuropäische Art werden die wichtigsten Kenndaten zur Verbreitung und Ökologie (vor allem Habitat, Flugzeit und Wirtskreis) aufge- listet. Inhalt 1. Einleitung 2 2. Beg'iff.c erklärungen 4 2.1. Allgemeines 4 2.2. Kopf 5 2.3. Thorax 7 2.4. Flügel 8 2.5. Beine 9 2.6. Abdomen 10 2.7. Bereifung 11 2.8. Färbung . 11 download Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ 2 STUTTGARTER BEITRÄGE ZUR NATURKUNDE Ser. A, Nr. 506 2.9. Körpergröße 11 2.10. Abkürzungen 11 3. Schlüssel für die Gattungen 12 4. Schlüssel für die Arten . 42 4.1. Subfamilie Exoristinae 42 4.2. Subfamilie Tachininae 63 4.3. Subfamilie Dexiinae 79 4.4.
    [Show full text]
  • Predator Dependent Mimetic Complexes: Do Passerine Birds Avoid Central European Red-And-Black Heteroptera?
    Eur. J. Entomol. 107: 349–355, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1546 ISSN 1210-5759 (print), 1802-8829 (online) Predator dependent mimetic complexes: Do passerine birds avoid Central European red-and-black Heteroptera? KATEěINA HOTOVÁ SVÁDOVÁ, ALICE EXNEROVÁ, MICHALA KOPEýKOVÁ and PAVEL ŠTYS Department of Zoology, Faculty of Science, Charles University, Viniþná 7, CZ-128 44 Praha 2, Czech Republic; e-mails: [email protected]; [email protected]; [email protected]; [email protected] Key words. Aposematism, true bugs, Heteroptera, avian predators, mimetic complex Abstract. True bugs are generally considered to be well protected against bird predation. Sympatric species that have similar warning coloration are supposed to form a functional Müllerian mimetic complex avoided by visually oriented avian predators. We have tested whether these assumptions hold true for four species of European red-and-black heteropterans, viz. Pyrrhocoris apterus, Lygaeus equestris, Spilostethus saxatilis, and Graphosoma lineatum. We found that individual species of passerine birds differ in their responses towards particular bug species. Great tits (Parus major) avoided all of them on sight, robins (Erithacus rubecula) and yellowhammers (Emberiza citrinella) discriminated among them and attacked bugs of some species with higher probability than oth- ers, and blackbirds (Turdus merula) frequently attacked bugs of all the tested species. Different predators thus perceive aposematic prey differently, and the extent of Batesian-Müllerian mimetic complexes and relations among the species involved is predator dependent. INTRODUCTION some cases their very existence are often suspect and Unpalatable animals usually use warning signals to dis- mostly lack experimental evidence. Only few comparative courage predators from attacking them.
    [Show full text]
  • The Ecology of the Viburnum Whitefly, Aleurotrachelus Jelinekii (Frauenf
    The Ecology of the Viburnum Whitefly, Aleurotrachelus jelinekii (Frauenf.). by Patricia Mary Reader B.Sc, A thesis submitted for the Degree of Doctor of Philosophy of the University of London. Department of Zoology and Applied Entomology Imperial College at Silwood Park Ascot Berkshire April 1981 2. ABSTRACT A long term study on the Viburnum whitefly, Aleurotrachelus jelinokii (Frauenf.) was begun in 1962. This is an introduced species to Britain, originally from the Mediterranean, with southern England representing the northern edge of its range. Previously, (Southwood & Reader, 1976), it had been shown that the major controlling factors for the population on the bushes at Silwood Park were adult mortality and factors affecting fecundity. Consequently this thesis focuses on the adult stage and examines, in the first place, the effects of such factors as host plant, density and temperature, on the fecundity of the insect, all of which have some influence on the number of eggs produced. The extent of migration is then discussed, with the conclusion that this is not likely to be a major cause of population dilution. Indeed, tests show that this whitefly will not pursue the prolonged flights expected in a migrating insect. The impact of various predators on the whitefly populations was also examined and only one, Conwentzia psociformis, responded numerically to changes in population densities mainly because it is multivoltine; all the other predator species had one generation a year. Finally, the relation- ship between the host plant and the insect was assessed. Food quality was expressed in amino acid levels found in the leaves both within and between seasons, and it was concluded that a relationship between total levels and egg numbers per leaf could be established.
    [Show full text]
  • Bilimsel Araştırma Projesi (8.011Mb)
    1 T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ Bilimsel Araştırma Projeleri Komisyonu Sonuç Raporu Proje No: 2008/26 Projenin Başlığı AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Proje Yöneticisi Prof.Dr. Kenan KARA Bitki Koruma Anabilim Dalı Araştırmacı Turgut ATAY Bitki Koruma Anabilim Dalı (Kasım / 2011) 2 T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ Bilimsel Araştırma Projeleri Komisyonu Sonuç Raporu Proje No: 2008/26 Projenin Başlığı AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Proje Yöneticisi Prof.Dr. Kenan KARA Bitki Koruma Anabilim Dalı Araştırmacı Turgut ATAY Bitki Koruma Anabilim Dalı (Kasım / 2011) ÖZET* 3 AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Yapılan bu çalışma ile Amasya, Sivas ve Tokat illerinin Kelkit havzasına ait kısımlarında bulunan ve farklı böcek takımlarında parazitoit olarak yaşayan Tachinidae (Diptera) türleri, bunların tanımları ve yayılışlarının ortaya konulması amaçlanmıştır. Bunun için farklı böcek takımlarına ait türler laboratuvarda kültüre alınarak parazitoit olarak yaşayan Tachinidae türleri elde edilmiştir. Kültüre alınan Lepidoptera takımına ait türler içerisinden, Euproctis chrysorrhoea (L.), Lymantria dispar (L.), Malacosoma neustrium (L.), Smyra dentinosa Freyer, Thaumetopoea solitaria Freyer, Thaumetopoea sp. ve Vanessa sp.,'den parazitoit elde edilmiş,
    [Show full text]
  • Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha Halys in Europe with a Large-Scale Monitoring Program
    insects Article Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha halys in Europe with a Large-Scale Monitoring Program Livia Zapponi 1 , Francesco Tortorici 2 , Gianfranco Anfora 1,3 , Simone Bardella 4, Massimo Bariselli 5, Luca Benvenuto 6, Iris Bernardinelli 6, Alda Butturini 5, Stefano Caruso 7, Ruggero Colla 8, Elena Costi 9, Paolo Culatti 10, Emanuele Di Bella 9, Martina Falagiarda 11, Lucrezia Giovannini 12, Tim Haye 13 , Lara Maistrello 9 , Giorgio Malossini 6, Cristina Marazzi 14, Leonardo Marianelli 12 , Alberto Mele 15 , Lorenza Michelon 16, Silvia Teresa Moraglio 2 , Alberto Pozzebon 15 , Michele Preti 17 , Martino Salvetti 18, Davide Scaccini 15 , Silvia Schmidt 11, David Szalatnay 19, Pio Federico Roversi 12 , Luciana Tavella 2, Maria Grazia Tommasini 20, Giacomo Vaccari 7, Pietro Zandigiacomo 21 and Giuseppino Sabbatini-Peverieri 12,* 1 Centro Ricerca e Innovazione, Fondazione Edmund Mach (FEM), Via Mach 1, 38098 S. Michele all’Adige, TN, Italy; [email protected] (L.Z.); [email protected] (G.A.) 2 Dipartimento di Scienze Agrarie, Forestali e Alimentari, University di Torino (UniTO), Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy; [email protected] (F.T.); [email protected] (S.T.M.); [email protected] (L.T.) 3 Centro Agricoltura Alimenti Ambiente (C3A), Università di Trento, Via Mach 1, 38098 S. Michele all’Adige, TN, Italy 4 Fondazione per la Ricerca l’Innovazione e lo Sviluppo Tecnologico dell’Agricoltura Piemontese (AGRION), Via Falicetto 24, 12100 Manta, CN,
    [Show full text]