Onboard Orbit Determination Using GPS Measurements for Low Earth Orbit Satellites

Total Page:16

File Type:pdf, Size:1020Kb

Onboard Orbit Determination Using GPS Measurements for Low Earth Orbit Satellites Onboard Orbit Determination Using GPS Measurements for Low Earth Orbit Satellites by Ning Zhou B.S., Nanjing University, People’s Republic of China, 1997 M.S., Nanjing University, People’s Republic of China, 2000 A THESIS submitted to the Faculty of the Built Environment and Engineering in partial fulfilment of the requirement for the degree of Doctor of Philosophy Cooperative Research Centre for Satellite Systems Queensland University of Technology GP.O. Box 2434, QLD 4001, Australia December 2004 Abstract Recent advances in spaceborne GPS technology have shown significant advantages in many aspects over conventional technologies. For instance, spaceborne GPS can realize autonomous orbit determination with significant savings in spacecraft life cycle, in power, and in mass. At present, the onboard orbit determination in real time or near-real time can typically achieve 3D orbital accuracy of metres to tens metres with Kalman filtering process, but 21st century space engineering requires onboard orbit accuracy of better than 5 metres, and even sub-metre for some space applications. The research focuses on the development of GPS-based autonomous orbit determination techniques for spacecraft. Contributions are made to the field of GPS-based orbit determination in the following five areas: Techniques to simplify the orbital dynamical models for onboard processing have been developed in order to reduce the computional burden while retaining full model accuracy. The Earth gravity acceleration approximation method was established to replace the traditional recursive acceleration computations. Results have demonstrated that with the computation burden for a 5×5 spherical harmonic gravity model, we achieve the accuracy of a 70 × 70 model. Efforts were made for the simplification of solar & lunar ephemerides, atmosphere density model and orbit integration. All these techniques together enable a more accurate orbit integrator to operate onboard. Efficient algorithms for onboard GPS measurement outlier detection and measurement improvement have been developed. In addition, a closed-form single point position method was implemented to provide an initial orbit solution without any a priori information. The third important contribution was made to the development of sliding-window short-arc orbit filtering techniques for onboard processing. With respect to the existing Kalman recursive filtering, the short-arc method is more stable because i more measurements are used. On the other hand, the short-arc method requires less accurate orbit dynamical model information compared to the long-arc method, thus it is suitable for onboard processing. Our results have demonstrated that by using the 1 ~ 2 revolutions of LEO code GPS data we can achieve an orbit accuracy of 1 ~ 2 metres. Sliding-window techniques provide sub-metre level orbit determination solutions with 5~20 minutes delay. A software platform for the GPS orbit determination studies has been established. Methods of orbit determination in near-real time have been developed and tested. The software system includes orbit dynamical modelling, GPS data processing, orbit filtering and result analysis modules, providing an effective technical basis for further studies. Furthermore a ground-based near-real time orbit determination system has been established for FedSat, Australia’s first satellite in 30 years. The system generates 10-metre level orbit solution with half-day latency on an operational basis. This system has supported the scientific missions of FedSat such as Ka-band tracking and GPS atmosphere studies within the Cooperative Research Centre for Satellite System (CRCSS) community. Though it is different from the onboard orbit determination, it provides important test-bed for the techniques described in previous section. This thesis focuses on the onboard orbit determination techniques that were discussed in Chapter 2 through Chapter 6. The proposed onboard orbit determination algorithms were successfully validated using real onboard GPS data collected from Topex/Poseidon, CHAMP and SAC-C satellites. ii Table of Contents Abstract................................................................................................................................................. i List of Figures..................................................................................................................................... ix List of Tables .................................................................................................................................... xiii List of Symbols .................................................................................................................................. xv List of Acronyms .............................................................................................................................. xix Statement of Authorship................................................................................................................. xxii Acknowledgements......................................................................................................................... xxiii 1. Introduction..................................................................................................................................... 1 1.1 GPS based Orbit Determination for LEO Spacecrafts................................................................ 1 1.1.1 Main Attractions of Spaceborne GPS................................................................................. 1 1.1.2 Ground-based Precise Orbit Determination ....................................................................... 3 1.1.3 Onboard Orbit Determination............................................................................................. 6 1.2 The Objectives and Main Contributions of the Study ................................................................. 7 1.2.1 Major Research Objectives ................................................................................................ 7 1.2.2 Benefits of the Research..................................................................................................... 9 1.2.3 Scope of the Research ...................................................................................................... 10 1.3 Organization of the Thesis ........................................................................................................ 10 2. A Review of Onboard Orbit Determination Using GPS ............................................................ 13 2.1 Overview of GPS-based LEO mission and Onboard Orbit Determination Systems………….13 2.1.1 Mission Overview ............................................................................................................ 13 2.1.2 Onboard OD Software System ......................................................................................... 14 2.1.3 LEO Missions Used in the Simulation Experiments ........................................................ 17 2.2 Onboard GPS Navigation Solution........................................................................................... 19 2.3 Extended Kalman Filter............................................................................................................ 21 2.3.1 The Observation Models .................................................................................................. 22 2.3.2 The Extended Kalman Filter ............................................................................................ 23 2.3.3 Process Noise and Measurement Noise............................................................................ 24 2.3.4 Discussion ........................................................................................................................ 26 2.4 Phase-connected Kinematic Filter ............................................................................................ 26 2.4.1 Phase-connected Point Positioning Filter......................................................................... 26 2.4.2 Filter Models and Solution............................................................................................... 27 2.4.3 Discussion ........................................................................................................................ 28 2.5 Onboard Simplified General Perturbations – SGP4 Filter........................................................ 29 2.5.1 SGP4 Model Overview .................................................................................................... 29 iii 2.5.2 Osculating to Mean Elements Conversion........................................................................30 2.5.3 SGP4 Elements Estimation from GPS Measurements Using Kalman Filter ....................30 2.5.4 Discussion.........................................................................................................................31 2.6 Proposed Onboard Orbit Determination Methods.....................................................................32 2.6.1 Motivations.......................................................................................................................32 2.6.2 Summary of the Proposed Methods..................................................................................33 3 Simplifications of Dynamic Models for Low Earth Orbiters......................................................35 3.1 Orbit Dynamical Models for LEO.............................................................................................35
Recommended publications
  • Rendezvous and Proximity Operations of the Space Shuttle Source of Acquisition John L
    FROM :UNITED SfffCE RLL I FINE 281 212 6326 2005s 08-11 09: 34 #127 P. 05/21 Rendezvous and Proximity Operations of the Space Shuttle Source of Acquisition John L. Gooban' NASA JO~~SO~Space Center Uniied Space Albance, LLC, Hou.Wm. Texas: 77058 Spnce Shuttle rendmous missinns presented unique chalfengcs Clint were not fully recogni;ccd altea the Shutde WH~:deslgned. Rendezvous hrgcte could be passive (Le., no lights or Wnnrponders), and not designad 10 BcllIfate Shuttro rendezvous, praxlntlty operfirttlons and rclricval. Shuttls rendon control system ]ct plume lmplngetnent nn target spacccmfl prewnrcd Induced dynnmlcs, structoral loading and conhmlndon concerns. These Issues, along with fliiilfed forWard raction control system prupcllxnf drove II change from the GcmlniiApollo cuuillptlc profile heritage to a stnbte orbit proflle. and the development of new prorlmlly opcrntlons techniqucs. Multiple xckiitlfic and an-orbit servicing. tlssions; and crew exchanp, nsocmbly and rcplenlshment nigh& to Mir and io the InlernnBonnf Space S(Bfi0n dmve further pmfflc and pilnfing technique change%,lrcluding new rciative naviptlon senran gnd new ciwputcr generated piloting CPCS. Nomenclature the issucs with Shuffle rmdczvous md proximity operatiom had been f1.111~identified and resolved, which in N~Ircsultcd in complcx H Bar = unit vector along &e =get orbital angular illomcntum opmntionnl work-wounds. koposds for \chicle cepabiiitia vector competed for funding based on available budget, Bvaihbk schcduk, and criticality to Safety and mission success. Technical challenges in ix = LVLH +X axis vcctor $ = LTL~*Wrnk~CIOT ---b-uilding-~wsable~~~'~prt~.c~~-s~c~as propubion, &txid -tr- Lv&--i.Z-xiwe~oT---- _-- . protwtion.
    [Show full text]
  • Orbital Debris: a Chronology
    NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................
    [Show full text]
  • Kibo HANDBOOK
    Kibo HANDBOOK September 2007 Japan Aerospace Exploration Agency (JAXA) Human Space Systems and Utilization Program Group Kibo HANDBOOK Contents 1. Background on Development of Kibo ............................................1-1 1.1 Summary ........................................................................................................................... 1-2 1.2 International Space Station (ISS) Program ........................................................................ 1-2 1.2.1 Outline.........................................................................................................................1-2 1.3 Background of Kibo Development...................................................................................... 1-4 2. Kibo Elements...................................................................................2-1 2.1 Kibo Elements.................................................................................................................... 2-2 2.1.1 Pressurized Module (PM)............................................................................................ 2-3 2.1.2 Experiment Logistics Module - Pressurized Section (ELM-PS)................................... 2-4 2.1.3 Exposed Facility (EF) .................................................................................................. 2-5 2.1.4 Experiment Logistics Module - Exposed Section (ELM-ES)........................................ 2-6 2.1.5 JEM Remote Manipulator System (JEMRMS)............................................................
    [Show full text]
  • The Flight Plan
    M A R C H 2 0 2 1 THE FLIGHT PLAN The Newsletter of AIAA Albuquerque Section The American Institute of Aeronautics and Astronautics AIAA ALBUQUERQUE MARCH 2021 SECTION MEETING: MAKING A DIFFERENCE A T M A C H 2 . Presenter. Lt. Col. Tucker Hamilton Organization USAF F-35 Developmental Test Director of Operations INSIDE THIS ISSUE: Abstract I humbly present my flying experiences through SECTION CALENDAR 2 pictures and videos of what it takes and what it is like to be an Experimental Fighter Test Pilot. My personal stories include NATIONAL AIAA EVENTS 2 major life-threatening aircraft accidents, close saves, combat SPACE NUCLEAR PROPULSION REPORT 3 flying revelations, serendipitous opportunities testing first of its kind technology, flying over 30 aircraft from a zeppelin to a ALBUQUERQUE DECEMBER MEETING 5 MiG-15 to an A-10, and managing the Joint Strike Fighter De- velopmental Test program for all three services. Through ALBUQUERQUE JANUARY MEETING 6 these experiences you will learn not just what a Test Pilot does, but also gain encour- ALBUQUERQUE FEBRUARY MEETING 7 agement through my lessons learned on how to make a difference in your local com- munities…did I mention cool flight test videos! CALL FOR SCIENCE FAIR JUDGES 9 Lt Col Tucker "Cinco" Hamilton started his Air Force career as an CALL FOR SCHOLARSHIP APPLICATIONS 10 operational F-15C pilot. He supported multiple Red Flag Exercises and real world Operation Noble Eagle missions where he protect- NEW AIAA HIGH SCHOOL MEMBERSHIPS 10 ed the President of the United States; at times escorting Air Force One.
    [Show full text]
  • Tessellation and Miura Folds MINUTES
    15-30 Tessellation and Miura Folds MINUTES Materials › 1+ sheets of A4 paper (210 x 297 mm) › A ruler › Coloured pens (optional) › A protractor Activity Overview › Learn how to create your own Miura folds (method of folding a flat surface, such as a sheet of paper, into a smaller area). The fold is named after its inventor, Japanese astrophysicist Koryo Miura. Use a simple piece of paper before reverse engineering your own design for a different sized piece of paper with your own observations. › Activity from: https://www.sciencefriday.com/educational-resources/tessellation-and- miura-folds/ Activity Plan › Fold the paper into five evenly spaced sections, alternating mountain and valley folds to create an accordion fold – also called a concertina fold. Mountain Fold Valley Fold Use a ruler when folding to get a sharp, straight line Pattern of mountain and valley folds to create your five columns › Keeping the paper folded (it should look like a tall, thin rectangle), you will create seven more sections by alternating mountain and valley folds. To make the first fold, take the bottom of the paper and fold a section up and at an angle to the left, so that the top left corner is about 4cm from the top of the rest of the paper and 2cm from the left edge of the rest of the paper (see picture A). › Next, fold a portion of the paper that you just folded up, back down so that its front right edge is parallel with the right edge of what remains of the original tall, thin rectangle (pictures B+C).
    [Show full text]
  • Bibliography from ADS File: Okamoto.Bib June 27, 2021 1
    Bibliography from ADS file: okamoto.bib Kurosawa, K., Okamoto, T., Yabuta, H., Komatsu, G., & Matsui, T., “Shock August 16, 2021 Vaporization and Post-Impact Chemistry in an Open System Without any Di- aphragms”, 2018LPI....49.1960K ADS Okamoto, T. J. & Sakurai, T., “Super-strong Magnetic Field in Sunspots”, McKenzie, D., Ishikawa, R., Trujillo Bueno, J., et al., “Mapping of Solar 2018ApJ...852L..16O ADS Magnetic Fields from the Photosphere to the Top of the Chromosphere with Kobayashi, M., Okudaira, O., Kurosawa, K., et al., “Dust Sensor with a CLASP2”, 2021AAS...23810603M ADS Large Detection Area Using Polyimide Film for Martian Moons Exploration”, Saiki, K., Ohtake, M., Nakauchi, Y., et al., “Development of Two 2017LPI....48.2342K ADS Types of NIR Spectral Camera for Lunar Missions SLIM and LUPEX”, Ishibashi, K., Kurosawa, K., Okamoto, T., & Matsui, T., “Generation of Reduced 2021LPI....52.2303S ADS Carbon Compounds by “Low” Velocity Impacts”, 2017LPI....48.2141I Arai, T., Yoshida, F., Kobayashi, M., et al., “Current Status of DES- ADS TINY+ and Updated Understanding of Its Target Asteroid (3200) Phaethon”, Kurosawa, K., Okamoto, T., & Genda, H., “Hydrocode Modeling of the Material 2021LPI....52.1896A ADS Ejection by Spallation”, 2017LPI....48.1855K ADS Ishibashi, K., Hong, P., Okamoto, T., et al., “Development of Cameras On- Okamoto, T. & Nakamura, A. M., “Scaling of Impact-Generated Cavity- board DESTINY+ Spacecraft for Flyby Observation of (3200) Phaethon”, Size for Highly Porous Targets and Its Application to Cometary Surfaces”, 2021LPI....52.1405I ADS 2017LPI....48.1817O ADS Ishikawa, R., Bueno, J. T., del Pino Alemán, T., et al., “Mapping so- Okamoto, T.
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]
  • Desind Finding
    NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application.
    [Show full text]
  • Technologies for Exploration
    SP-1254 SP-1254 TTechnologiesechnologies forfor ExplorationExploration T echnologies forExploration AuroraAurora ProgrammeProgramme Proposal:Proposal: Annex Annex DD Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 SP-1254 November 2001 Technologies for Exploration Aurora Programme Proposal: Annex D This report was written by the staff of ESA’s Directorate of Technical and Operational Support. Published by: ESA Publications Division ESTEC, PO Box 299 2200 AG Noordwijk The Netherlands Editor/layout: Andrew Wilson Copyright: © 2001 European Space Agency ISBN: 92-9092-616-3 ISSN: 0379-6566 Printed in: The Netherlands Price: €30 / 70 DFl technologies for exploration Technologies for Exploration Contents 1 Introduction 3 2 Exploration Milestones 3 3 Explorations Missions 3 4Technology Development and Associated Cost 5 5 Conclusion 6 Annex 1: Automated Guidance, Navigation & Control A1.1 and Mission Analysis Annex 2: Micro-Avionics A2.1 Annex 3: Data Processing and Communication Technologies A3.1 Annex 4: Entry, Descent and Landing A4.1 Annex 5: Crew Aspects of Exploration A5.1 Annex 6: In Situ Resource Utilisation A6.1 Annex 7: Power A7.1 Annex 8: Propulsion A8.1 Annex 9: Robotics and Mechanisms A9.1 Annex 10: Structures, Materials and Thermal Control A10.1 1 Table 1. Exploration Milestones for the Definition of Technology Readiness Requirements. 2005-2010 In situ resource utilisation/life support (ground demonstration) Decision on development of alternative
    [Show full text]
  • Commercial Spacecraft Mission Model Update
    Commercial Space Transportation Advisory Committee (COMSTAC) Report of the COMSTAC Technology & Innovation Working Group Commercial Spacecraft Mission Model Update May 1998 Associate Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation M5528/98ml Printed for DOT/FAA/AST by Rocketdyne Propulsion & Power, Boeing North American, Inc. Report of the COMSTAC Technology & Innovation Working Group COMMERCIAL SPACECRAFT MISSION MODEL UPDATE May 1998 Paul Fuller, Chairman Technology & Innovation Working Group Commercial Space Transportation Advisory Committee (COMSTAC) Associative Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation TABLE OF CONTENTS COMMERCIAL MISSION MODEL UPDATE........................................................................ 1 1. Introduction................................................................................................................ 1 2. 1998 Mission Model Update Methodology.................................................................. 1 3. Conclusions ................................................................................................................ 2 4. Recommendations....................................................................................................... 3 5. References .................................................................................................................. 3 APPENDIX A – 1998 DISCUSSION AND RESULTS........................................................
    [Show full text]
  • General Assembly, Forty-Ninth Session, Supplement No
    UNITED NATIONS Distr. GENERAL GENERAL A/AC.105/592 ASSEMBLY 19 December 1994 ORIGINAL: ENGUSH/FRENCH COMMITTEE ON THE PEACEFUL USES OF OUTER SPACE IMPLEMENTATION OF THE RECOMMENDATIONS OF THE SECOND UNITED NATIONS CONFERENCE ON THE EXPLORATION AND PEACEFUL USES OF OUTER SPACE International cooperation in the peaceful uses of outer space: activities of Member States Note by the Secretariat CONTENTS Page INTRODUCTION 2 REPLIES RECEIVED FROM MEMBER STATES 4 Austria 4 Belgium 19 Canada . 23 India 26 Japan 28 Philippines . ...... .. ... 42 Saudi Arabia 49 Thailand . ... ... ..... ...... 49 Turkey 57 V.94-28879T A/AC.105/592 Page 2 INTRODUCTION 1. The Working Group of the Whole to Evaluate the Implementation of the Recommendations of the Second United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE 82), in the report on the work of its eighth session (A/AC.105/571, annex II), made recommendations concerning the preparation of reports and studies by the Secretariat and the compilation of information from Member States, 2. In paragraph 10 of its report, the Working Group recommended that, in the light of the continued development and evolution of space activities, the Committee on the Peaceful Uses of Outer Space should request all States, particularly those with major space or space-related capabilities, to continue to inform the Secretary-General annually, as appropriate, about those space activities that were or could be the subject of greater international cooperation, with particular emphasis on the needs of the developing countries. 3. The report of the Working Group was adopted by the Scientific and Technical Subcommittee at its thirty-first session (A/AC.105/571, para.
    [Show full text]
  • An Assessment of the Technology of Automated Rendezvous and Capture in Space
    National Aeronautics and NASA/TP—1998 –208528 Space Administration AT01S George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 An Assessment of the Technology of Automated Rendezvous and Capture in Space M.E. Polites Marshall Space Flight Center, Marshall Space Flight Center, Alabama July 1998 The NASA STI Program Office…in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical conferences, science. The NASA Scientific and Technical symposia, seminars, or other meetings sponsored Information (STI) Program Office plays a key or cosponsored by NASA. part in helping NASA maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, The NASA STI Program Office is operated by projects, and mission, often concerned with Langley Research Center, the lead center for subjects having substantial public interest. NASA’s scientific and technical information. The NASA STI Program Office provides access to the • TECHNICAL TRANSLATION. NASA STI Database, the largest collection of English-language translations of foreign scientific aeronautical and space science STI in the world. The and technical material pertinent to NASA’s Program Office is also NASA’s institutional mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results…even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI Program programs and include extensive data or Office, see the following: theoretical analysis.
    [Show full text]