Orlando, Florida Hosted By: University of Central Florida College of Medicine

Total Page:16

File Type:pdf, Size:1020Kb

Orlando, Florida Hosted By: University of Central Florida College of Medicine July 8 – 12, 2014 | Orlando, Florida Hosted By: University of Central Florida College of Medicine Dear fellow anatomists, The University of Central Florida is proud to be the host institution for the 31st Annual Meeting of the American Association of Clinical Anatomists, July 8-12, 2014. I look forward to seeing old friends and meeting new colleagues at the event. I would like to also extend a special invitation to your family members to join you and experience the “wonders” of Central Florida. There is so much for you all to do, we hardly know where to begin! Theme Parks Walt Disney World, Universal Studios, Sea World, Wet ‘n Wild, Orlando has them all. You can swim with the dolphins at Discovery Cove, tour Harry Potter’s world at Universal, and enjoy all that Disney has to offer, including the fabulous Yacht & Beach Resort where you’re staying. International Drive, Orlando’s “Avenue of Attractions,” is the home of the massive Orange County Convention Center, the nation’s second largest, and also has 150+ restaurants, three entertainment complexes and three stadium-style movie cinemas. Shopping From one of the largest outlet locations in the Southeast to top department stores like Neiman Marcus, Saks Fifth Avenue and Bloomingdales, Orlando has plenty of shopping opportunities for wallets of every size. Downtown Orlando and the nearby community of Winter Park also offer unique boutiques and antique stores to visit as you stroll along beautiful streets. Space Exploration The Kennedy Space Center is not far from Orlando and offers you an opportunity to learn about America’s travels in space. The center offers the Saturn V Exhibition, the Observation Gantry, where you can take pictures of the shuttle launch pads, the Astronaut Hall of Fame and a chance to “meet and greet” a NASA astronaut. Natural Beauty Situated centrally between Florida’s coasts, Orlando offers easy access to the beautiful beaches of the Atlantic Ocean and the Gulf of Mexico. And there’s plenty of natural beauty inland too. Fly through a swamp on an airboat, take a canoe down the Wekiva River, and get up close to wildlife at Gatorland. Take a stroll through Orlando’s many gardens and parks or go on an early morning hot air balloon ride over the Central Florida treetops. Take a ride on one of multiple zip-lines in the area. We consider Central Florida a paradise, so be sure to take some time to enjoy the sun and nature’s bounty. Golf Orlando is a golfer’s paradise with more than 170 golf courses and over 20 golf academies. Lake Nona, the location of the new UCF College of Medicine, features several excellent courses. In addition to being home to more pro golfers than any other city in the world, Orlando was voted the “North American Golf Destination of the Year” by the International Association of Golf Tour Operators in 2010. Our courses have been designed by some of the game’s greatest – including Nicklaus, Dye and Fazio. Post-Graduate Course – July 12 We are excited to also offer a post-graduate course entitled “Open and Endoscopic Neurosurgery.” In the morning, you will experience demonstrations and “hands on” anatomy related to the neurosurgeon. Attendees will be sent video imaging of the procedures for use in their respective anatomy programs. After lunch, you will take a journey into the planning and current implementation of an anatomy laboratory for a new medical school and how it is used in an interdisciplinary module in our medical curriculum. You will also receive an introduction to Orlando’s emerging “Medical City,” a partnership of medical education, research and patient care that is anchored by the medical school. The College of Medicine is very close to Orlando Regional Airport, so those needing to leave can take a reasonable taxi ride at a time other than when the bus goes to the airport. Sincerely, Andrew F. Payer, Ph.D AACA 2014 Local Host University of Central Florida College of Medicine page 1 President’s Report July 8-12, 2014 Disney’s Yacht Club Resort Orlando, FL My first year as President has gone by quickly. I am fortunate to be the benefactor of the extensive committee structure established by Todd Olson which empowers committees to act independently and report to Council. The MOPP Committee is one of our prominent and most critical committees and Noelle Granger has kept it on track. Anne Agur, our immediate Past President, expanded the committee base, helped smooth over disagreements with the BACA and initiated conversation with the AAA. The groundwork for a smooth, productive year was laid out for me. Perhaps the most obvious change over the past year has been our rebranding effort, initiated by Anne Agur. Jon Wisco and his ad hoc committee successfully came up with an impressive updated logo and helped design and populate the new AACA website (www.clinical-anatomy.org). We now have all our web-based initiatives consolidated under new software – StarChapter. Our ASG contacts (Shanan Atkinson (Molnar) and Caitlin Hyatt (Ellery) got the new membership database up and running early in January and it has successfully helped make abstract submission and meeting organization much more convenient. Neil Norton (as Chair of the AACA Journal Committee) attended the winter BACA meeting in England. We continue to improve and solidify our journal dealings with our sister organization - the BACA. We are slowly consolidating the two journal committees into a singular entity to which the Editor-in-Chief (EIC) of Clinical Anatomy (CA) will answer. It will streamline handling of journal affairs both for organizations and the EIC. Shane Tubbs, CA EIC, continues to enhance the journal, the editorial office and editorial board – all well within the contracted financial support from Wiley. Our new Treasurer, Carol Lomneth, has worked closely with the CA EIC, ASG management and Council to quickly get a feel for her responsibilities and institute new regulations that ensure we have a global picture of our financial responsibilities - as they continue to expand - at all times. Neil Norton, as past Treasurer - and Omaha resident - has been a valuable asset to Carol during this period. One of the initiatives started by Anne Agur has been obtaining funding for various meeting-related awards. The Tapan K. Banerji Postgraduate Travel Fellowship in Clinical Anatomy and our newest award, the Sushruta-Guha Award in Clinical Anatomy demonstrate our progress in this area – thanks predominantly to Anne. In Denver we established a liaison committee with the AAA to try and identify areas where we could, and should, work together for the benefit of the memberships of both associations. Two new ad hoc committees have come out of these meetings – one dealing with identifying appropriate sites for regional meetings and another focusing on the potential for establishing/ offering webinars. Our young members form an important component of these committees as they have a vested interest in both areas. I could continue to outline the progress in all areas of the Association over the past year but encourage you to read the reports of the various AACA committees that can be found on pages 40 - 52 of this program. Our 2014 AACA election resulted in Wayne Lambert taking on a second term as Association Secretary. Lisa Lee and Philip Fabrizio becoming new faces on Council and Marios Loukas coming back to us for a second term. It continues to be one of my objectives to ensure that new members and younger anatomists get elected to Council as they are the future of the Association and their input is invaluable. Jennifer Brueckner-Collins and her nominating committee came up with a ballot that reflected this objective. We look forward to working closely with all those elected. As our meeting in Orlando winds down this year, we look forward to our future meetings that ASG and the MOPP Committee have worked hard to establish - sites and facilities for a three year plan. Getting facilities at the right price is essential to our long-term financial success and working 3 years out is now almost essential to ensure this. In 2015 we return to Green Valley Ranch in Henderson, Las Vegas. The Oakland Marriott is the site for our 2016 meeting in California. It also looks as if we have finally been continued on next page page 2 able to put together a joint meeting with the Association of Medical Illustrators for San Antonio in 2017. Anyone interested in being local host for a meeting in 2018 and beyond, please talk with Noelle Granger (Program Secretary) or myself during the meeting. We are proud that our ASG group and the MOPP Committee structure has significantly reduced the workload on local hosts. Check with Andy Payer while in Orlando to verify this! We continued the tradition of monthly Executive Council teleconferences – started by Todd Olson – which allows us to stay on top of developing issues and act in a proactive fashion. At this point in our Association’s history, I feel we are stronger than we have ever been, in good financial shape, have the journal on an even footing as it continues to develop, and are looking to the future by incorporating the views and ideas of our new and younger members. If anyone has a concern or issue you’d like to bring up, or have Council address, do not hesitate to contact me or any one of the individuals serving on Council. Brian R. MacPherson, Ph.D. Table of Contents Map of Disney’s Yacht & Beach Club Convention Center ............................................................ 4 Acknowledgement and Thanks to our Sponsors and Exhibitors .................................................
Recommended publications
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • The Mandibular Nerve: the Anatomy of Nerve Injury and Entrapment
    5 The Mandibular Nerve: The Anatomy of Nerve Injury and Entrapment M. Piagkou1, T. Demesticha2, G. Piagkos3, Chrysanthou Ioannis4, P. Skandalakis5 and E.O. Johnson6 1,3,4,5,6Department of Anatomy, 2Department of Anesthesiology, Metropolitan Hospital Medical School, University of Athens Greece 1. Introduction The trigeminal nerve (TN) is a mixed cranial nerve that consists primarily of sensory neurons. It exists the brain on the lateral surface of the pons, entering the trigeminal ganglion (TGG) after a few millimeters, followed by an extensive series of divisions. Of the three major branches that emerge from the TGG, the mandibular nerve (MN) comprises the 3rd and largest of the three divisions. The MN also has an additional motor component, which may run in a separate facial compartment. Thus, unlike the other two TN divisions, which convey afferent fibers, the MN also contains motor or efferent fibers to innervate the muscles that are attached to mandible (muscles of mastication, the mylohyoid, the anterior belly of the digastric muscle, the tensor veli palatini, and tensor tympani muscle). Most of these fibers travel directly to their target tissues. Sensory axons innervate skin on the lateral side of the head, tongue, and mucosal wall of the oral cavity. Some sensory axons enter the mandible to innervate the teeth and emerge from the mental foramen to innervate the skin of the lower jaw. An entrapment neuropathy is a nerve lesion caused by pressure or mechanical irritation from some anatomic structures next to the nerve. This occurs frequently where the nerve passes through a fibro-osseous canal, or because of impingement by an anatomic structure (bone, muscle or a fibrous band), or because of the combined influences on the nerve entrapment between soft and hard tissues.
    [Show full text]
  • Types of Ossified Pterygospinous Ligament and Its Clinical Implications
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Types of Ossified Pterygospinous Ligament and Its Clinical Implications J. Leonoline Ebenezer1, J. Chanemougavally2 1, 2 Tutor, ACS Medical College and Hospital, Chennai – 600 077, India Abstract: Aim: To study the anatomical aspects of ossified pterygospinous ligament in adult human skulls. Objective: The pterygospinous ligament extends from the spine of the sphenoid to the posterior border of the lateral pterygoid plate. Rarely is it ossified. This study was done to know the abnormal ossification of the ligament and to alarm the dental surgeons, the anaesthetics, neurosurgeons of its clinical implications. Materials and Methods:100 adult dry skull bones, vernier caliper and thread were used. Using vernier caliper, the length & breadth of the ossified pterygospinous ligament and the diameter of pterygospinous foramen were measured. Results: Out of 100 Skulls studied,the ossified pterygospinous ligaments were present in 11 Adult dry skull bones. Conclusion: The study showed the anatomical aspects of a complete & incomplete ossified pterygospinous ligament. The ossified pterygospinous ligament normally results in the formation of a pterygospinous foramen which may compress the branches of the mandibular nerve and chorda tympani nerve causing neuralgic pain in the area of supply of that particular nerve. Such variations are of great clinical significance for radiologists, dental surgeons, anaesthetists, neurosurgeons to plan their procedure before treating the patients. Keywords: Pterygospinous ligament, Pterygospinous bar, pterygospinous foramen, spine of sphenoid, lateral pterygoid plate 1. Introduction 3. Materials and Method Sphenoid bone is one of the unpaired bone that lies in the base For the study, a total of 100 dry adult human skulls were taken.
    [Show full text]
  • 2015 AACA Annual Meeting Program
    June 9 – 12, 2015 | Henderson, Nevada President’s Report June 9-12, 2015 Green Valley Ranch Resort & Casino Henderson, NV Another year has quickly passed and I have been asked to summarize achievements/threats to the Association for our meeting program booklet. Much of this will be recanted in my introductory message on the opening day of the meeting in Henderson. As President, I am representing Council in recognizing the work of those individuals not already recognized in our standing committee reports that you will find in this program. One of our most active ad hoc committees has been the one looking into creating an endowment for the association through member and vendor sponsorships. Our past president, Anne Agur, has chaired this committee and deserves accolades for having the committee work hard and produce the materials you have either already seen, or will be introduced to in Henderson. The format was based on that used by many clinical organizations. It allows support at many different levels, the financial income from which is being invested for student awards and travel stipends. Our ambitious 5 year goal is $100,000. I hope that you will join me in thinking seriously about supporting this initiative - at whichever level you feel comfortable with. Every dollar goes to the endowment. In October, Council ratified the creation of our new standing committee - Brand Promotion and Outreach. This committee was formed by fusing the two ad hoc committees struck by Anne Agur when she was President. Last year our new branding was highly visible in Orlando and we want to use this momentum to continue raising the profile of the Association at many different types of events within and outside North America.
    [Show full text]
  • A Study on Ossified Carotico-Clinoid Ligament in Human Skulls in Rayalaseema Zone
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 19, Issue 1 Ser.6 (January. 2020), PP 30-33 www.iosrjournals.org A Study on Ossified Carotico-Clinoid Ligament in Human Skulls in Rayalaseema Zone 1.Dr.K.Prathiba, 2.*Dr.M.K. Lalitha Kumari, 3. Dr.C.Sreekanth, 4. Dr.D.Srivani 1.Associate Professor,Dept. Of Anatomy,SPMC (W),SVIMS, Tirupati, A.P 2*.Tutor, Dept. Of Anatomy,SPMC (W),SVIMS, Tirupati, A.P, 3. Associate Professor,Dept. Of Anatomy,SPMC (W),SVIMS, Tirupati, A.P 4. Assistant Professor,Dept. Of Anatomy,SPMC (W),SVIMS, Tirupati, A.P Corresponding Author:** Dr.M.K Lalitha Kumari Abstract: Introduction: Anomalous presence or absence, agenesis or multiplications of these foramina’s are of interest in human skulls, in order to achieve better comprehension of neurovascular content through them. Ligaments bridging the notches sometimes ossify which may lead to compression of the structures passing through foramina’s thereby they may have significant clinical signs and symptoms. Presence of carotico-clinoid foramen is the result of ossification of either carotico-clinoid ligament or of dural fold extending between anterior and middle clinoid processes of sphenoid bone. Materials and methods: The study was done in 50 adult dry human skulls collected from Sri Padmavathi Medical College for Women, SVIMS, Tirupati and S.V. Medical college and S.V University (Anthropology department). Results: In 100 adult dry human skulls, 12 skulls of unknown sex showed “Ossified carotico-clinoid ligament” out of which 7 were on the left side and 5 were on right.
    [Show full text]
  • FIPAT-TA2-Part-2.Pdf
    TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART II Contents: Systemata musculoskeletalia Musculoskeletal systems Caput II: Ossa Chapter 2: Bones Caput III: Juncturae Chapter 3: Joints Caput IV: Systema musculare Chapter 4: Muscular system Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput II: OSSA Chapter 2: BONES Latin term Latin synonym UK English US English English synonym Other 351 Systemata Musculoskeletal Musculoskeletal musculoskeletalia systems systems
    [Show full text]
  • Temporomandibular Joint (TMJ)
    Regions of the Head 9. Oral Cavity & Perioral Regions Temporomandibular Joint (TMJ) Zygomatic process of temporal bone Articular tubercle Mandibular Petrotympanic fossa of TMJ fissure Postglenoid tubercle Styloid process External acoustic meatus Mastoid process (auditory canal) Atlanto- occipital joint Fig. 9.27 Mandibular fossa of the TMJ tubercle. Unlike other articular surfaces, the mandibular fossa is cov- Inferior view of skull base. The head (condyle) of the mandible artic- ered by fi brocartilage, not hyaline cartilage. As a result, it is not as ulates with the mandibular fossa of the temporal bone via an articu- clearly delineated on the skull (compare to the atlanto-occipital joints). lar disk. The mandibular fossa is a depression in the squamous part of The external auditory canal lies just posterior to the mandibular fossa. the temporal bone, bounded by an articular tubercle and a postglenoid Trauma to the mandible may damage the auditory canal. Head (condyle) of mandible Pterygoid Joint fovea capsule Neck of Coronoid mandible Lateral process ligament Neck of mandible Lingula Mandibular Stylomandibular foramen ligament Mylohyoid groove AB Fig. 9.28 Head of the mandible in the TMJ Fig. 9.29 Ligaments of the lateral TMJ A Anterior view. B Posterior view. The head (condyle) of the mandible is Left lateral view. The TMJ is surrounded by a relatively lax capsule that markedly smaller than the mandibular fossa and has a cylindrical shape. permits physiological dislocation during jaw opening. The joint is stabi- Both factors increase the mobility of the mandibular head, allowing lized by three ligaments: lateral, stylomandibular, and sphenomandib- rotational movements about a vertical axis.
    [Show full text]
  • Ossified Pterygo-Spinous Ligament: Incidence and Clinico-Anatomical Relevance in the Adult Human Skulls of North India
    International Journal of Research in Medical Sciences Yadav Y et al. Int J Res Med Sci. 2014 Aug;2(3):847-851 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: 10.5455/2320-6012.ijrms20140806 Research Article Ossified pterygo-spinous ligament: incidence and clinico-anatomical relevance in the adult human skulls of North India Yogesh Yadav*, Preeti Goswami, Chakradhar Vellalacheruvu Department of Anatomy, Rama Medical College, Hapur, U.P., India Received: 5 April 2014 Accepted: 14 April 2014 *Correspondence: Dr. Yogesh Yadav, E-mail: [email protected] © 2014 Yadav Y et al. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Study of skulls has attracted the attention of anatomists since ages and sporadic attempts have been made to study skulls from time-to-time. Talking about the pterygoid processes of sphenoid bone, the irregular posterior border of lateral pterygoid plate usually presents, towards its upper part, a pterygo-spinous process, from which the pterygo- spinous ligament extends backwards and laterally to the spine of sphenoid. This ligament sometimes gets ossified as pterygo-spinous bar and a foramen is then formed named pterygo-spinous foramen, for the passage of muscular branches of mandibular nerve. The present study was undertaken to observe the incidence and status of pterygo- spinous bony bridge and foramen, its variations and clinical relevance in the adult human skulls of North India. For this purpose, 50 skulls were observed, pterygo-spinous bars were found to be present in 7 skulls, out of which completely ossified pterygo-spinous bony bridges were present in 2 skulls while 5 skulls had incompletely ossified pterygo-spinous ligaments.
    [Show full text]
  • Discontinuous Morphological Traits of the Skull As Population Markers in the Prehistoric Southwest
    Discontinuous morphological traits of the skull as population markers in the prehistoric southwest Item Type text; Dissertation-Reproduction (electronic) Authors Birkby, Walter Hudson, 1931- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 07:06:35 Link to Item http://hdl.handle.net/10150/597096 DISCONTINUOUS MORPHOLOGICAL TRAITS OF THE SKULL AS POPULATION MARKERS IN THE PREHISTORIC SOUTHWEST "by Walter Hudson Birkby A Dissertation Submitted to the Faculty of the DEPARTMENT OF ANTHROPOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 19 7 3 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by Walter Hudson Birkby_____________________________ entitled Discontinuous Morphological Traits of the Skull as Population Markers in the Prehistoric Southwest. be accepted as fulfilling the dissertation requirement of the degree of _____ Doctor of Philosophy_____________________________ After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* % o ± J l £ L . p *-g/ 7?ac.. r M p i m w u n A - r ) ( h h ti - U S . A v U l A f A A . ------ Vu,.1rf1?3 This approval and acceptance is contingent on the candidate*s adequate performance and defense of this dissertation at the final oral examination.
    [Show full text]
  • New Terminologia Anatomica: Cranium and Extracranial Bones of the Head P.P
    Folia Morphol. Vol. 80, No. 3, pp. 477–486 DOI: 10.5603/FM.a2019.0129 R E V I E W A R T I C L E Copyright © 2021 Via Medica ISSN 0015–5659 eISSN 1644–3284 journals.viamedica.pl New Terminologia Anatomica: cranium and extracranial bones of the head P.P. Chmielewski Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland [Received: 12 October 2019; Accepted: 17 November 2019; Early publication date: 3 December 2019] In 2019, the updated and extended version of Terminologia Anatomica was published by the Federative International Programme for Anatomical Terminology (FIPAT). This new edition uses more precise and adequate anatomical names compared to its predecessors. Nevertheless, numerous terms have been modified, which poses a challenge to those who prefer traditional anatomical names, i.e. medical students, teachers, clinicians and their instructors. Therefore, there is a need to popularise this new edition of terminology and explain these recent changes. The anatomy of the head, including the cranium, the extracranial bones of the head, the soft parts of the face and the encephalon, poses a particular challenge for medical students but also engenders enthusiasm in those of them who are astute learners. The new version of anatomical terminology concerning the human skull (FIPAT 2019) is presented and briefly discussed in this synopsis. The aim of this article is to present, popularise and explain these interesting modifications that have recently been endorsed by the FIPAT. Based on teaching experience at the Division of Anatomy/Department of Anatomy at Wroclaw Medical University, a brief description of the human skull is given here.
    [Show full text]
  • Analysis of Foramen Ovale with Special Emphasis on Pterygoalar Bar and Pterygoalar Foramen
    Folia Morphol. Vol. 70, No. 3, pp. 149–153 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Analysis of foramen ovale with special emphasis on pterygoalar bar and pterygoalar foramen S.R. Daimi, A.U. Siddiqui, S.S. Gill Department of Anatomy, Rural Medical College, Pravara Institute of Medical Sciences, Loni, (Maharashtra State), India [Received 20 April 2011; Accepted 22 June 2011] The foramen ovale is of great surgical and diagnostic importance in procedures like percutaneous trigeminal rhizotomy for trigeminal neuralgia, transfacial fine needle aspiration technique in perineural spread of tumour, and electroen- cephalographic analysis. This study presents the anatomic variations in dimen- sions, appearance, number of foramen ovale (FO), and presence of pterygoalar bar and pterygoalar foramen. For the present study ninety dry adult human skulls were utilised. Anteriopos- terior (length) and transverse (width) diameters of FO were measured, and the presence of pterygoalar bar and foramen were observed. The most common shape of FO observed was like a figure ‘D’. The ranges of anteroposterior diameter of the right and left FO were 8.5–4.5 mm and 10–3 mm, respectively. The mean length of the right FO was 6.60 mm while that of the left FO was 6.26 mm. The ranges of transverse diameter (width) of both right and left foramen were 2.5–6 mm and 2–5 mm, respectively. The mean trans- verse diameter of the right FO was 3.70 mm and that of left was 3.34 mm.
    [Show full text]
  • Study of Pterygospinous and Pterygoalar Bars in Relation to Foramen Ovale in Dry Human Skulls
    Published online: 04.11.2019 THIEME Original Article 97 Study of Pterygospinous and Pterygoalar Bars in Relation to Foramen Ovale in Dry Human Skulls Arvind Kumar Singh1 Richa Niranjan1 1Department of Anatomy, Government Medical College, Haldwani, Address for correspondence Richa Niranjan, MBBS, MD (Anat), Uttarakhand, India Department of Anatomy, Government Medical College, Haldwani, Uttarakhand 263139, India (e-mail: [email protected]). Natl J Clin Anat 2019;8:97–100 Abstract Background Anatomical knowledge of bony bridges around the foramen ovale may be helpful for diagnostic and invasive neurosurgical procedures like electroencephalogram anal- ysis, trigeminal rhizotomy, biopsy of cavernous sinus tumors, and mandibular nerve block. Lateral pterygoid plate forms an important landmark for mandibular anesthesia; therefore, any variation related to lateral pterygoid plate is likely to create confusion during the maneuver of anesthesia. Aims and Objective The aim of the study was to explore any bony obstacle with- in and around Foramen ovale. Obstacles in form of ossified complete or incomplete ligaments. Additional foramina formed by ligaments or any bony enlargement might disturb the structures passing through the Foramen ovale. Methods Around 530 dried crania (from medical colleges in Uttarakhand and Uttar Pradesh) were observed to find ossified ligaments and foramen formed by them. Crania associated with bilateral enlarged lateral pterygoid plate other than the average width of 1.5 cm were included in this study. Length of ligaments and width of ptery- goid plate were measured by digital Vernier calipers. Results Out of 530 crania, unilateral 52 ossified pterygospinous ligament (incomplete 31 and complete 21) were observed. Among them some rare variation was found along with ossified pterygospinous and pterygoalar ligament, one cranium along with unilat- eral pterygospinous bar was also having bar within foramen ovale, forming an accessory osseous compartment, found to be rare kind of variation.
    [Show full text]