Precision Navigation Achieved by ASTRO-H Space-Borne GPS Receiver

Total Page:16

File Type:pdf, Size:1020Kb

Precision Navigation Achieved by ASTRO-H Space-Borne GPS Receiver Trans. JSASS Aerospace Tech. Japan Vol. 16, No. 5, pp. 454-463, 2018 DOI: 10.2322/tastj.16.454 Precision Navigation Achieved by ASTRO-H Space-borne GPS Receiver By Yu NAKAJIMA,1) Toru YAMAMOTO,1) Yoshinori KONDOH,2) Koji YAMANAKA,1) Kyohei AKIYAMA,3) Mina OGAWA,4) Susumu KUMAGAI,5) Satoko KAWAKAMI,5) and Masaru KASAHARA5) 1) Research and Development Directorate, JAXA, Tsukuba, Japan 2) Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan 3) Space Tracking and Communications Center, JAXA, Tsukuba, Japan 4) Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 5)Space Engineering Division, NEC Space Technologies, Ltd., Fuchu, Japan (Received June 13th, 2017) JAXA and NEC Corporation developed a state of the art space-borne GPS receiver in 2013. This latest receiver has been reduced in terms of the size and mass of its hardware, along with improved software to achieve high accuracy onboard navigation. In 2016, ASTRO-H, a new X-ray astronomy satellite, was launched with this GPS receiver. The navigation performance of ASTRO-H was evaluated by comparing its onboard GPS receiver data and offline precise orbit determination data. The position error RSS was < 1.7 m (95%) and velocity error RSS was < 11 mm/s (95%). And given this receiver’s specifications of 6 m for position and 30 mm/s for its velocity, it has achieved its design goals. This paper describes how the new GPSR improves the ionosphere-free pseudo-range and carrier phase noise, thereby enabling improved offline precise orbit determination of a satellite. The orbit of ASTRO-H was estimated to be within the precision of a few centimeters, which is among the most accurate for the satellites developed by JAXA to date. Key Words: GPS Receiver, GNSS, Performance Evaluation, ASTRO-H Nomenclature received data was downlinked and the OREX vehicle’s orbit was determined offline on the ground. Even though the a : perturbation modeling error vector receiver lacked the onboard capability to determine the C : clock error vehicle’s position, the maximum error of position was around c : light speed 300 m for each axis.1) Since this was our first experience in I : ionospheric delay GPSR design, the receiver weighed up to 12 kg and consumed R : geometric distance a maximum of 50 W, which seem quite huge as compared to r : position vector recent receivers. The experience gained in the OREX project v : velocity vector thus contributed to future advances in Japanese GPSRs : noise through improved performance and a reduction of resources. : pseudo-range A major modification to the GPSR was applied to Advanced : clock error Earth Observing Satellite-II (ADEOS–II). ADEOS-II : carrier phase achieved accurate position determination onboard. The Subscripts absolute position was determined within 26.0 m and absolute b : bias speed was determined within 8.2 cm/s. 2) d : drift 100 1 Pos 95% 1. Introduction Vel 95% Japan’s first space-borne GPS receiver (GPSR) was developed more than 20 years ago. Since then, many GPSRs 10 0.1 have been developed by reducing unit size, mass, and power Position[m] consumption, while upgrading GPSR functions and [m/s] Velocity performance. Figure 1 shows the improvement of onboard navigation performance. 1 0.01 ADEOS-2 ALOS GOSAT ALOS-2 ASTRO-H The Orbit Reentry EXperiment (OREX) flight experiment 2002 2006 2009 2013 2014 2016 launched in 1994 was the first spacecraft equipped with a GPSR in the history of Japanese space development.1) The Fig. 1. Improvement of onboard navigation precision of Japanese purpose of the GPSR on the OREX vehicle was to collect GPSRs. GPS signals during its reentry stage back to the earth. The Copyright© 2018 by the Japan Society for Aeronautical and Space Sciences and1 ISTS. All rights reserved. 454 Trans. JSASS Aerospace Tech. Japan Vol. 16, No. 5 (2018) The next progress of the GPSR was applied to the The basic onboard navigation performance of ASNARO Advanced Land Observing Satellite (ALOS) launched in was evaluated in the previous work,6) although details of 2006.3) ALOS attempted to achieve accurate geographical GPSR performance were not evaluated given the limited data position determination and geometric correction of the obtained by ASNARO due to the telemetry design and observed image, thus making positioning with high accuracy communication bandwidth constraints. GPSR data was essential. In order to meet these demands, a dual frequency obtained every 8 seconds, which was insufficient to evaluate GPS receiver was developed that allows the ALOS ground the navigation filter working at 1 Hz. The details of the GPSR are thus evaluated by using the system to determine its position within sub-meter accuracy flight data of ASTRO-H,10) the second opportunity to use the using dual frequency pseudo-range and carrier phase data. latest 5th-generation GPSR. ASTRO-H was designed to ALOS succeeded in offline high precision navigation by investigate the physics of the high-energy universe by introducing a dual frequency receiver, but there was still room performing high-resolution, high-throughput spectroscopy for improving onboard navigation accuracy. with moderate angular resolution. ASTRO-H was launched There was strong motivation for real-time precise onboard into circular orbit with an inclination of 31°. The typical position determination regarding the Greenhouse gases altitude was 575 km, and its attitude was fixed to the inertial Observing SATellite (GOSAT) developed in 2009. Although coordinates. ASTRO-H is equipped with a single GPSR with the GPSR on GOSAT had no ability to use L2 signals, the no redundancy. Two GPS antennas are installed on both the number of channels was increased from six to eight. The upper and lower panels of its body as illustrated in Fig. 2. presence of more visible satellites provided a stable signal that The GPSR data on ASTRO-H was generally decimated was effective in improving the accuracy and stability of the every 30 seconds and then downlinked. However, for navigation solution. checkout purposes, consecutive 1-Hz GPSR data was In 2014, ALOS-2 equipped with a new navigation filter was recorded for 12 hours during its checkout phase, but launched.4) A new filter (called “Single Pseudo-range NAV”) unfortunately represented all the data obtained by the GPSR, 11) was implemented for estimating ionospheric delay to as ASTRO-H lost contact with the ground in March 2016. compensate and achieve precision position determination. This paper therefore analyzes the recorded 12-hour data from Two GPS antennas were installed on top of the satellites to various viewpoints. provide a broad view as ALOS-2 was planned to change its This paper also introduces the main functions and designed attitude during the observation, while GPS observation was performance of the GPSR for ASTRO-H. The flight data required even during the observation. The receiver can receive obtained through the checkout phase is analyzed and L2 signals for offline precision orbit determination and evaluated in the latter sections. The onboard flight data was provide more accurate orbital information for post geometric analyzed to clarify navigation performance, which suggests correlation. that the design goals were satisfied. Following the GPSR aboard ALOS-2 with the latest improvements,5,6) a new GPSR has been developed by drastically reducing its size, while improving its navigation performance by providing an adequate number of channels and sophisticated navigation filters. This brand-new GPSR was initially installed on Advanced Satellite with New system Architecture for Observation (ASNARO) developed by the Ministry of Economy, Trade and Industry (METI) in 2014.7) This GPSR adopts the direct sampling method8,9) and integrates its electrical circuit into a single package, both of which reduced its size, mass, and power consumption. The advances made not only include a reduction in GPSR Fig. 2. GPS antennas installed on the ASTRO-H. size and power consumption but also improved robustness to track signals from GPS. A new correlator can process 88 Table 1. Specifications of the ASTRO-H GPS receiver. channels for signal inputs. With the help of these abundant Item Specification channels, satellites can install up to three GPS antennas and Size/Weight 96×218×155 [mm] / 1.95 [kg] cover a wide range of view. Such a wide view enables a Power 16 [W] (nominal) / 19 [W] (max) 3 antennas at most satellite to change attitude without losing its connection with Number of antennas the GPS satellite. Thus, the receiver is suitable not only for 6 RF inputs (2 frequencies×3 antennas) satellites facing the earth but also for satellites that are fixed Number of channels L1C/A ×36, L2C ×36, L2P(Y) ×16 on inertial frames or which frequently change position for Onboard L1C/A Position 6 [m] RSS for 95% of the time observation. Navigation Accuracy Velocity 3 [cm/s] RSS for 95% of the time Four navigation filters dependent on the available signals Position 3 [m] RSS for 95% of the time have also been improved, thereby realizing precision onboard Onboard L1C/A & L2C Navigation Accuracy Velocity 3 [cm/s] RSS for 95% of the time navigation, depending on the available types of signals. 2 455 Trans. JSASS Aerospace Tech. Japan Vol. 16, No. 5 (2018) The 12 channels are assigned for the L2P signal. Therefore, a total of 60 channels was available for GPSR on ASTRO-H, with the rest of the channels not being used for navigation. Figure 3 shows the appearance of the GPSR. For more details, refer to the reference.5) 2.2. Navigation filter design The signals from three antennas are input into the navigation filter. The signals were not multiplexed to avoid interference among the signals. The signals received from respective antennas are independently processed through each Fig.
Recommended publications
  • Technologies for Exploration
    SP-1254 SP-1254 TTechnologiesechnologies forfor ExplorationExploration T echnologies forExploration AuroraAurora ProgrammeProgramme Proposal:Proposal: Annex Annex DD Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 SP-1254 November 2001 Technologies for Exploration Aurora Programme Proposal: Annex D This report was written by the staff of ESA’s Directorate of Technical and Operational Support. Published by: ESA Publications Division ESTEC, PO Box 299 2200 AG Noordwijk The Netherlands Editor/layout: Andrew Wilson Copyright: © 2001 European Space Agency ISBN: 92-9092-616-3 ISSN: 0379-6566 Printed in: The Netherlands Price: €30 / 70 DFl technologies for exploration Technologies for Exploration Contents 1 Introduction 3 2 Exploration Milestones 3 3 Explorations Missions 3 4Technology Development and Associated Cost 5 5 Conclusion 6 Annex 1: Automated Guidance, Navigation & Control A1.1 and Mission Analysis Annex 2: Micro-Avionics A2.1 Annex 3: Data Processing and Communication Technologies A3.1 Annex 4: Entry, Descent and Landing A4.1 Annex 5: Crew Aspects of Exploration A5.1 Annex 6: In Situ Resource Utilisation A6.1 Annex 7: Power A7.1 Annex 8: Propulsion A8.1 Annex 9: Robotics and Mechanisms A9.1 Annex 10: Structures, Materials and Thermal Control A10.1 1 Table 1. Exploration Milestones for the Definition of Technology Readiness Requirements. 2005-2010 In situ resource utilisation/life support (ground demonstration) Decision on development of alternative
    [Show full text]
  • Commercial Spacecraft Mission Model Update
    Commercial Space Transportation Advisory Committee (COMSTAC) Report of the COMSTAC Technology & Innovation Working Group Commercial Spacecraft Mission Model Update May 1998 Associate Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation M5528/98ml Printed for DOT/FAA/AST by Rocketdyne Propulsion & Power, Boeing North American, Inc. Report of the COMSTAC Technology & Innovation Working Group COMMERCIAL SPACECRAFT MISSION MODEL UPDATE May 1998 Paul Fuller, Chairman Technology & Innovation Working Group Commercial Space Transportation Advisory Committee (COMSTAC) Associative Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation TABLE OF CONTENTS COMMERCIAL MISSION MODEL UPDATE........................................................................ 1 1. Introduction................................................................................................................ 1 2. 1998 Mission Model Update Methodology.................................................................. 1 3. Conclusions ................................................................................................................ 2 4. Recommendations....................................................................................................... 3 5. References .................................................................................................................. 3 APPENDIX A – 1998 DISCUSSION AND RESULTS........................................................
    [Show full text]
  • Council Drafts New Ordinance to Spread Pump Station Costs
    • •*» Read the Herald Read the Herald For Local News For Local News Serving Summit tor $7 Ytcn ERALD Serving Summit for 67 Year a * mi Summit Record MMtW U tfca r»tt«rtie* N. J., THURSDAY, OCTOHR *» lt$S KfttaM* M I lfc. Act *f Mm^b I. lilt. $4 A YEAR 10 Uniteo lamwian GOP Cites City's Council Drafts New Ordinance To List Donors Progress Under To Spread Pump Station Costs Common Council Tuesday night continued hearing on Of 518 or More Republican Ride an ordinance authorizinK eQptruetion of a new $74,550 At a meeting Saturday evening A multipoint propara ef tht pumping station in the Canoe'Brook area with a portion at the home of Mr. and Mrs. John present city administration, out-i of the "costs-to be levienl against area landowners. How-- I_ c. Madden, vice chairmen for lining its accomplishments mi ev«r, on the heels of the resolution to continue the hearing', general solicitation, the 'Honor future plans, has received a Council introduced a now orcli- i;.,ll" plan to be adopted this year nance appropriating $75,000 .for IJY the United Campaign was ex- hearty stamp of approval from the construction of the station as jiLained to the division chairmen. the city Republican Committee. Canoe Brook Civic a general improvement. Under In announcing this plan, Roger M. The report was submitted in a this measure the assessment Spalding, Campaign .chairman, letter from Ogden D. CJensemer, would be city wide. ) Mated: / - president of the Common Coun- Group Votes 'No' Hearings on both ordinances - :For years many of our citi- cil, to Hugh A.
    [Show full text]
  • FOCUSING on the HIGH SPEED FLIGHT DEMONSTRATION Yoshikazu Miyazawa the Institu
    CURRENT STATUS OF JAPANESE AEROSPACE PROGRAMS – FOCUSING ON THE HIGH SPEED FLIGHT DEMONSTRATION Yoshikazu Miyazawa The Institute of Space Technology and Aeronautics Japan Aerospace Exploration Agency, Tokyo, Japan Abstract: The paper presents an overview of the current status of Japanese aerospace programs, including launch vehicles, satellites, university space programs, and aeronautical research and development. Following the overview, the paper describes the High Speed Flight Demonstration program, a flight experiment program using sub-scale vehicles to investigate the re-entry terminal flight phase of re-usable space vehicles. The program was conducted in two phases: a Phase I experiment at Christmas Island in 2002, and a Phase II experiment at Esrange, Sweden in 2003. Phase II is a joint program between NAL/NASDA and CNES. Copyright © 2004 IFAC Keywords: programs, aerospace engineering, space vehicles, flight control, guidance system, navigation system, tests ACRONYMS INS Inertial Navigation System ISAS Institute of Space and Astronautical Sciences ADEOS Advanced Earth Observing Satellite ISS International Space Station ADC Air Data Computer JAXA Japan Aerospace Exploration Agency ADS Air Data System JDA Japan Self Defense Agency AGE Aerospace Ground Equipment JFY Japanese Fiscal Year ALFLEX Automatic Landing Flight Experiment JEM Japanese Experiment Module ALOS Advanced Land Observing Satellite KHI Kawasaki Heavy Industries, Ltd. AOA Angle of Attack MMO Mercury Magnetospheric Orbiter ARLISS A Rocket Launch for International Student
    [Show full text]
  • H-2 Family Home Launch Vehicles Japan
    Please make a donation to support Gunter's Space Page. Thank you very much for visiting Gunter's Space Page. I hope that this site is useful a nd informative for you. If you appreciate the information provided on this site, please consider supporting my work by making a simp le and secure donation via PayPal. Please help to run the website and keep everything free of charge. Thank you very much. H-2 Family Home Launch Vehicles Japan H-2 (ETS 6) [NASDA] H-2 with SSB (SFU / GMS 5) [NASDA] H-2S (MTSat 1) [NASDA] H-2A-202 (GPM) [JAXA] 4S fairing H-2A-2022 (SELENE) [JAXA] H-2A-2024 (MDS 1 / VEP 3) [NASDA] H-2A-204 (ETS 8) [JAXA] H-2B (HTV 3) [JAXA] Version Strap-On Stage 1 Stage 2 H-2 (2 × SRB) 2 × SRB LE-7 LE-5A H-2 (2 × SRB, 2 × SSB) 2 × SRB LE-7 LE-5A 2 × SSB H-2S (2 × SRB) 2 × SRB LE-7 LE-5B H-2A-1024 * 2 × SRB-A LE-7A - 4 × Castor-4AXL H-2A-202 2 × SRB-A LE-7A LE-5B H-2A-2022 2 × SRB-A LE-7A LE-5B 2 × Castor-4AXL H-2A-2024 2 × SRB-A LE-7A LE-5B 4 × Castor-4AXL H-2A-204 4 × SRB-A LE-7A LE-5B H-2A-212 ** 1 LRB / 2 LE-7A LE-7A LE-5B 2 × SRB-A H-2A-222 ** 2 LRB / 2 × 2 LE-7A LE-7A LE-5B 2 × SRB-A H-2A-204A ** 4 × SRB-A LE-7A Widebody / LE-5B H-2A-222A ** 2 LRB / 2 × LE-7A LE-7A Widebody / LE-5B 2 × SRB-A H-2B-304 4 × SRB-A Widebody / 2 LE-7A LE-5B H-2B-304A ** 4 × SRB-A Widebody / 2 LE-7A Widebody / LE-5B * = suborbital ** = under stud y Performance (kg) LEO LPEO SSO GTO GEO MolO IP H-2 (2 × SRB) 3800 H-2 (2 × SRB, 2 × SSB) 3930 H-2S (2 × SRB) 4000 H-2A-1024 - - - - - - - H-2A-202 10000 4100 H-2A-2022 4500 H-2A-2024 5000 H-2A-204 6000 H-2A-212
    [Show full text]
  • The OSIRIS-Rex Laser Altimeter (OLA) Investigation and Instrument
    The OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument M.G. Daly · O.S. Barnouin · C. Dickinson · J. Seabrook · C.L. Johnson · G. Cunningham · T. Haltigin · D. Gaudreau · C. Brunet · I. Aslam · A. Taylor · E.B. Bierhaus · W. Boynton · M. Nolan · D.S. Lauretta Abstract The Canadian Space Agency (CSA) has contributed to the Ori- gins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) spacecraft the OSIRIS-REx Laser Altimeter (OLA). The OSIRIS- REx mission will sample asteroid 101955 Bennu, the first B-type asteroid to be visited by a spacecraft. Bennu is thought to be primitive, carbonaceous, and spectrally most closely related to CI and/or CM meteorites. As a scan- ning laser altimeter, the OLA instrument will measure the range between the OSIRIS-REx spacecraft and the surface of Bennu to produce digital terrain maps of unprecedented spatial scales for a planetary mission. The digital ter- M.G. Daly Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada Tel.: +1-416-736-2100 x22066 Fax: +1-416-736-5626 E-mail: [email protected] O.S. Barnouin Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA C. Dickinson, I. Aslam, A. Taylor MDA, Brampton, Ontario, Canada J. Seabrook Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada C.L. Johnson University of British Columbia, Vancouver, British Columbia, Canada G. Cunningham Teledyne Optech, Vaughn, Ontario, Canada T. Haltigin, D. Gaudreau, C. Brunet Canadian Space Agency, St. Hubert, Quebec, Canada E.B. Bierhaus Lockheed Martin, Denver, Colorado, USA W. Boynton, M.
    [Show full text]
  • Boxoffice Barometer (April 15, 1963)
    as Mike Kin*, Sherman. p- builder the empire Charlie Gant. General Rawlmgs. desperadc as Linus border Piescolt. mar the as Lilith mountain bub the tut jamblei's Zeb Rawlings, Valen. ;tive Van horse soldier Prescott, e Zebulon the tinhorn Rawlings. buster Julie the sod Stuart, matsbil's*'' Ramsey, as Lou o hunter t Pt«scott. marsl the trontie* tatm gal present vjssiuniw SiNGiN^SVnMNG' METRO GOlPWVM in MED MAYER RICHMOND Production BLONDE? BRUNETTE? REDHEAD? Courtship Eddies Father shih ford SffisStegas 1 Dyke -^ ^ panairtSioo MuANlNJR0( AMAN JACOBS , st Grea»e Ae,w entl Ewer Ljv 8ecom, tle G,-eai PRESENTS future as ^'***ied i Riel cher r'stian as Captain 3r*l»s, with FILMED bronislau in u, PANAVISION A R o^mic RouND WofBL MORE HITS COMING FROM M-G-M PmNHunri "INTERNATIONAL HOTEL (Color) ELIZABETH TAYLOR, RICHARD BURTON, LOUIS JOURDAN, ORSON WELLES, ELSA MARTINELLI, MARGARET RUTHERFORD, ROD TAYLOR, wants a ROBERT COOTE, MAGGIE SMITH. Directed by Anthony Asquith. fnanwitH rnortey , Produced by Anotole de Grunwald. ® ( Pana vision and Color fEAlELI Me IN THE COOL OF THE DAY” ) ^sses JANE FONDA, PETER FINCH, ANGELA LANSBURY, ARTHUR HILL. Mc^f^itH the Directed by Robert Stevens. Produced by John Houseman. THE MAIN ATTRACTION” (Metrocolor) PAT BOONE and NANCY KWAN. Directed by Daniel Petrie. Produced LPS**,MINDI// by John Patrick. A Seven Arts Production. CATTLE KING” [Eastmancolor) ROBERT TAYLOR, JOAN CAULFIELD, ROBERT LOGGIA, ROBERT MIDDLETON, LARRY GATES. Directed by Toy Garnett. Produced by Nat Holt. CAPTAIN SINDBAD” ( Technicolor— WondroScope) GUY WILLIAMS, HEIDI BRUEHL, PEDRO ARMENDARIZ, ABRAHAM SOFAER. Directed by Byron Haskin. A Kings Brothers Production.
    [Show full text]
  • The Transfer of Dual-Use Outer Space Technologies : Confrontation
    UNIVERSITE DE GENEVE INSTITUT UNIVERSITAIRE DE HAUTES ETUDES INTERNATIONALES THE TRANSFER OF DUAL-USE OUTER SPACE TECHNOLOGIES: CONFRONTATION OR CO- OPERATION? Thèse présentée à l’Université de Genève pour l’obtention du grade de Docteur en relations internationales par Péricles GASPARINI ALVES (Brésil) Thèse No. 612 GENEVE 2000 © Copyright by Péricles GASPARINI ALVES Epigraph The first of December had arrived! the fatal day! for, if the projectile were not discharged that very night at 10h. 46m.40s. p.m., more than eighteen years must roll by before the moon would again present herself under the same conditions of zenith and perigee. The weather was magnificent. ... The whole plain was covered with huts, cottages, and tents. Every nation under the sun was represented there; and every language might be heard spoken at the same time. It was a perfect Babel re-enacted. ... The moment had arrived for saying ‘Goodbye!’ The scene was a touching one. ... ‘Thirty-five!—thirty-six!—thirty-seven!—thirty-eight!—thirty-nine!—forty! Fire!!!’ Instantly Murchison pressed with his finger the key of the electric battery, restored the current of the fluid, and discharged the spark into the breach of the Columbiad. An appalling, unearthly report followed instantly, such as can be compared to nothing whatever known, not even to the roar of thunder, or the blast of volcanic explosion! No words can convey the slightest idea of the terrific sound! An immense spout of fire shot up from the bowels of the earth as from a crater. The earth heaved up, and ... View of the Moon in orbit around the Earth, Galileo Spacecraft, 16 December 1992 image002 Courtesy of NASA ‘The projectile discharged by the Columbiad at Stones Hill has been detected ...12th December, at 8.47 pm., the moon having entered her last quarter.
    [Show full text]
  • ISU Team Project
    Additional copies of the Project Report or the Executive Summary for this project may be ordered from the International Space University (ISU) Headquarters. The Executive Summary and the Project Report also can be found on the ISU website. International Space University Strasbourg Central Campus Attention: Publications Parc d’Innovation 1 rue Jean-Dominque Cassini 67400 Illkirch-Graffenstaden France Tel : +33 (0)3 88 65 54 30 Fax: +33(0) 88 65 54 47 http://www.isunet.edu Copyright 2003 by the International Space University All Rights Reserved TRACKS TO SPACE ACKNOWLEDGEMENTS The following individuals and organisations have generously contributed their time, resources, expertise and facilities to help us make TRACKS to Space possible. PROJECT SPONSOR European Space Agency — Industrial Matters and Technology Programmes Hans Kappler Director Marco Guglielmi Head of Technology Strategy Section Marco Freire Technology Strategy Engineer PROJECT FACULTY AND TA Project Initiator Walter Peeters Co-chair Nicolas Peter Co-chair Ray Williamson Teaching Associate Philippos Beveratos English Tutor Sarah Delaveaud English Tutor Carol Carnett EXTERNAL EXPERTS Andrew Aldrin Boeing, NASA Systems Randall Correll Science Applications International Corporation Dan Glover NASA Glenn Research Center Tetsuichi Ito NASDA, ISU Faculty Joan Johnson-Freese United States Naval War College Chiaki Mukai NASDA Astronaut Ichiro Nakatani Institute of Space and Astronautical Science (ISAS) Jean-Claude Piedboeuf Canadian Space Agency Roy Sach Director Defence Space, Australia Gongling Sun EurasSpace GmbH Simon P. Worden Brigadier General, United States Air Force PERSONAL THANKS The authors would like to extend a heartfelt thanks to those who made the greatest sacrifices during this two-month space odyssey.
    [Show full text]
  • Study on Radio Frequency Communication Blackout Environments for a Small Deep Space Probe During an Atmospheric Re-Entry
    Study on Radio Frequency Communication Blackout Environments for a Small Deep Space Probe During an Atmospheric Re-entry 著者 Bendoukha Sidi Ahmed その他のタイトル 大気圏再突入時における超小型宇宙機の電波通信ブ ラックアウト環境に関する研究 学位授与年度 平成29年度 学位授与番号 17104甲工第446号 URL http://hdl.handle.net/10228/00006705 STUDY ON RADIO FREQUENCY COMMUNICATION BLACKOUT ENVIRONMENTS FOR A SMALL DEEP SPACE PROBE DURING AN ATMOSPHERIC RE-ENTRY By Sidi Ahmed BENDOUKHA Applied Sciences for Integrated System Engineering Laboratory of Spacecraft Environment Interaction Engineering Kyushu Institute of Technology This dissertation is submitted for the degree PhD in Engineering 09/2014 _ 09/ 2017 Doctoral Committee: Prof. Okuyama Kei-ichi (Main Advisor) Prof. Cho Mengu Prof. Toyoda Kazuhiro Prof. Akahoshi Yasuhiro Prof. Kenichi Asami “Success is not final, failure is not fatal: It is the courage to continue that counts.” By - Winston S. Churchill - Sidi Ahmed BENDOUKHA All Rights Reserved © 2017 DEDICATION To my beautiful spouse. IMENE, And My son. ANAS, Without their support, no one of this labours would have been possible ii AKNOWLEDGMENTS I would like to express my sincere appreciation and thanks to my supervisor Professor KEI- ICHI OKUYAMA, you have been a tremendous mentor for me. I would like to thank you for encouraging my research and for allowing me to grow as a research scientist. Your advice on both research as well as on my career have been priceless. I would also like to thank my committee members, Professor CHO MENGU, Professor TOYODA KAZUHIRO, Professor AKAHOSHI YASUHIRO, and Professor KENECHI ASAMI for serving as my committee members even at hardship. I also want to thank you for letting my mid-term evaluation and final defence be an enjoyable moment, and for your brilliant comments and suggestions, thanks so much to you.
    [Show full text]
  • Astronautix H-II Information
    Home - Search - Browse - Alphabetic Index: 0- 1- 2- 3- 4- 5- 6- 7- 8- 9 A- B- C- D- E- F- G- H- I- J- K- L- M- N- O- P- Q- R- S- T- U- V- W- X- Y - Z H­II Part of H-2 Family Heavy lift Japanese indigenous launch vehicle. The original H-2 version was cancelled due to high costs and poor reliability and replaced by the substantially redesigned H-2A. AKA: H-2. Status: Retired 1999. First Launch: 1994-02-03. Last Launch: 1999-11-15. Number: 7 . Payload: 10,060 kg (22,170 lb). Thrust: 3,970.00 kN (892,490 lbf). Gross mass: 260,000 kg (570,000 lb). Height: 49.00 m (160.00 ft). Diameter: 4.00 m (13.10 ft). Apogee: 200 km (120 mi). 3 stage vehicle consisted of 2 x H-II SRB + 1 x H-II stage 1 + 1 x H-II stage 2 H-2 Liftoff Credit: NASDA LEO Payload: 10,060 kg (22,170 lb) to a 200 km orbit at 30.40 degrees. Payload: 3,930 kg (8,660 lb) to a GTO. Development Cost $: 2,300.000 million. Launch Price $: 190.000 million in 1994 dollars in 1998 dollars. Stage Data ­ H­2 Stage 0. 2 x H-2-0. Gross Mass: 70,400 kg (155,200 lb). Empty Mass: 11,250 kg (24,800 lb). Thrust (vac): 1,539.997 kN (346,205 lbf). Isp: 273 sec. Burn time: 94 sec. Isp(sl): 237 sec. Diameter: 1.81 m (5.93 ft).
    [Show full text]
  • Phasing Orbit Rendezvous”
    SOLAR SYSTEM HUMAN EXPLORATION AIDED BY LIBRATION-POINT ORBITS, LUNAR GRAVITY ASSISTS, AND “PHASING ORBIT RENDEZVOUS” David W. Dunham(1), Robert W. Farquhar(2), Natan Eismont(3), Eugene Chumachenko(4), Sergey Aksenov(5), Yulia Fedorenko(6), Roberto Furfaro(7), John Kidd, Jr.(8), and Nathan Mogk(9), (1)KinetX, Inc., 7913 Kara Ct, Greenbelt, MD 20770, USA, +1-301-526-5590, [email protected] (2)KinetX, Inc., 9007 Parliament Dr, Burke, Virginia 22015, USA, +1-703-303-9824, [email protected] (3)Space Research Institute of Russian Academy of Science, 84/32 Profsoyuznaya Str., 117997, Moscow, Russia, +7 916 628 6139, [email protected] (4) Moscow Institute of Electronics and Mathematics, Univ. “Higher School of Economics”, per. Trekhsvyatitelskiy B., d. 3, 109028, Moscow, Russia, +7-495-917-07-50, [email protected] (5) Moscow Institute of Electronics and Mathematics, Univ. “Higher School of Economics”, per. Trekhsvyatitelskiy B., d. 3, 109028, Moscow, Russia, +7-499-235-20-24, [email protected] (6) Moscow Institute of Electronics and Mathematics, Univ. “Higher School of Economics”, per. Trekhsvyatitelskiy B., d. 3, 109028, Moscow, Russia, +7-499-235-20-24, [email protected] (7) Dept. of Aerospace and Mechanical Engineering, University of Arizona, PO Box 210119, Tucson AZ 85721-0119, USA, +1-520-312-7440, [email protected] (7) Dept. of Aerospace and Mechanical Engineering, University of Arizona, PO Box 210119, Tucson AZ 85721-0119, USA, +1-908-399-0377, [email protected] (7) Dept. of Aerospace and Mechanical Engineering, University of Arizona, PO Box 210119, Tucson AZ 85721-0119, USA, +1-520-312-7440, [email protected] Abstract: A viable program of exploration beyond the Moon will need international collaboration, like for the ISS, and reusable spacecraft.
    [Show full text]