Ambient Temperature Dependence of Air-Cooled Condenser Performance and Parameters
Total Page:16
File Type:pdf, Size:1020Kb
UNLV Theses, Dissertations, Professional Papers, and Capstones 12-15-2019 Ambient Temperature Dependence of Air-cooled Condenser Performance and Parameters Alexander Darr Smith Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Mechanical Engineering Commons Repository Citation Smith, Alexander Darr, "Ambient Temperature Dependence of Air-cooled Condenser Performance and Parameters" (2019). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3847. http://dx.doi.org/10.34917/18608790 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. AMBIENT TEMPERATURE DEPENDENCE OF AIR-COOLED CONDENSER PERFORMANCE AND PARAMETERS By Alexander Smith Bachelor of Science in Mechanical Engineering University of Nevada Las Vegas 2016 A thesis submitted in partial fulfillment of the requirements for the Master of Science in Engineering – Mechanical Engineering Department of Mechanical Engineering Howard R. Hughes College of Engineering The Graduate College University of Nevada, Las Vegas December 2019 Thesis Approval The Graduate College The University of Nevada, Las Vegas November 13, 2019 This thesis prepared by Alexander Smith entitled Ambient Temperature Dependence of Air-Cooled Condenser Performance and Parameters is approved in partial fulfillment of the requirements for the degree of Master of Science in Engineering – Mechanical Engineering Department of Mechanical Engineering Robert Boehm, Ph.D. Kathryn Hausbeck Korgan, Ph.D. Examination Committee Chair Graduate College Dean Kwang Kim, Ph.D. Examination Committee Member Hui Zhao, Ph.D. Examination Committee Member Yahia Baghzouz, Ph.D. Graduate College Faculty Representative ii Abstract Thermoelectric power generation uses 38% of total fresh water withdrawals and majority of that water is used during steam condensation. Air-cooled condensers are an alternative to water-cooled condensers for power generation. Ambient air temperature affects the performance of air-cooled condensers. A small air-cooled condenser was run under the ambient air temperature extremes of Las Vegas in order to examine the system performance and air-side heat transfer parameters. Three different sets of tubes with different surface areas and geometries were studied. The condenser is equipped with several air velocity sensors, thermocouples and thermistors to measure the conditions to develop the air-side heat transfer parameters and to measure the system performance. The ambient air temperature changes due to seasonal changes affects the condensate temperature. Fin spacing on the tube banks affects the air flow through the tubes, changing the heat transfer coefficient location depending on the ambient air temperature. The air-side convective heat transfer is greater in conditions with higher ambient air temperature despite the higher condensate temperature. The Euler number through the tube banks is not affected by the ambient air temperature when certain criteria is met under the implemented operating conditions. The energy coefficient is greater in the summer with sufficient surface area but does not equate to lower condensate temperatures iii Table of Contents Abstract .......................................................................................................................................... iii List of Tables ................................................................................................................................ vii List of Figures .............................................................................................................................. viii Nomenclature ............................................................................................................................... xiii Chapter 1: Introduction ................................................................................................................... 1 1.1: Introduction to Thermoelectric Power Generation .................................................................. 3 1.2: Wet-cooling Technologies ....................................................................................................... 6 1.3: Dry-cooling Technologies ....................................................................................................... 8 1.4: Drawbacks to Air-cooled Condensers ................................................................................... 12 1.5: Scope of Present Work .......................................................................................................... 14 1.6: Organization........................................................................................................................... 15 Chapter 2: Literature Review ........................................................................................................ 16 2.1: Air-side Heat Transfer Literature .......................................................................................... 16 2.2: Two Phase Pressure Drop Literature ..................................................................................... 27 2.3: Effects of Meteorological Conditions on Air Heat Exchanger Literature ............................. 29 2.4: Steam-side Heat Transfer Literature ...................................................................................... 32 Chapter 3: Testing Apparatus and Methodologies of Analysis .................................................... 35 3.1: Condenser Components ......................................................................................................... 35 3.2: Measuring Devices ................................................................................................................ 40 iv 3.3: Operating Conditions ............................................................................................................. 55 3.4: Equation Derivations ............................................................................................................. 56 Chapter 4: Results and Discussion ................................................................................................ 65 4.1: Energy Balance ...................................................................................................................... 65 4.2: Condenser Temperature Dependence on Ambient Temperature ........................................... 68 4.2.1: 8 FPI Tube Bundle .......................................................................................................... 68 4.2.2: Bare Tube Bundle ........................................................................................................... 77 4.2.3: 6 FPI Tube Bundle .......................................................................................................... 80 4.3: Air-Side Heat Transfer Coefficient Dependence on the Reynolds Number .......................... 90 4.3.1: 8 FPI Tube Bundle .......................................................................................................... 90 4.3.2: Bare Tube Bundle ........................................................................................................... 96 4.3.3: 6 FPI Tube Bundle .......................................................................................................... 99 4.4: Convective Heat Transfer Dependence on the Ambient Temperature ................................ 106 4.4.1: 8 FPI Tube Bundle ........................................................................................................ 106 4.4.2: Bare Tube Bundle ......................................................................................................... 107 4.4.3: 6 FPI Tube Bundle ........................................................................................................ 108 4.5: Euler Number ....................................................................................................................... 109 4.5.1: 8 FPI Tube Bundle ........................................................................................................ 109 4.5.2: Bare Tube Bundle ......................................................................................................... 114 4.5.3: 6 FPI Tube Bundle ........................................................................................................ 117 v 4.6: Energy Coefficient ............................................................................................................... 122 4.7: Uncertainty Analysis............................................................................................................ 124 Chapter 5: Conclusion and Future Work .................................................................................... 127 5.1: Conclusion.......................................................................................................................