Moment of Inertia of Superconductors

Total Page:16

File Type:pdf, Size:1020Kb

Moment of Inertia of Superconductors Moment of inertia of superconductors J. E. Hirsch Department of Physics, University of California, San Diego La Jolla, CA 92093-0319 We find that the bulk moment of inertia per unit volume of a metal becoming superconducting 2 2 increases by the amount me/(πrc), with me the bare electron mass and rc = e /mec the classical 2 electron radius. This is because superfluid electrons acquire an intrinsic moment of inertia me(2λL) , with λL the London penetration depth. As a consequence, we predict that when a rotating long cylinder becomes superconducting its angular velocity does not change, contrary to the prediction of conventional BCS-London theory that it will rotate faster. We explain the dynamics of magnetic field generation when a rotating normal metal becomes superconducting. PACS numbers: I. INTRODUCTION and is called the “London moment”. In this paper we propose that this effect reveals fundamental physics of A superconducting body rotating with angular veloc- superconductors not predicted by conventional BCS the- ity ~ω develops a uniform magnetic field throughout its ory [3, 4]. For a preliminary treatment where we argued interior, given by that BCS theory is inconsistent with the London moment we refer the reader to our earlier work [5]. Other non- 2m c B~ = − e ~ω ≡ B(ω)ˆω (1) conventional explanations of the London moment have e also been proposed [6, 7]. with e (< 0) the electron charge, and me the bare electron Eq. (1) has been verified experimentally for a variety mass. Numerically, B =1.137 × 10−7ω, with B in Gauss of superconductors [8–15]. The same result is obtained and ω in rad/s. The magnetic field is parallel to the an- whether the sample is first cooled and then set into ro- gular velocity. The phenomenon was predicted in 1933, tation, or cooled while rotating, as predicted by London just before the Meissner effect was discovered, by Becker, [2]. Rotation speeds used in experiment are typically of Heller and Sauter [1] for a perfect conductor set into ro- order 20 to 100 revolutions/second. Equation (1) follows tation. Subsequently London predicted that the same from London’s equation [4] final state should result when a rotating normal metal is e cooled into the superconducting state [2]. The resulting ∇×~ ~vs = − B.~ (2) m c magnetic moment will depend on the shape of the body e with ~vs the superfluid velocity. In the interior of the body, the superfluid rotates together with the body, ω hence the superfluid velocity at distance r from the ro- tation axis is given by ~vs = ~ω × ~r (3) ωR ω(R-2λ L) and using ∇×~ (~ω × ~r)=2~ω in Eq. (2), Eq. (1) results. ωr ωr Consider the simplest geometry, a long cylinder of ra- λ dius R, where no demagnetization effects exist. A section L of such a cylinder is shown in Figure 1. For a supercur- rent flowing within the London penetration depth (λL) of the surface, the superfluid velocity that excludes an arXiv:1808.02857v3 [cond-mat.supr-con] 23 Mar 2019 ~ B applied magnetic field B is eλL ~vs = − B.~ (4) mec FIG. 1: Cylinder rotating with angular velocity ω. In the Therefore, to generate the interior London field Eq. (1) interior, at radial distance r from the rotation axis, ions and in a rotating superconductor in the absence of applied electrons move with the same speed ωr. Near the surface, ions external field, the superfluid velocity in a rim of thickness move with speed ωR and electrons move with slower speed λL at the surface has to be ω(R−2λL). A magnetic field B exists throughout the interior (dashed arrows), generated by the surface current resulting 2λL from electrons lagging behind the ions. ~vs = ~ω × ~r(1 − ) (5) R 2 π 4 so the superfluid velocity in the rim lags the rotation of Ie = nsmehR (9b) the body by the small amount 2 where h is the height of the cylinder. I is the moment ∆vs = −2λLω. (6) e of inertia of the superfluid electrons. As the system goes The full behavior of superfluid velocity versus radius is superconducting, electrons in the rim slow down accord- given by Laue [16] for a cylindrical geometry and by ing to Eq. (5), and the electronic angular momentum Becker et al [1] and London [2] for a spherical geome- decreases by try. The London penetration depth is given by [4] 2 ∆Le = (2πRλLhns) × (me∆vsR) (10) 1 4πnse 2 = 2 (7) λL mec with ∆vs given by Eq. (6). In Eq. (10), the first factor is with ns the superfluid density. the number of superfluid electrons in the surface rim, and For a perfect conductor that is set into rotation, Eq. the second factor is the change in angular momentum of (1) follows from Maxwell’s equations, as discussed by one electron. Using Eq. (7), Eq. (10) can be rewritten Becker et al [1], assuming the superfluid electrons are as completely detached from the lattice. As the body is set mec 2 2 ∆Le = −( ) R hω. (11) into rotation the moving ions generate an electric current e and hence a time-dependent magnetic field that generates a Faraday electric field that pushes the superfluid elec- The kinetic energy of the superfluid electrons in the trons to follow the motion of the ions, albeit with a small normal state due to the body rotation is lag near the surface that gives rise to the surface current 2 1 2 Le that generates the magnetic field Eq. (1). The derivation Ke = Ieω = (12) is reviewed in Appendix A. 2 2Ie In this paper we explain the behavior of rotating su- and when the system goes superconducting and the elec- perconductors using the theory of hole superconductivity trons in the rim slow down it decreases by the amount [17], and we argue that the conventional theory of super- conductivity is inconsistent with the physics of rotating Le∆Le ∆Ke = = ∆Leω (13) superconductors. Ie or, using Eqs. (11) and (1) II. THE CONVENTIONAL VIEW 2 B 2 ∆Ke = − (πR h). (14) We consider a normal metallic cylinder rotating around 4π its axis with angular velocity ~ω that is cooled into the su- For the ions, the kinetic energy of rotation is perconducting state. We assume the cylinder is floating 2 in a gravitation-free environment and there is no friction. Li Ki = (15) Therefore, total angular momentum is conserved. 2Ii In the normal state, electrons and ions rotate together at the same speed. When the cylinder becomes super- with Ii the moment of inertia for the ions. From Eq. (8) conducting, electrons near the surface have to sponta- and conservation of total angular momentum we deduce neously slow down to the velocity Eq. (5) upon entering the superconducting state. The conventional theory of ∆Li = −∆Le, (16) superconductivity does not explain the dynamics of this therefore, angular momentum has to be transferred from process, which London himself considered to be “quite the electrons to the body. This gives rise to a change in absurd” from the perfect conductor viewpoint [18] and the kinetic energy of the ions, did not provide an explanation for. Furthermore, the body has to spontaneously speed up to compensate for Li ∆Ki = ∆Li = ∆Liω = −∆Ke (17) the electronic angular momentum change. The conven- Ii tional theory of superconductivity does not explain what is the physical process that causes the body to increase hence its rotation velocity. The total mechanical angular momentum of electrons ∆Ke + ∆Ki =0. (18) plus ions is Therefore, conservation of angular momentum requires L~ = L~ e + L~ i. (8) that the change in ionic and electronic kinetic energies of rotation exactly compensate each other. The body’s The electronic angular momentum in the rotating normal rotation speed slightly increases to compensate for the state is slowing down of the rim electrons, and its kinetic energy Le = Ieω (9a) of rotation slightly increases. The conventional theory of 3 superconductivity does not explain how the kinetic en- when the system becomes superconducting, because the ergy saved by the lagging electrons is transferred to the energy saved in the slowing down of the rim electrons was body to make it speed up. The frequency of rotation entirely used up in speeding up the body to satisfy an- when the rotating normal metal becomes superconduct- gular momentum conservation. Therefore, we argue that ing will be larger than ω by the amount the conventional theory cannot account for the physics of 2 rotating superconductors without violating either conser- ∆Li me ns 8λL vation of energy or conservation of angular momentum. ∆ω = = 2 ω (19) Ii mpA n R The implausibility of the conventional picture also fol- lows from the following argument. From the Meissner where mp is the nucleon mass, A the atomic weight and effect we learned that the final state of a superconductor n the ionic number density. in a magnetic field B is unique, independent of history. For a type I superconductor it is expected [19] that Whether we apply a magnetic field B to a normal metal when the body is rotating at frequency ω the transition and then cool it to the superconducting state, or we apply to the superconducting state will occur when the system the same magnetic field B to a metal already supercon- is cooled below Tc to the temperature T for which ducting, the final state of the system is exactly the same. Similarly here, the rotation frequency ω plays the role 2mec Hc(T )= − ω = B. (20) that B plays in the Meissner effect. Whether we apply e the rotation ω to the normal metal and then cool it to with Hc(T ) the thermodynamic critical field.
Recommended publications
  • + Gravity Probe B
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Gravity Probe B Experiment “Testing Einstein’s Universe” Press Kit April 2004 2- Media Contacts Donald Savage Policy/Program Management 202/358-1547 Headquarters [email protected] Washington, D.C. Steve Roy Program Management/Science 256/544-6535 Marshall Space Flight Center steve.roy @msfc.nasa.gov Huntsville, AL Bob Kahn Science/Technology & Mission 650/723-2540 Stanford University Operations [email protected] Stanford, CA Tom Langenstein Science/Technology & Mission 650/725-4108 Stanford University Operations [email protected] Stanford, CA Buddy Nelson Space Vehicle & Payload 510/797-0349 Lockheed Martin [email protected] Palo Alto, CA George Diller Launch Operations 321/867-2468 Kennedy Space Center [email protected] Cape Canaveral, FL Contents GENERAL RELEASE & MEDIA SERVICES INFORMATION .............................5 GRAVITY PROBE B IN A NUTSHELL ................................................................9 GENERAL RELATIVITY — A BRIEF INTRODUCTION ....................................17 THE GP-B EXPERIMENT ..................................................................................27 THE SPACE VEHICLE.......................................................................................31 THE MISSION.....................................................................................................39 THE AMAZING TECHNOLOGY OF GP-B.........................................................49 SEVEN NEAR ZEROES.....................................................................................58
    [Show full text]
  • Gravitomagnetic Field of a Rotating Superconductor and of a Rotating Superfluid
    Gravitomagnetic Field of a Rotating Superconductor and of a Rotating Superfluid M. Tajmar* ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria C. J. de Matos† ESA-ESTEC, Directorate of Scientific Programmes, PO Box 299, NL-2200 AG Noordwijk, The Netherlands Abstract The quantization of the extended canonical momentum in quantum materials including the effects of gravitational drag is applied successively to the case of a multiply connected rotating superconductor and superfluid. Experiments carried out on rotating superconductors, based on the quantization of the magnetic flux in rotating superconductors, lead to a disagreement with the theoretical predictions derived from the quantization of a canonical momentum without any gravitomagnetic term. To what extent can these discrepancies be attributed to the additional gravitomagnetic term of the extended canonical momentum? This is an open and important question. For the case of multiply connected rotating neutral superfluids, gravitational drag effects derived from rotating superconductor data appear to be hidden in the noise of present experiments according to a first rough analysis. PACS: 04.80.Cc, 04.25.Nx, 74.90.+n Keywords: Gravitational Drag, Gravitomagnetism, London moment * Research Scientist, Space Propulsion, Phone: +43-50550-3142, Fax: +43-50550-3366, E-mail: [email protected] † Scientific Advisor, Phone: +31-71-565-3460, Fax: +31-71-565-4101, E-mail: [email protected] Introduction Applying an angular velocity ωv to any substance aligns its elementary gyrostats and thus causes a magnetic field known as the Barnett effect [1]. In this case, the angular velocity v v ω is proportional to a magnetic field Bequal which would cause the same alignment: v 1 2m (1) B = − ⋅ωv .
    [Show full text]
  • Search for Frame-Dragging-Like Signals Close to Spinning Superconductors
    Search for Frame-Dragging-Like Signals Close to Spinning Superconductors M. Tajmar, F. Plesescu, B. Seifert, R. Schnitzer, and I. Vasiljevich Space Propulsion and Advanced Concepts, Austrian Research Centers GmbH - ARC, A-2444 Seibersdorf, Austria +43-50550-3142, [email protected] Abstract. High-resolution accelerometer and laser gyroscope measurements were performed in the vicinity of spinning rings at cryogenic temperatures. After passing a critical temperature, which does not coincide with the material’s superconducting temperature, the angular acceleration and angular velocity applied to the rotating ring could be seen on the sensors although they are mechanically de-coupled. A parity violation was observed for the laser gyroscope measurements such that the effect was greatly pronounced in the clockwise-direction only. The experiments seem to compare well with recent independent tests obtained by the Canterbury Ring Laser Group and the Gravity-Probe B satellite. All systematic effects analyzed so far are at least 3 orders of magnitude below the observed phenomenon. The available experimental data indicates that the fields scale similar to classical frame-dragging fields. A number of theories that predicted large frame-dragging fields around spinning superconductors can be ruled out by up to 4 orders of magnitude. Keywords: Frame-Dragging, Gravitomagnetism, London Moment. PACS: 04.80.-y, 04.40.Nr, 74.62.Yb. INTRODUCTION Gravity is the weakest of all four fundamental forces; its strength is astonishingly 40 orders of magnitude smaller compared to electromagnetism. Since Einstein’s general relativity theory from 1915, we know that gravity is not only responsible for the attraction between masses but that it is also linked to a number of other effects such as bending of light or slowing down of clocks in the vicinity of large masses.
    [Show full text]
  • Applications of Superconductivity to Space-Based Gravitational
    461 APPLICATIONS OF SUPERCONDUCTIVITY TO GRAVITATIONAL EXPERIMENTS IN SPACE Saps Buchman W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, U.S.A. ABSTRACT We discuss the superconductivity aspects of two space-based experiments ⎯ Gravity Probe B (GP-B) and the Satellite Test of the Equivalence Principle (STEP). GP-B is an experimental test of General Relativity using gyroscopes, while STEP uses differential accelerometers to test the Equivalence Principle. The readout of the GP-B gyroscopes is based on the London moment effect and uses state-of-the-art dc SQUIDs. We present experimental proof that the London moment is the quantum mechanical ground state of a superconducting system and we analyze the stability of the flux trapped in the gyroscopes and the flux flushing techniques being developed. We discuss the use of superconducting shielding techniques to achieve dc magnetic fields smaller than 10-7 G and an ac magnetic shielding factor of 1013. SQUIDs with performance requirements similar to those for GP-B are also used for the STEP readout. Shielding for the STEP science instrument is provided by superconducting shells, while the STEP test masses are suspended in superconducting magnetic bearings. 462 I. INTRODUCTION Low temperature techniques have been widely used in high precision experiments due to their advantages in reducing thermal and mechanical disturbances, and the opportunity to utilize the low temperature phenomena of superconductivity and superfluidity. Gravitational experiments have reached the stage at which both low temperature technology and ultra low gravity space environments are needed to meet the requirements for measurement precision. In this paper we present some of the applications of superconductivity to two space based gravitational experiments ⎯ Gravity Probe B1) (GP- B) and the Satellite Test of the Equivalence Principle2) (STEP).
    [Show full text]
  • The Gravity Probe B Test of General Relativity C W F Everitt, R Parmley, M Taber Et Al
    Classical and Quantum Gravity PAPER • OPEN ACCESS Related content - Gravity Probe B cryogenic payload The Gravity Probe B test of general relativity C W F Everitt, R Parmley, M Taber et al. - The Gravity Probe B gyroscope To cite this article: C W F Everitt et al 2015 Class. Quantum Grav. 32 224001 S Buchman, J A Lipa, G M Keiser et al. - Gravity Probe B data analysis: II. Science data and their handling prior to the final analysis A S Silbergleit, J W Conklin, M I Heifetz et View the article online for updates and enhancements. al. Recent citations - Astrophysically relevant bound trajectories around a Kerr black hole Prerna Rana and A Mangalam - Measuring general relativistic dragging effects in the Earth’s gravitational field with ELXIS: a proposal Lorenzo Iorio - Lensing convergence in galaxy clustering in CDM and beyond Eleonora Villa et al This content was downloaded from IP address 130.194.20.173 on 23/05/2019 at 04:30 Classical and Quantum Gravity Class. Quantum Grav. 32 (2015) 224001 (29pp) doi:10.1088/0264-9381/32/22/224001 The Gravity Probe B test of general relativity C W F Everitt1, B Muhlfelder1, D B DeBra1, B W Parkinson1, J P Turneaure1, A S Silbergleit1, E B Acworth1, M Adams1, R Adler1, W J Bencze1, J E Berberian1, R J Bernier1, K A Bower1, R W Brumley1, S Buchman1, K Burns1, B Clarke1, J W Conklin1, M L Eglington1, G Green1, G Gutt1, D H Gwo1, G Hanuschak1,XHe1, M I Heifetz1, D N Hipkins1, T J Holmes1, R A Kahn1, G M Keiser1, J A Kozaczuk1, T Langenstein1,JLi1, J A Lipa1, J M Lockhart1, M Luo1, I Mandel1, F Marcelja1,
    [Show full text]
  • Table of Contents
    CONTENTS 1 - Introduction .............................................................................................................. 1 1.1 - A history of women and men ................................................................................... 1 1.2 - Experimental signs of superconductivity ................................................................. 1 1.2.1 - The discovery of superconductivity: the critical temperature ...................... 1 1.2.2 - The magnetic behavior of superconductors .................................................. 3 The MEISSNER-OCHSENFELD effect ....................................................................... 3 Critical fields and superconductors of types I and II ............................................. 3 1.2.3 - Critical current ............................................................................................... 3 1.2.4 - The isotope effect .......................................................................................... 4 1.2.5 - JOSEPHSON currents and flux quantification .................................................. 4 1.3 - Phenomenological models ........................................................................................ 5 1.3.1 - LONDON theory .............................................................................................. 5 1.3.2 - The thermodynamic approach ....................................................................... 6 1.3.3 - GINZBURG-LANDAU theory ...........................................................................
    [Show full text]
  • London Moment Readout of the Gyroscope
    From the book "Near Zero: New Frontiers of Physics." Editors, J. D. Fairbank, B. S. Deaver. Jr, 2. W. F. Everitt, P. F. Michelson, 1988 VI.3( C) The Stanford Relativity Gyroscope Experiment (C): London Moment Readout of the Gyroscope John T. Anderson 1. INTRODUCTION It, has always been an objective of the relativity gyroscope experiment that the gyroscope should be a near perfect uniform solid sphere. It should be featureless and balanced. Under these conditions, it appears that the number of methods to determine the direction of spin of the gyroscope is limited. The conventional approaches used for free precession gyroscopes employ either unequal moments of inertia in the gyroscope, patterning on the surface, or a flat area on a pole of the gyroscope that is tracked by opti- cal means. Objections to these approaches are based on both unacceptable drift and inadequate sensitivity. The relativistic precessions of the gyroscope are small, 6.6 and 0.042 sec- onds of arc respectively for the geodetic and motional precessions. TO make a meaningful measurement of the motional effect requires that. the drift and other errors in the gyroscope be much smaller. Gyroscope errors below 0.001 seconds of arc are reasonable both in terms of the scientific value of the measurement and from the practical point of what we believe 660 ANDERSON can be achieved. This goal cannot be reached without an unrelenting search for, and understanding of the sources of, Newtonian torques on the gyro- scope. It was in the course of calculating the torque from the magnetic moment of the superconducting niobium coating on the gyroscope that C.
    [Show full text]
  • Examining Einstein's Spacetime with Gyroscopes
    Educational Product National Aeronautics and Educators Grades Space Administration & Students 9-12 GRAVITY PROBE B Examining Einstein’s Spacetime with Gyroscopes An Educator’s Guide “Gravity Probe B: Investigating Einstein’s Spacetime with Gyroscopes” is avail- able in electronic format through the Gravity Probe B web site. This product is one of a collection of products available in PDF format for educators and students to download and use. These publications are in the public domain and are not copyrighted. Permis- sion is not required for duplication. Gravity Probe B web site - http://einstein.stanford.edu/ Gravity Probe B email - [email protected] Educator’s Guide created in October 2004 Produced and Written by Shannon K’doah Range, Educational Outreach Director Editing and Review by Jennifer Spencer and Bob Kahn Images/Graphics by Shannon Range, Kate Stephenson, the Gravity Probe B Image Archives, York University, and James Overduin Many thanks to the contributions of Dr. Ronald Adler, Dr. James Overduin, Dr. Alex Silbergleit and Dr. Robert Wagoner. THIS EDUCATOR’S GUIDE ADDRESSES THE FOLLOWING NATIONAL SCIENCE EDUCATION STANDARDS: CONTENT STANDARD A * Understandings about scientific inquiry CONTENT STANDARD B * Motions and forces * Conservation of energy and increase in disorder * Interactions of energy and matter CONTENT STANDARD D * Origin and evolution of the universe CONTENT STANDARD E * Abilities of technological design * Understandings about science and technology CONTENT STANDARD G * Science as a human endeavor * Nature of scientific knowledge * Historical perspectives 2 Educator’s Guide to Gravity Probe B * Produced October 2004 by Shannon K’doah Range GRAVITY PROBE B Examining Einstein’s Spacetime with Gyroscopes An Educator’s Guide http://einstein.stanford.edu/ * [email protected] 3 Table Of Contents Introduction To Gravity Probe B: The Relativity Mission ............
    [Show full text]
  • Summary of Nist Precision Measurement Grants
    SUMMARY OF NIST PRECISION MEASUREMENT GRANTS Recipient Title of Grant Dates James E. Faller Precision measurement gravitational physics 1971-1973 Wesleyan University Daniel Kleppner Precision studies with the hydrogen maser M.I.T. Hugh G. Robinson Precision determination of the ratio of atomic magnetic Duke University moments ................................................... ................................................... .. E. Norval Fortson Precision radio frequency spectroscopy with atomic ions 1972-1974 University of Washington by the ion storage exchange collision method William H. Parker Determination of h/m using macroscopic phase coherence Univ. Calif., Irvine in superconductors Arthur Rich Precision measurement of ion cyclotron resonance University of Michigan ................................................... ................................................... .. Stuart B. Crampton Investigations of hydrogen atom interactions using atomic 1973-1975 Williams College hydrogen masers Brij M. Khorana Quantum properties of liquid helium University of Notre Dame Hans A. Schuessler Precision measurement of the hyperfine structure of stored Texas A&M University heavy ions ................................................... ................................................... .. Theodor W. H¨ansch Precision laser spectroscopy of one-electron atoms 1974-1976 Stanford University Harold J. Metcalf Time resolved excited state spectroscopy SUNY, Stony Brook Richard T. Robiscoe Measurement of the Lamb shift in H, n = 2, by the Ram- Montana
    [Show full text]
  • Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. an Educator's Guide with Activities in Space Science
    DOCUMENT RESUME ED 463 153 SE 065 783 AUTHOR Range, Shannon K'doah; Mullins, Jennifer TITLE Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. An Educator's Guide with Activities in Space Science. INSTITUTION National Aeronautics and Space Administration, Washington, DC. PUB DATE 2002-03-00 NOTE 48p. AVAILABLE FROM Web site: http://einstein.stanford.edu/. PUB TYPE Guides Classroom Teacher (052) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS Higher Education; Middle Schools; *Physical Sciences; Relativity; *Science Activities; *Science Experiments; Science Instruction; Secondary Education; *Space Sciences IDENTIFIERS Telescopes ABSTRACT This teaching guide introduces a relativity gyroscope experiment aiming to test two unverified predictions of Albert Einstein's general theory of relativity. An introduction to the theory includes the following sections: (1) "Spacetime, Curved Spacetime, and Frame-Dragging"; (2) "'Seeing' Spacetime with Gyroscopes"; (3) "The Gravity Probe B Science Instrument"; and (4)"Concluding Questions of Gravity Probe B." The guide also presents seven classroom extension activities and demonstrations. These include: (1) "Playing Marbles with Newton's Gravity"; (2) "The Speed of Gravity?"; (3) "The Equivalence Principle"; (4) "Spacetime Models"; (5) "Frame-Dragging of Local Spacetime"; (6) "The Miniscule Angels"; and (7) "Brief History of Gyroscopes." (YDS) Reproductions supplied by EDRS are the best that can be made from the original document. Educational Product National Aeronautics and EducatorsIGrades
    [Show full text]
  • The Gravity Probe B Relativity Mission
    S´eminaire Poincar´e IX (2006) 55 { 61 S´eminaire Poincar´e Testing Einstein in Space: The Gravity Probe B Relativity Mission John Mester and the GP-B Collaboration Hansen Laboratory Stanford University Stanford CA, USA Abstract. The Gravity Probe B Relativity Mission was successfully launched on April 20, 2004 from Vandenberg Air Force Base in California, a culmination of 40 years of collaborative development at Stanford University and NASA. The goal of the GP- B experiment is to perform precision tests of two independent predictions of general relativity, the geodetic effect and frame dragging. On-orbit cryogenic operations lasted 17.3 months, exceeding requirements. Analysis of the science data is now in progress with a planned announcement of results scheduled for April 2007. Introduction Our present theory of gravity, Einstein's general relativity, is elegant, internally con- sistent and (so far) in agreement with observation. Yet, despite recent advances, the range of predictions tested and the precision to which experiments have tested the theory remain limited [1]. In addition, general relativity resists quantization, thwart- ing efforts to include the theory in a unified picture of the forces of nature. Nearly all attempts at unifying gravitation with the Standard Model result in a theory which differs form general relativity, and in particular, include additional vector or scalar couplings which potentially violate the Equivalence Principle [2,3]. Space offers the opportunity for new tests of general relativity with improved precision [4]. The use of drag compensation, first demonstrated in flight by the Discos instrument on the Triad mission [5], to reduce air drag, magnetic torque, and radiation pressure disturbances enables a uniquely quiet environment for experimentation, one not limited by seismic noise.
    [Show full text]
  • Correction to the Formula for the London Moment
    Correction to the formula for the London moment of a rotating superconductor by R. M. Brady * Electromagnetic Technology Division, National Bureau of Standards, Boulder, Colorado 80303 * Permanent address: Trinity College, Cambridge, CB2 1TQ, England. Abstract This paper gives a full quantum-mechanical analysis of the magnetic field (first discussed by London) which appears spontaneously when a sample of superconductor is set into rotation. It shows that, for slow rotation velocities and using certain approximations, the field B threading a cavity within a superconductor which rotates at angular velocity CO , is given by e B = 2 ( ITIQ - W/c2 ) co , where -e is the charge on the electron, ITIQ is the free electron mass, W is the work-function of the superconductor, and c is the velocity of light. In this calculation effects which are second-order in the rotation velocity have been ignored, and the result is only strictly valid at the zero of temperature. The application of this result to experiments using practical, non-ideal apparatus is then illustrated for a simple geometry. 2-1 x Introduction When a sample of superconductor is set into rotation, a magnetic field is generated spontaneously by currents flowing in the surface of the superconductor. This field is called the London field, and the following analysis is based upon the work of F. London. ^. The local canonical momentum of the electron pairs in a superconductor is related to their velocity u and to the magnetic vector potential A which they experience: P m* u + e* A (1.1) where m* and e* are the effective mass and charge associated with an electron pair.
    [Show full text]