The Legacy of Shiing-Shen Chern

Total Page:16

File Type:pdf, Size:1020Kb

The Legacy of Shiing-Shen Chern August 21, 2010 Remembering Daughter’s reminis- Panel discussion on Chern 2 cences on Chern 3 school mathematics 4 The Legacy of Shiing-Shen Chern he Chern Medal Award was established of study. He obtained fundamental results Tin 2009 in the memory of the outstand- in all the major aspects of modern geometry ing Chinese mathematician Shiing-Shen and founded the area of global differential Chern (1911 – 2004). It was awarded for geometry. His work exhibited keen aes- the first time yesterday at the 2010 Interna- thetic tastes in his selection of problems tional Congress of Mathematicians (ICM and in his breadth exemplified the intercon- 2010) at Hyderabad, India. It will subse- nectivity of modern geometry and all of its quently be awarded every four years at the aspects. quadrennial ICMs. Today, these aspects have become funda- The Award will be given to an individual mental to many areas of mathematics and whose accomplishments warrant the high- The face of the genius even theoretical physics with the concepts est level of recognition for outstanding of ‘Chern Classes’ and ‘Chern-Simons In- achievements in the field of mathematics. Louis Nirenberg of Courant Institute of variants’ becoming highly significant in All persons, regardless of age or vocation, Mathematical Sciences, New York Univer- gauge theory and string theory. are eligible for the Medal. The award con- sity (NYU). There was a separate ceremony sists of a gold medal and a cash prize of on August 20, to commemorate S. S. Prof. Chern’s name has an earlier Indian US$ 250,000. In addition, each Medalist Chern, who devoted his life to mathematics, connection as well. In the late 1940s, Homi may nominate one or more organizations to both in active research and education, and Bhabha had made an offer of faculty posi- receive funding totaling US$ 250,000, for in nurturing the field whenever the opportu- tion at the Tata Institute of Fundamental Re- the support of research, education, or other nity arose. search (TIFR) to Prof. Chern.This was at outreach programmes in the field of mathe- the initiative of Prof. D. D. Kosambi, himself matics. This is called the “Organization Prof. Chern was one of the greatest geome- an eminent geometer those days before he Award”. The prize is jointly awarded by the ters of the 20th century. In the 1930s and moved to other areas of study. But appar- International Mathematical Union (IMU) and the 40s, Prof. Chern took the then dominant ently Prof. Chern declined that offer and the Chern Medal Foundation (CMF). The field of differential geometry, which deals moved to the University of Chicago in 1949 CMF funds the award. with the mathematical description of geo- where he served till 1960 before moving to metrical shapes, including those in many University of California, Berkeley, where he The Chern Medal for 2010 was awarded to dimensions, and turned into a vibrant area remained till 1979. Accolades Paid to Chern at Congress n event of the morning of August 20 was divoted to paying trib- presentation, May Chu made another small video presentation Aute to S.S Chern and his work. Speaking on the Chern Medal where many other mathematicians as well as friends and family Award, László Lovász said that this Award lays emphasis on the members reminisced about Chern. This part of the event ended achievement of the awardee and puts those mathematicians who with a lecture by Prof. Robert Bryant on the mathematical work of are worthy of this as an example to the world. The Chern Award Chern especially highlighting some parts which are no as well- was instituted by Chern’s family. It’s a financial grant of half a million known. dollars split into two parts ‒ half of which is a gift to the recipient of the prize and the other half at his disposal for philanthropic pur- Chern’s publishing career according to Bryant spread across six poses and for supporting good causes in mathematical life. May decades. Chern, as is well-known is a foundational figure in 20th Chu, Shiing-Shen-Chern’s century mathematics. He also high- daughter, thanked Simons for his lighted that Chern’s work is rooted financial support (which is two- “Chern was one in classical differential geometry thirds of the amount) and for his of the founda‐ and that Chern provided excellent steady and warm guidance in ideas that led to the development making this Medal a reality. onal fathers of global topology and analysis. of 20th century Chern made contributions to sev- Simons was unable to be pres- eral branches like integral geome- ent at this ICM but spoke with the mathemacs” try, complex geometry, Riemannian delegates through video in the - Robert Bryant geometry and Finsler geometry form of a conversation with Den- which is not as well appreciated as nis Sullivan. After Simons's video some of his other work. REFLEXIONS August 21,Saturday James Harris Simons – mathematician, money manager and munificent millionaire !""#$%&'%()*+,&#, here was a brief period I thought I mons Foundation’ which backs research in ‘Tmight like to be a Rabbi, but it fortu- basic science and mathematics.The foun- nately came and went.’ (James Simons’ in dation financed two-thirds of the investe- an interview with Seed magazine) ment towards the Chern prize. A new program has been launched in 2009 with a James Harris Simons was born in 1938 in funding of US$ 40 million per year, to sup- Massachusetts and is a mathematician who port ‘research in mathematics and theoret- became the founder and CEO of ‘Renais- ical aspects of areas related to sance Technologies Corporation’ in 1982. In mathematics’. Seventy Simons Postdoc- October 2009, he announced his retirement Chern Simons toral Fellowships were created. The Foun- as of 01 January 2010 from active manage- dation also funds autism research. ment of the firm in order to focus more on During these few years I was working on his philanthropic pursuits. minimal varieties, when I had something Simons has been instrumental in creating that of being global, I would call him up – Avalon Park, a nature preserve in Stony He is known for his collaboration with math- another global theorem...’ Brook. Nepalese health care is supported ematician S. S. Chern in creating the by the Nick Simons Institute. Simons also Chern-Simons theory which has applica- Simons’ highly successful Renaissance founded ‘Math for America’ in 2004 which tions in theoretical physics also. The Chern Technologies investment fund employs focuses on improving public schools’ math Medal Award was presented for the first mathematical models to analyze and exe- education, and supports and trains math time in this International Congress of Math- cute trades. The company employs people teachers. ematicians, at the opening ceremony on from various countries irrespective of August 19, in memory of Shiing-Shen- whether they are from academia or industry. The donation to the Simon Center for Chern. Simons has also worked on the It has made Simons one of the world’s rich- Geometry and Physics at the Stony Brook Poincaré conjecture, which was solved by est men – he uses this fortune to support University is reported to be the ‘largest ever Grigori Perelman. research. gift to any public college or university in New York state’. Simons’ belief was that the At a conference, Simons is reported to have He and his wife are the founders of ‘The Si- new center will give many of the world’s talked on his relationship with Chern: best mathematicians and physicists ‘When I was there (at Berkeley), he the opportunity to work and interact in was always very encouraging and later an environment and an architecture on, when I proved some theorem in carefully designed to enhance minimal varieties I called him and progress. showed him this theorem. He said, “Oh, global! Global theorem is very These are just a few of the achieve- good. It’s rare to have a nice global ments of this multifaceted personality. theorem.” Boy that was very very en- Only the future will reveal what the couraging. I just wanted to run home ‘minister for math’ still has up his and prove a million global theorems. sleeve. Chern – Your Memory! People Reminisce imons: I was at Berkeley. cided to leave mathematics, but with a large head! SIn walked a tall Chinese Chern said, “After all, he’s not Some tidbits about Robert Bryant: He was just with a tweed jacket. I asked David Hilbert”! In the fall of Chern someone who that was and you 1972, when Chern came to the able to see lots of calculations! could have knocked me down IAS and was leaving for Berke- Chern knows calligraphy. In Philip Griffiths: Elie Cartan with a feather when I learnt it ley, he asked me to drive him to Weil's book `Number theory: was the leading geometer of was Chern. I had supposed the airport instead of Andre an approach through history early 20th century and his tra- that Chern was short for Cher- Weil, saying that we could keep dition was continued by Chern. From Hammurapi to Le- nofsky or something! talking on the way and that Weil gendre', there is a frontispiece could come behind with the Calvin C.Moore: It is impossi- of a warhorse from the tomb In 1968, I stumbled upon a bags! ble to imagine differential of emperor Tai-Zong and a three-manifold invariant and geometry without Chern and calligraphy by Chern which showed it to Chern who said, I met Chern last in September the Gauss-Bonnet theorem for means something like `the old “That is a special case.
Recommended publications
  • A MATHEMATICIAN's SURVIVAL GUIDE 1. an Algebra Teacher I
    A MATHEMATICIAN’S SURVIVAL GUIDE PETER G. CASAZZA 1. An Algebra Teacher I could Understand Emmy award-winning journalist and bestselling author Cokie Roberts once said: As long as algebra is taught in school, there will be prayer in school. 1.1. An Object of Pride. Mathematician’s relationship with the general public most closely resembles “bipolar” disorder - at the same time they admire us and hate us. Almost everyone has had at least one bad experience with mathematics during some part of their education. Get into any taxi and tell the driver you are a mathematician and the response is predictable. First, there is silence while the driver relives his greatest nightmare - taking algebra. Next, you will hear the immortal words: “I was never any good at mathematics.” My response is: “I was never any good at being a taxi driver so I went into mathematics.” You can learn a lot from taxi drivers if you just don’t tell them you are a mathematician. Why get started on the wrong foot? The mathematician David Mumford put it: “I am accustomed, as a professional mathematician, to living in a sort of vacuum, surrounded by people who declare with an odd sort of pride that they are mathematically illiterate.” 1.2. A Balancing Act. The other most common response we get from the public is: “I can’t even balance my checkbook.” This reflects the fact that the public thinks that mathematics is basically just adding numbers. They have no idea what we really do. Because of the textbooks they studied, they think that all needed mathematics has already been discovered.
    [Show full text]
  • The "Greatest European Mathematician of the Middle Ages"
    Who was Fibonacci? The "greatest European mathematician of the middle ages", his full name was Leonardo of Pisa, or Leonardo Pisano in Italian since he was born in Pisa (Italy), the city with the famous Leaning Tower, about 1175 AD. Pisa was an important commercial town in its day and had links with many Mediterranean ports. Leonardo's father, Guglielmo Bonacci, was a kind of customs officer in the North African town of Bugia now called Bougie where wax candles were exported to France. They are still called "bougies" in French, but the town is a ruin today says D E Smith (see below). So Leonardo grew up with a North African education under the Moors and later travelled extensively around the Mediterranean coast. He would have met with many merchants and learned of their systems of doing arithmetic. He soon realised the many advantages of the "Hindu-Arabic" system over all the others. D E Smith points out that another famous Italian - St Francis of Assisi (a nearby Italian town) - was also alive at the same time as Fibonacci: St Francis was born about 1182 (after Fibonacci's around 1175) and died in 1226 (before Fibonacci's death commonly assumed to be around 1250). By the way, don't confuse Leonardo of Pisa with Leonardo da Vinci! Vinci was just a few miles from Pisa on the way to Florence, but Leonardo da Vinci was born in Vinci in 1452, about 200 years after the death of Leonardo of Pisa (Fibonacci). His names Fibonacci Leonardo of Pisa is now known as Fibonacci [pronounced fib-on-arch-ee] short for filius Bonacci.
    [Show full text]
  • The Astronomers Tycho Brahe and Johannes Kepler
    Ice Core Records – From Volcanoes to Supernovas The Astronomers Tycho Brahe and Johannes Kepler Tycho Brahe (1546-1601, shown at left) was a nobleman from Denmark who made astronomy his life's work because he was so impressed when, as a boy, he saw an eclipse of the Sun take place at exactly the time it was predicted. Tycho's life's work in astronomy consisted of measuring the positions of the stars, planets, Moon, and Sun, every night and day possible, and carefully recording these measurements, year after year. Johannes Kepler (1571-1630, below right) came from a poor German family. He did not have it easy growing Tycho Brahe up. His father was a soldier, who was killed in a war, and his mother (who was once accused of witchcraft) did not treat him well. Kepler was taken out of school when he was a boy so that he could make money for the family by working as a waiter in an inn. As a young man Kepler studied theology and science, and discovered that he liked science better. He became an accomplished mathematician and a persistent and determined calculator. He was driven to find an explanation for order in the universe. He was convinced that the order of the planets and their movement through the sky could be explained through mathematical calculation and careful thinking. Johannes Kepler Tycho wanted to study science so that he could learn how to predict eclipses. He studied mathematics and astronomy in Germany. Then, in 1571, when he was 25, Tycho built his own observatory on an island (the King of Denmark gave him the island and some additional money just for that purpose).
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • Famous Mathematicians Key
    Infinite Secrets AIRING SEPTEMBER 30, 2003 Learning More Dzielska, Maria. Famous Mathematicians Hypatia of Alexandria. Cambridge, MA: Harvard University The history of mathematics spans thousands of years and touches all parts of the Press, 1996. world. Likewise, the notable mathematicians of the past and present are equally Provides a biography of Hypatia based diverse.The following are brief biographies of three mathematicians who stand out on several sources,including the letters for their contributions to the fields of geometry and calculus. of Hypatia’s student Synesius. Hypatia of Alexandria Bhaskara wrote numerous papers and Biographies of Women Mathematicians books on such topics as plane and spherical (c. A.D. 370–415 ) www.agnesscott.edu/lriddle/women/ Born in Alexandria, trigonometry, algebra, and the mathematics women.htm of planetary motion. His most famous work, Contains biographical essays and Egypt, around A.D. 370, Siddhanta Siromani, was written in A.D. comments on woman mathematicians, Hypatia was the first 1150. It is divided into four parts: “Lilavati” including Hypatia. Also includes documented female (arithmetic), “Bijaganita” (algebra), resources for further study. mathematician. She was ✷ ✷ ✷ the daughter of Theon, “Goladhyaya” (celestial globe), and a mathematician who “Grahaganita” (mathematics of the planets). Patwardhan, K. S., S. A. Naimpally, taught at the school at the Alexandrine Like Archimedes, Bhaskara discovered and S. L. Singh. Library. She studied astronomy, astrology, several principles of what is now calculus Lilavati of Bhaskaracharya. centuries before it was invented. Also like Delhi, India:Motilal Banarsidass, 2001. and mathematics under the guidance of her Archimedes, Bhaskara was fascinated by the Explains the definitions, formulae, father.She became head of the Platonist concepts of infinity and square roots.
    [Show full text]
  • Professor Shiing Shen CHERN Citation
    ~~____~__~~Doctor_~______ of Science honoris cau5a _-___ ____ Professor Shiing Shen CHERN Citation “Not willing to yield to the saints of ancient mathematics. In his own words, his objective is and modem times / He alone ascends the towering to bring about a situation in which “Chinese height.” This verse, written by Professor Wu-zhi mathematics is placed on a par with Western Yang, the father of Nobel Laureate in Physics mathematics and is independent of the latter. That Professor Chen-Ning Yang, to Professor Shiing Shen is, Chinese mathematics must be on the same level CHERN, fully reflects the high achievements as its Western counterpart, though not necessarily attained by Professor Chern during a career that bending its efforts in the same direction.” has spanned over 70 years. Professor Chern was born in Jiaxing, Zhejiang Professor Chern has dedicated his life to the Province in 1911, and displayed considerable study of mathematics. In his early thirties, he mathematical talent even as a child. In 1930, after realized the importance of fiber bundle structure. graduating from the Department of Mathematics From an entirely new perspective, he provided a at Nankai University, he was admitted to the simple intrinsic proof of the Gauss-Bonnet Formula graduate school of Tsinghua University. In 1934, 24 and constructed the “Chern Characteristic Classes”, he received funding to study in Hamburg under thus laying a solid foundation for the study of global the great master of geometry Professor W Blaschke, differential geometry as a whole. and completed his doctoral dissertation in less than a year.
    [Show full text]
  • An Outstanding Mathematician Sergei Ivanovich Adian Passed Away on May 5, 2020 in Moscow at the Age of 89
    An outstanding mathematician Sergei Ivanovich Adian passed away on May 5, 2020 in Moscow at the age of 89. He was the head of the Department of Mathematical Logic at Steklov Mathematical Institute of the Russian Academy of Sciences (since 1975) and Professor of the Department of Mathematical Logic and Theory of Algorithms at the Mathematics and Mechanics Faculty of Moscow M.V. Lomonosov State University (since 1965). Sergei Adian is famous for his work in the area of computational problems in algebra and mathematical logic. Among his numerous contributions two major results stand out. The first one is the Adian—Rabin Theorem (1955) on algorithmic unrecognizability of a wide class of group-theoretic properties when the group is given by finitely many generators and relators. Natural properties covered by this theorem include those of a group being trivial, finite, periodic, and many others. A simpler proof of the same result was obtained by Michael Rabin in 1958. Another seminal contribution of Sergei Adian is his solution, together with his teacher Petr Novikov, of the famous Burnside problem on periodic groups posed in 1902. The deluding simplicity of its formulation fascinated and attracted minds of mathematicians for decades. Is every finitely generated periodic group of a fixed exponent n necessarily finite? Novikov—Adian Theorem (1968) states that for sufficiently large odd numbers n this is not the case. By a heroic effort, in 1968 Sergei Adian finished the solution of Burnside problem initiated by his teacher Novikov, having overcome in its course exceptional technical difficulties. Their proof was arguably one of the most difficult proofs in the whole history of Mathematics.
    [Show full text]
  • Gottfried Wilhelm Leibniz Papers, 1646-1716
    http://oac.cdlib.org/findaid/ark:/13030/kt2779p48t No online items Finding Aid for the Gottfried Wilhelm Leibniz Papers, 1646-1716 Processed by David MacGill; machine-readable finding aid created by Caroline Cubé © 2003 The Regents of the University of California. All rights reserved. Finding Aid for the Gottfried 503 1 Wilhelm Leibniz Papers, 1646-1716 Finding Aid for the Gottfried Wilhelm Leibniz Papers, 1646-1716 Collection number: 503 UCLA Library, Department of Special Collections Manuscripts Division Los Angeles, CA Processed by: David MacGill, November 1992 Encoded by: Caroline Cubé Online finding aid edited by: Josh Fiala, October 2003 © 2003 The Regents of the University of California. All rights reserved. Descriptive Summary Title: Gottfried Wilhelm Leibniz Papers, Date (inclusive): 1646-1716 Collection number: 503 Creator: Leibniz, Gottfried Wilhelm, Freiherr von, 1646-1716 Extent: 6 oversize boxes Repository: University of California, Los Angeles. Library. Dept. of Special Collections. Los Angeles, California 90095-1575 Abstract: Leibniz (1646-1716) was a philosopher, mathematician, and political advisor. He invented differential and integral calculus. His major writings include New physical hypothesis (1671), Discourse on metaphysics (1686), On the ultimate origin of things (1697), and On nature itself (1698). The collection consists of 35 reels of positive microfilm of more than 100,000 handwritten pages of manuscripts and letters. Physical location: Stored off-site at SRLF. Advance notice is required for access to the collection. Please contact the UCLA Library, Department of Special Collections Reference Desk for paging information. Language: English. Restrictions on Use and Reproduction Property rights to the physical object belong to the UCLA Library, Department of Special Collections.
    [Show full text]
  • A Mathematician's Lament
    A Mathematician’s Lament by Paul Lockhart musician wakes from a terrible nightmare. In his dream he finds himself in a society where A music education has been made mandatory. “We are helping our students become more competitive in an increasingly sound-filled world.” Educators, school systems, and the state are put in charge of this vital project. Studies are commissioned, committees are formed, and decisions are made— all without the advice or participation of a single working musician or composer. Since musicians are known to set down their ideas in the form of sheet music, these curious black dots and lines must constitute the “language of music.” It is imperative that students become fluent in this language if they are to attain any degree of musical competence; indeed, it would be ludicrous to expect a child to sing a song or play an instrument without having a thorough grounding in music notation and theory. Playing and listening to music, let alone composing an original piece, are considered very advanced topics and are generally put off until college, and more often graduate school. As for the primary and secondary schools, their mission is to train students to use this language— to jiggle symbols around according to a fixed set of rules: “Music class is where we take out our staff paper, our teacher puts some notes on the board, and we copy them or transpose them into a different key. We have to make sure to get the clefs and key signatures right, and our teacher is very picky about making sure we fill in our quarter-notes completely.
    [Show full text]
  • Brochure on Careers in Applied Mathematics
    careers in applied mathematics Options for STEM Majors society for industrial and applied mathematics 2 / careers in applied mathematics Mathematics and computational science are utilized in almost every discipline of science, engineering, industry, and technology. New application areas are WHERE CAN YOU WHAT KINDS OF PROBLEMS MIGHT YOU WORK ON? constantly being discovered MAKE AN IMPACT? While careers in mathematics may differ widely by discipline while established techniques Many different types and job title, one thing remains constant among them— are being applied in new of organizations hire problem solving. Some potential problems that someone with ways and in emerging fields. mathematicians and mathematical training might encounter are described below. Consequently, a wide variety computational scientists. Which of them do you find most intriguing, and why? of career opportunities You can easily search the • How can an airline use smarter scheduling to reduce costs of are open to people with websites of organizations and aircraft parking and engine maintenance? Or smarter pricing mathematical talent and corporations that interest to maximize profit? training. you to learn more about their • How can one design a detailed plan for a clinical trial? Building such a plan requires advanced statistical skills and In this guide, you will find answers to sophisticated knowledge of the design of experiments. questions about careers in applied mathematics • Is ethanol a viable solution for the world’s dependence and computational science, and profiles on fossil fuels? Can biofuel production be optimized to of professionals working in a variety of combat negative implications on the world’s economy and environment? environments for which a strong background • How do we use major advances in computing power to in mathematics is necessary for success.
    [Show full text]
  • Arxiv:2105.10149V2 [Math.HO] 27 May 2021
    Extended English version of the paper / Versión extendida en inglés del artículo 1 La Gaceta de la RSME, Vol. 23 (2020), Núm. 2, Págs. 243–261 Remembering Louis Nirenberg and his mathematics Juan Luis Vázquez, Real Academia de Ciencias, Spain Abstract. The article is dedicated to recalling the life and mathematics of Louis Nirenberg, a distinguished Canadian mathematician who recently died in New York, where he lived. An emblematic figure of analysis and partial differential equations in the last century, he was awarded the Abel Prize in 2015. From his watchtower at the Courant Institute in New York, he was for many years a global teacher and master. He was a good friend of Spain. arXiv:2105.10149v2 [math.HO] 27 May 2021 One of the wonders of mathematics is you go somewhere in the world and you meet other mathematicians, and it is like one big family. This large family is a wonderful joy.1 1. Introduction This article is dedicated to remembering the life and work of the prestigious Canadian mathematician Louis Nirenberg, born in Hamilton, Ontario, in 1925, who died in New York on January 26, 2020, at the age of 94. Professor for much of his life at the mythical Courant Institute of New York University, he was considered one of the best mathematical analysts of the 20th century, a specialist in the analysis of partial differential equations (PDEs for short). 1From an interview with Louis Nirenberg appeared in Notices of the AMS, 2002, [43] 2 Louis Nirenberg When the news of his death was received, it was a very sad moment for many mathematicians, but it was also the opportunity of reviewing an exemplary life and underlining some of its landmarks.
    [Show full text]
  • Louis Nirenberg
    Obituary Louis Nirenberg (1925–2020) Mathematician who transformed the study of partial differential equations. fter the Second World War, PDE in Novosibirsk, which helped to redefine mathe matics in the United States the relationship between the Soviet Union flourished owing to a convergence of and the United States. There, he forged close interests. Mathematicians had shown friendships in an environment he compared to their worth to military and indus- a voyage at sea. A later geopolitically signifi- Atry patrons, who underwrote far-reaching cant trip took him to China toward the end of empires of theories and people, including the the Cultural Revolution. After being assigned consummate problem-solver Louis Nirenberg. a PhD thesis in Italian as the subject for a term One of the world’s most cited and paper during his graduate studies, he devel- productive mathematicians, Nirenberg was oped a lifelong affinity for Italy. also among the most collaborative. His work Nirenberg was known for using methods in continued to make waves until he was well their most fruitful generality. “I have made a into his eighties, and reshaped how mathe- living off the maximum principle,” he quipped, maticians understand and study dynamical referring to a fundamental technique for systems, from cells to markets. Winning the establishing inequalities in PDE. He demon- 2015 Abel Prize (shared with John Nash, made strated its versatile potential to researchers in NEW YORK UNIVERSITY ARCHIVES NEW YORK famous by the 2001 film A Beautiful Mind) was many fields. As a young man, he had worried just a bookend to a fêted career.
    [Show full text]