The Ecology of the Viburnum Whitefly, Aleurotrachelus Jelinekii (Frauenf

Total Page:16

File Type:pdf, Size:1020Kb

The Ecology of the Viburnum Whitefly, Aleurotrachelus Jelinekii (Frauenf The Ecology of the Viburnum Whitefly, Aleurotrachelus jelinekii (Frauenf.). by Patricia Mary Reader B.Sc, A thesis submitted for the Degree of Doctor of Philosophy of the University of London. Department of Zoology and Applied Entomology Imperial College at Silwood Park Ascot Berkshire April 1981 2. ABSTRACT A long term study on the Viburnum whitefly, Aleurotrachelus jelinokii (Frauenf.) was begun in 1962. This is an introduced species to Britain, originally from the Mediterranean, with southern England representing the northern edge of its range. Previously, (Southwood & Reader, 1976), it had been shown that the major controlling factors for the population on the bushes at Silwood Park were adult mortality and factors affecting fecundity. Consequently this thesis focuses on the adult stage and examines, in the first place, the effects of such factors as host plant, density and temperature, on the fecundity of the insect, all of which have some influence on the number of eggs produced. The extent of migration is then discussed, with the conclusion that this is not likely to be a major cause of population dilution. Indeed, tests show that this whitefly will not pursue the prolonged flights expected in a migrating insect. The impact of various predators on the whitefly populations was also examined and only one, Conwentzia psociformis, responded numerically to changes in population densities mainly because it is multivoltine; all the other predator species had one generation a year. Finally, the relation- ship between the host plant and the insect was assessed. Food quality was expressed in amino acid levels found in the leaves both within and between seasons, and it was concluded that a relationship between total levels and egg numbers per leaf could be established. The increased ratio of favourable to unfavourable amino acids in new leaves was linked to the brief egg laying period. The thesis ends with a comparison of all these components indicating their relative importance and contribution to the population dynamics of this whitefly. 3. TABLE OF CONTENTS PAGE ABSTRACT 2 CHAPTER 1 INTRODUCTION 11 CHAPTER 2 FECUNDITY 19 2.1 Introduction 19 2.2 Larval conditions 19 2.2.1 Introduction 19 20 2.2.2 Methods and Results 21 1. Length of larval development a. Aleurotrachelus 21 b. Trialeurodes 23 2. Density during development 25 3. Temperature during development 25 4. Weight of female at emergence 31 2.3 Adult conditions 32 2.3.1 Host Plant 32 1. Effect of leaf age on fecundity 34 2. Seasonal variations in fecundity 35 3. Effect of host plant 36 2.3.2 Density 41 1. Aleurotrachelus 41 2. Trialeurodes 49 2.3.3 Climate 54 Methods and Results 54 2.4 Discussion 57 CHAPTER 3 DISPERSAL 67 3.1 Introduction 67 3.2 Methods 69 3.2.1 fir-Id i"ivx^nts 69 4. PAGE 3.2.2 Experimental assessments 70 3.3 Results 74 3.3.1 Field experiments 1. Daily totals on sticky traps and trap plants. 2. Climatic effects on the total numbers caught. 77 3. Dispersal with distance 4. Numbers caught at different heights 5. Sex ratio - 6. The influence of population size and density. 100 3.3.2 The experimental assessment of flight and landing characteristics. -^3 1. Effect of age on flight activity 2. Flight and landing in a flight chamber 104 a. The duration of flight. b. The length of individual flights 107 c. Landing site preference 3.3.3 Dissections 3.4 Discussion m CHAPTER 4 PREDATORS 117 4.1 Introduction 4.2 Methods and Results 120 4.2.1 Spiders 120 4.2.2 Other Predators 127 4.3 Discussion 138 5. ?AGE CHAPTER 5 THE NITROGEN LEVEL IN THE HOST PLANT 142 5.1 Introduction 142 5.2 Methods 142 5.3 Results 144 5.3.1 Total Amino Acid levels 144 5.3.2 Individual Amino Acid levels 152 5.3.3 Seasonal Variation in Amino Acid levels 152 5.4 Discussion 161 CHAPTER 6 ADULT POPULATION DYNAMICS 6.1 Introduction 169 6.2 Methods 169 6.3 Analysis of natality 172 CHAPTER 7 GENERAL DISCUSSION 188 SUMMARY 196 ACKNOWLEDGEMENTS 198 REFERENCES 199 APPENDICES 217 6. LIST OF FIGURES PAGE FIGURE 1.1 The study sites at Silwood Park 13 FIGURE 1.2 Leaves from bushes A and B showing differences in scale of larval populations 16 FIGURE 2.1 Design of clip cages 22 FIGURE 2.2 Effect of length of development on-the fecundity of Aleurotrachelus . 24 FIGURE 2.3 Effect of length of development on the fecundity of Trialeurodes ' 26 FIGURE 2.4 Effect of larval density on the fecundity of Trialeurodes ' FIGURE 2.5 Effect of temperature on the fecundity of Trialeurodes . 30 FIGURE 2.6 Seasonal variations in fecundity of Aleurotrachelus— ' 38 FIGURE 2.7 Effect of host plant on fecundity of Aleurotrachelus ; 40 FIGURE 2.8 Effect of density on fecundity of Aleurotrachelus 44 FIGURE 2.9 Relationship between available space for female and eggs laid. 46 FIGURE 2.10 Relationship between the total eggs per female and the total number laid 48 FIGURE 2.11 Effect of density on fecundity of Trialeurodes on tomatoes 51 FIGURE 2.12 Effect of density on fecundity of Trialeurodes on beans 51 FIGURE 2.13 Effect of increased space of fecundity of Trialeurodes 53 7.. PACE FIGURE 2.14 Daily total of eggs laid by Trialeurodes 56 FIGURE 2.15 Effect of temperature on the fecundity of Aleurotrachelus 59 FIGURE 2.16 Effect of June temperature on the fecundity of Aleurotrachelus in the field 6L FIGURE 3.1 Position of sticky traps round Bush A 72 FIGURE 3.2 Daily totals of whitefly caught on the first annulus 76 of traps 1972-1974 76 FIGURE 3.3 Daily totals reaching the nearest trap plant 79 FIGURE 3.4 Numbers of adults caught on each annulus of sticky traps * SI FIGURE 3.5 Fit of Hawkes1 and Paris1 equations to the data from the sticky traps 87 FIGURE 3.6 Fit of Hawkes' and Paris' equations from the data from the trap plants ^ FIGURE 3.7 Fit of Paris'& Hawkes'- models to the mean catches 94 FIGURE 3.8 Numbers caught at different heights 96 FIGURE 3.9 Relationship between the number of males caught on the sticky traps and adult numbers 99 FIGURE 3.10 Percentage of the population caught on each annuli of sticky traps ^2 FIGURE 3.11 Effect of age on take off by Aleurotrachelus 105 FIGURE 3.12 Relationship between length of flight and age of female —— 109 FIGURE 3.13 Decline in aerial density with distance FIGURE 4.1 Phenology of Aleurotrachelus and its associated species H9 FIGURE 4.2 Number of spiders compared with whitefly density- 1-22 8. PAGE FIGURE A.3 Relationship between number of whitefly trapped and spider numbers. 124 FIGURE 4.4 Number of whitefly trapped per spider 126 FIGURE 4.5 Number of whitefly trapped per spider compared with adult density 129 FIGURE 4.6 Percentage trapped compared with population density 131 FIGURE 4.7 Relationship between whitefly density and predator species richness 133 FIGURE 4.8 Seasonal fluctuations in numbers of predator species 135 FIGURE 4.9 Relationship between total numbers of individual predators and population density 137 FIGURE 4.10 Relationship between number of coniopterygids and whitefly density 140 FIGURE 5.1 Seasonal variations in total amino acid levels 147 FIGURE 5.2 Comparison between number of eggs laid per leaf and amino acid levels 150 FIGURE 5.3 Individual amino acid levels 153 FIGURE 5.4 Seasonal variations in amino acid levels 156 FIGURE 5.5 Seasonal variations in the percentage of individual amino acids 158 FIGURE 5.6 Seasonal differences in amino acid quality 163 FIGURE 6.1 Functional response of mirids to Aleurotrachelus 174 FIGURE 6.2 kQ and its component values. 179 FIGURE 6.3 kQ and the corresponding values for quality density and temperature 184 9. LIST OF TABLES ?AGE TABLE 2.1 Weights of whitefly from Bushes A and B 31 TABLE 2.2 Numbers of eggs laid on old and young leaves 34 TABLE 2.3 Numbers of eggs laid on 1 year and older leaves— 34 TABLE 2.4 Survival of 1st and 2nd instar 35 TABLE 2.5 Significance of host plant on fecundity Al TABLE 3.1 Six models for density with distance 82 TABLE 3.2 Total numbers caught of ten sticky traps during 1968-1976 82 TABLE 3.3 Total numbers caught on the trap plants 83 TABLE 3.4 Fit of the six equations to the data from the sticky traps 84 TABLE 3.5 Fit of the six equations to the data from the trap plants 85 TABLE 3.6 Departure from a 50 : 50 sex ratio of adults caught on the sticky traps 92 TABLE 3.7 Sex ratio of adults from the inner and outer annuli of sticky traps 97 TABLE 3.8 Sex ratio of adults from the trap plants 100 TABLE 3.9 Comparison between numbers caught on outer and inner annuli 103 TABLE 3.10 Population density and percentage of the population caught on trap plants 103 TABLE 3.11 Flight development time 104 TABLE 3.12 Flight willingness of 1 day old Aleurotrachelus 106 TABLE 3.13 Flight willingness of whitefly of different ages 106 TABLE 3.14 Frequency of individual flights of females 107 TABLE 3.15 Landing site preference 110 10. PACE TABLE 3.16 Effects of host plant on landing site preference- 110 TABLE 5.1 Amino acids identified during analysis 145 TABLE 5.2 Amino acid amounts found in old leaves — 151 TABLE 5.3 Index of amino acid quality — 161 TABLE 6.1 Estimate of adult numbers 175 TABLE 6.2 k - values for egg loss — 176 TABLE 6.3 Percentage egg loss — 181 TABLE 6.4 Values of k .
Recommended publications
  • Effects of Host Plants, Temperature Regimes, and Mating Scenarios on the Population Dynamics of the Cabbage Whitefly Aleyrodes Proletella L
    Effects of host plants, temperature regimes, and mating scenarios on the population dynamics of the cabbage whitefly Aleyrodes proletella L. (Hemiptera: Aleyrodidae) Dissertation zur Erlangung des Doktorgrades der Fakultät für Agrarwissenschaften der Georg-August-Universität Göttingen vorgelegt von Khaldon Askoul geboren in Swaida (Syrien) Göttingen, April 2017 _______________________________________________________ ____________ D 7 1. Referentin/Referent: Prof. Dr. Stefan Vidal 2. Korreferentin/Korreferent: Dr. Rainer Meyhöfer Tag der mündlichen Prüfung: 20.06.2017 Für meine Familie Table of contents Table of contents Summary ................................................................................................................................. 1 General introduction .............................................................................................................. 4 Objective ................................................................................................................................. 9 Chapter 1 .............................................................................................................................. 10 Life history parameters of Aleyrodes proletella L. (Hemiptera: Aleyrodidae) on different host plants ............................................................................................................................ 10 Chapter 2 .............................................................................................................................. 11 Effects
    [Show full text]
  • Migrations of Dysdercus Spp. (Hemiptera : Pyrrhocoridae) Related to Movements OP the Inter-Tropical Convergence Zone in West Africa
    Bull. ent. Res. 67, 185-204 185 Published 1977 .. Migrations of Dysdercus spp. (Hemiptera : Pyrrhocoridae) related to movements OP the Inter-Tropical Convergence Zone in West Africa DOMINIQ~DUVIARD * Laboratoire d'EntotnoZogie Agricole, Centre Orstom d'Adiopodoumé, B.P. V51, A bidjan, Zvory Coast Abstract The possibilities of migrations in the West African species of Dysdercus are discussed and a hypothesis of long-range migrations asso- ciated \with the Inter-TTopical Convergence Zone and its wind systems is proposed. Catches of adult Dysdercus in four light-traps distributed from south to north of the Ivory Coast showed that the phenology of assumed migratory activity in D. voelkeri Schmidt differs with latitude and may be correlated with particular types of weather; stainer migrations taking place during the warm, wet and sunny part of the year. The whole life cycle of the insects as well as their flight activity occur under these climatic conditions, prevailing in a belt of 600-900 km width, situated immediately to the south of the Inter-Tropical Front. Colonisation of newly available habitats is thus only possible when climatic factors allow: (i), migratory flight activity and (ii), survival in the colonised area. A close examination of the timing of both migrations in the two main species, D. voelkeri and D. mehoderes Karsch, and of annual movements of the I.T.F. leads to the only logical hypothesis that the transportation of migrating insects is effected by atmospheric convergence, prevailing wind currents and air mass displacements. Introduction Migration of adults of a new generation from one breeding site to another is an important feature of the biology of many insect species (Southwood, 1960; Johnson, 1969; Bowden, 1973; Dingle, 1974) and migrants must therefore be considered as active colonisers of every potential habitat, and not just as individuals leaving an unsuitable environment (Dingle, 1972).
    [Show full text]
  • Predator Dependent Mimetic Complexes: Do Passerine Birds Avoid Central European Red-And-Black Heteroptera?
    Eur. J. Entomol. 107: 349–355, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1546 ISSN 1210-5759 (print), 1802-8829 (online) Predator dependent mimetic complexes: Do passerine birds avoid Central European red-and-black Heteroptera? KATEěINA HOTOVÁ SVÁDOVÁ, ALICE EXNEROVÁ, MICHALA KOPEýKOVÁ and PAVEL ŠTYS Department of Zoology, Faculty of Science, Charles University, Viniþná 7, CZ-128 44 Praha 2, Czech Republic; e-mails: [email protected]; [email protected]; [email protected]; [email protected] Key words. Aposematism, true bugs, Heteroptera, avian predators, mimetic complex Abstract. True bugs are generally considered to be well protected against bird predation. Sympatric species that have similar warning coloration are supposed to form a functional Müllerian mimetic complex avoided by visually oriented avian predators. We have tested whether these assumptions hold true for four species of European red-and-black heteropterans, viz. Pyrrhocoris apterus, Lygaeus equestris, Spilostethus saxatilis, and Graphosoma lineatum. We found that individual species of passerine birds differ in their responses towards particular bug species. Great tits (Parus major) avoided all of them on sight, robins (Erithacus rubecula) and yellowhammers (Emberiza citrinella) discriminated among them and attacked bugs of some species with higher probability than oth- ers, and blackbirds (Turdus merula) frequently attacked bugs of all the tested species. Different predators thus perceive aposematic prey differently, and the extent of Batesian-Müllerian mimetic complexes and relations among the species involved is predator dependent. INTRODUCTION some cases their very existence are often suspect and Unpalatable animals usually use warning signals to dis- mostly lack experimental evidence. Only few comparative courage predators from attacking them.
    [Show full text]
  • Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
    Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24.
    [Show full text]
  • Investigation on the Relationship Between Morphological And
    agronomy Communication Investigation on the Relationship between Morphological and Anatomical Characteristic of Savoy Cabbage and Kale Leaves and Infestation by Cabbage Whitefly (Aleyrodes proletella L.) Agnieszka Marasek-Ciolakowska 1,* , Grazyna˙ Soika 2 , Wojciech Warabieda 2 , Urszula Kowalska 1 and Dariusz Rybczy ´nski 2 1 Department of Applied Biology, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; [email protected] 2 Department of Plant Protection against Pests, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; [email protected] (G.S.); [email protected] (W.W.); [email protected] (D.R.) * Correspondence: [email protected] Abstract: The cabbage whitefly (CW), Aleyrodes proletella (L.) (Hemiptera: Aleyrodidae), is an im- portant pest in Brassica oleracea L. crops. Little is known about the mechanisms of resistance to CW of savoy cabbage and kale cultivars. Light microscopy (LM) and scanning electron microscopy (SEM) analysis were used to determine the relationship between the morphological and anatomical features of savoy cabbage (Brassica oleracea L. convar. capitata (L.) Alef. var. sabauda L.) and kale (Brassica oleracea L. convar. acephala (DC.) Alef. var. sabellica L.) leaves and host suitability to col- onization by CW. Two kale cultivars, “Redbor” and “Starbor”, and two savoy cabbage cultivars, “Gloriosa” and “Alcosa”, that differed in the degree of infestation by A. proletella were taken for Citation: Marasek-Ciolakowska, A.; histological analysis. The lowest infestation by all forms of A. proletella was observed on savoy Soika, G.; Warabieda, W.; Kowalska, cabbage cultivar “Alcosa” and kale cultivar “Starbor”.
    [Show full text]
  • Review of the West Indian Arachnocoris Scott, 1881 (Hemiptera: Nabidae), with Descriptions of Two New Species, and a Catalog of the Species1
    Life: The Excitement of Biology 4(1) 32 Review of the West Indian Arachnocoris Scott, 1881 (Hemiptera: Nabidae), with Descriptions of Two New Species, and a Catalog of the Species1 Javier E. Mercado2, Jorge A. Santiago-Blay3, and Michael D. Webb4 Abstract: We review the West Indian species of Arachnocoris, a genus of spider-web dwelling kleptoparasitic nabids. We recognize five species: A. berytoides Uhler from Grenada, A. darlingtoni n. sp. from Hispaniola, A. karukerae Lopez-Moncet from Guadeloupe, A. portoricensis n. sp. from Puerto Rico, and A. trinitatis Bergroth from Trinidad. West Indian Arachnocoris antennal and profemoral color banding patterns are useful diagnostic characters and may have evolved to mimic their spider hosts, which are often island endemic spiders in the family Pholcidae. We provide a simplified and illustrated key to the species based on external characters. A catalog for the 16 recognized species of Arachnocoris is presented. Keywords: Hemiptera, Nabidae, Arachnocoris, new species, Neotropical, West Indies Introduction The Nabidae are a relatively small family in the insect order Hemiptera with approximately 20-30 genera and 400-500 described species (Henry 2009, Faúndez and Carvajal 2014). All described species are terrestrial predators. Some species are considered beneficial to humans as these help control populations of agricultural pests. Several species of Nabis have been reported as biting humans (Faúndez 2015). Within the Nabidae Arachnocoris is one of two genera in the tribe Arachnocorini. The arachnophilic genus5 Arachnocoris Scott is a small and little-known group of specialized kleptoparasitic nabids that spend their life- stages living in a relatively treacherous habitat, namely a spider’s web, particularly non-sticky portions of it (Henry 1999; Mercado-Santiago-Blay 2015; Figure 1, this paper).
    [Show full text]
  • Hemiptera: Heteroptera) from the Oriental Region
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 8.xii.2008 Volume 48(2), pp. 611-648 ISSN 0374-1036 New taxa of the Largidae and Pyrrhocoridae (Hemiptera: Heteroptera) from the Oriental Region Jaroslav L. STEHLÍK1) & Zdeněk JINDRA2) 1) Department of Entomology, Moravian Museum, Hviezdoslavova 29a, CZ-627 00 Brno – Slatina, Czech Republic 2) Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Agriculture, CZ-165 21 Praha 6 – Suchdol, Czech Republic; e-mail: [email protected] Abstract. The following new taxa are described in the Largidae and Pyrrhocoridae: Largidae – Delacampius alboarcuatus sp. nov. (Indonesia: Bali), D. parvulus sp. nov. (Thailand), D. siberutensis sp. nov. (Indonesia: Siberut), Iphita fasciata sp. nov. (India: Maharastra), I. fuscorubra sp. nov. (India: Maharastra), I. heissi sp. nov. (Indonesia: Sumatra), I. rubricata albolutea subsp. nov. (Malaysia: Sabah), I. varians rubra subsp. nov. (Indonesia: Nias), Physopelta kotheae sp. nov. (Indonesia: Sumatra, Java), Ph. melanopyga rufi femur subsp. nov. (Indonesia: Seram), and Ph. trimaculata sp. nov. (India: Maharastra); Pyrrhocoridae – Arma- tillus sulawesiensis sp. nov. (Indonesia: Sulawesi), Brancucciana (Rubriascopus) orientalis sp. nov. (Indonesia: Alor, Sumatra, Timor, Yamdena; Philippines: Mindanao), Dindymus (Dindymus) baliensis sp. nov. (Indonesia: Bali), D. (Din- dymus) sundaensis sp. nov. (Indonesia: Alor), D. (Pseudodindymus) albicornis siberutensis subsp. nov. (Indonesia: Siberut, Nias), D. (Pseudodindymus) stysi sp. nov. (Indonesia: Butung Island), Dysdercus (Paradysdercus) transversalis castaneus subsp. nov. (Indonesia: Yamdena, Banda Islands), Ectatops riedeli sp. nov. (Indonesia: Sulawesi), E. schoenitzeri sp. nov. (Indonesia: Sulawesi), and Eu- scopus tristis sp. nov. (India: Kerala). Two new combinations within the Largidae are established: Iphita fi mbriata (Stål, 1863) comb.
    [Show full text]
  • Towards Classical Biological Control of Leek Moth
    ____________________________________________________________________________ Ateyyat This project seeks to provide greater coherence for the biocontrol knowledge system for regulators and researchers; create an open access information source for biocontrol re- search of agricultural pests in California, which will stimulate greater international knowl- edge sharing about agricultural pests in Mediterranean climates; and facilitate the exchange of information through a cyberinfrastructure among government regulators, and biocontrol entomologists and practitioners. It seeks broader impacts through: the uploading of previ- ously unavailable data being made openly accessible; the stimulation of greater interaction between the biological control regulation, research, and practitioner community in selected Mediterranean regions; the provision of more coherent and useful information to enhance regulatory decisions by public agency scientists; a partnership with the IOBC to facilitate international data sharing; and progress toward the ultimate goal of increasing the viability of biocontrol as a reduced risk pest control strategy. No Designated Session Theme BIOLOGY OF CIRROSPILUS INGENUUS GAHAN (HYMENOPTERA: EULOPHIDAE), AN ECTOPARASITOID OF THE CITRUS LEAFMINER, PHYLLOCNISTIS CITRELLA STAINTON (LEPIDOPTERA: GRACILLARIIDAE) ON LEMON 99 Mazen A. ATEYYAT Al-Shoubak University College, Al-Balqa’ Applied University, P.O. Box (5), Postal code 71911, Al-Shawbak, Jordan [email protected] The citrus leafminer (CLM), Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in- vaded the Jordan Valley in 1994 and was able to spread throughout Jordan within a few months of its arrival. It was the most common parasitoid from 1997 to 1999 in the Jordan Valley. An increase in the activity of C. ingenuus was observed in autumn and the highest number of emerged C. ingenuus adults was in November 1999.
    [Show full text]
  • Acacia Flat Mite (Brevipalpus Acadiae Ryke & Meyer, Tenuipalpidae, Acarina): Doringboomplatmyt
    Creepie-crawlies and such comprising: Common Names of Insects 1963, indicated as CNI Butterfly List 1959, indicated as BL Some names the sources of which are unknown, and indicated as such Gewone Insekname SKOENLAPPERLYS INSLUITENDE BOSLUISE, MYTE, SAAMGESTEL DEUR DIE AALWURMS EN SPINNEKOPPE LANDBOUTAALKOMITEE Saamgestel deur die MET MEDEWERKING VAN NAVORSINGSINSTITUUT VIR DIE PLANTBESKERMING TAALDIENSBURO Departement van Landbou-tegniese Dienste VAN DIE met medewerking van die DEPARTEMENT VAN ONDERWYS, KUNS EN LANDBOUTAALKOMITEE WETENSKAP van die Taaldiensburo 1959 1963 BUTTERFLY LIST Common Names of Insects COMPILED BY THE INCLUDING TICKS, MITES, EELWORMS AGRICULTURAL TERMINOLOGY AND SPIDERS COMMITTEE Compiled by the IN COLLABORATION WiTH PLANT PROTECTION RESEARCH THE INSTITUTE LANGUAGE SERVICES BUREAU Department of Agricultural Technical Services OF THE in collaboration with the DEPARTMENT OF EDUCATION, ARTS AND AGRICULTURAL TERMINOLOGY SCIENCE COMMITTEE DIE STAATSDRUKKER + PRETORIA + THE of the Language Service Bureau GOVERNMENT PRINTER 1963 1959 Rekenaarmatig en leksikografies herverwerk deur PJ Taljaard e-mail enquiries: [email protected] EXPLANATORY NOTES 1 The list was alphabetised electronically. 2 On the target-language side, ie to the right of the :, synonyms are separated by a comma, e.g.: fission: klowing, splyting The sequence of the translated terms does NOT indicate any preference. Preferred terms are underlined. 3 Where catchwords of similar form are used as different parts of speech and confusion may therefore
    [Show full text]
  • Conservation of Non-Pest Whiteflies and Natural Enemies of The
    insects Communication Conservation of Non-Pest Whiteflies and Natural Enemies of the Cabbage Whitefly Aleyrodes proletella on Perennial Plants for Use in Non-Crop Habitats Sebastian Laurenz * and Rainer Meyhöfer Section Phytomedicine, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; [email protected] * Correspondence: [email protected] Simple Summary: The cabbage whitefly Aleyrodes proletella is a major insect pest of many cabbage crops. Natural enemies, in particular Encarsia tricolor as well as different hoverfly larvae and spiders, do not decrease pest populations sufficiently. The objective of this study is to promote local natural enemy populations by permanently establishing a non-pest whitefly species, which is an alternative host and additional food source when A. proletella is scarce or even absent. Therefore, the perennial abundance of the non-pest honeysuckle whitefly Aleyrodes lonicerae and natural enemies on different plants were evaluated in the open field. Wood avens Geum urbanum was the best host plant for A. lonicerae in terms of reproduction and overwintering. Most E. tricolor and spiders were also found on this plant species. In the future, G. urbanum might be used in non-crop habitats to increase natural enemy abundances in the agricultural landscape and decrease damage caused by A. proletella on adjacent cabbage plants. Citation: Laurenz, S.; Meyhöfer, R. Conservation of Non-Pest Whiteflies Abstract: Aleyrodes proletella Brassica and Natural Enemies of the Cabbage causes severe economic damage to several crops. Its naturally Whitefly Aleyrodes proletella on occurring enemies often immigrate late in the season or appear in low numbers on cabbage.
    [Show full text]
  • Studies on the Hemipterous Fauna
    ACTA ENTOMOLOGICA FENNICA julkaissut - Edidit SUOMEN HYONTEISTIETEELLINEN SEURA - SOCIETAS ENTOMOLOGICA FENNICA 21 Studies on the South- and Eastmediterranean Hemipterous Fauna R. LINNAVUORI 24 figures SELOSTUS: Tietoja etelaisten ja itdisten Valimerenmaiden nivelkarsaisista HELSINKI 1965 RECEIVED 22. III. 1965 PRINTED 27.Vl. 1965 Helsingissa 1965 Sanoma Osakeyhtia TABLE OF CONTENTS I. CONTRIBUTIONS TO THE HEMIPTEROUUS FAUNA OF LIBYA .... .......... 7 SURVEY OF THE COLLECTING BIOTOPES ........ .......................... 7 SPECIES LIST ..................................................... .... 8 Cydnidae ................................................................. 8 Pentatomidae ........ 8 Coreidae .......... 9 Alydidae ......... 9 Rhopalidae ......... 9 Lygaeidae ......... 9 Reduviidae ......... 10 Anthocoridae ........... ................................................... 11 Miridae ................................................................... 11 Cicadidae .................................................................... 13 Cercopidae .................................... 13 Cicadellidae ................................................................ 13 Dictyopharidae .............................................................. 17 Cixiidae ................................................................... 18 Delphacidae ................................................................ 18 Issidae .................................................................. 18 Tettigometridae.19 Flatidae.19 II. CONTRIBUTIONS TO THE
    [Show full text]
  • Pyrrhocoris Apterus L. (Hemiptera: Pyrrhocoridae), a Newly Introduced Family, Genus, and Species to Ontario and Canada
    Pyrrhocoris apterus , newly introduced to Ontario and Canada JESO Volume 149, 2018 PYRRHOCORIS APTERUS L. (HEMIPTERA: PYRRHOCORIDAE), A NEWLY INTRODUCED FAMILY, GENUS, AND SPECIES TO ONTARIO AND CANADA P. J. OVIEDO RojAS1* AND M. D. JACKsoN1 1University of Guelph: 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1 email, [email protected] Scientific Note J. ent. Soc. Ont. 149: 27–32 The family Pyrrhocoridae (Hemiptera: Pentatomomorpha) has a widespread range, having its greatest diversity in the tropics yet also containing members endemic to the Holarctic region (Schuh and Slater 1995), although none are native to Canada. Dysdercus Guérin-Méneville (Hemiptera: Pyrrhocoridae), which includes the economically important cotton stainers, is the only pyrrhocorid genus with members native to the New World, but is chiefly tropical and more diverse in the Old World (Schaefer 2015). One species has been recorded from as far north as South Carolina and Georgia, USA (Henry 1988a). Pyrrhocoris apterus L. (Hemiptera: Pyrrhocoridae), commonly known as the European firebug, linden bug, or red soldier bug, is found natively throughout Europe and neighbouring regions of Asia. Pyrrhocoris apterus has also been recorded historically from Costa Rica (Distant 1880–1893) and reported in New Jersey, USA in 1896 (Barber 1911; Henry 1988a), though it was not considered established in North America until it was found in Utah, USA in 2008 (Hodgson 2008). This paper will describe the first account of P. apterus, and the family Pyrrhocoridae, in Canada, with evidence that the species has become locally established. The first author first noticed P. apterus in a backyard in Etobicoke, Ontario near the intersection of Martin Grove Road and The Westway (43°41’N 79°34’W) in August 2017.
    [Show full text]