Dolichodorus Aestuarius N. Sp. (Nematode: Dolichodoridae) 1

Total Page:16

File Type:pdf, Size:1020Kb

Dolichodorus Aestuarius N. Sp. (Nematode: Dolichodoridae) 1 Simulation Model Refinement: Ferris 201 5. FERRIS, H., and M. V. McKENRY. 1974. 11. NICHOLSON, A. J. 1933. The balance of Seasonal fluctuations in the spatial distribu- animal populations. J. Anita. "Ecol. 2:132-178. tion of nematode populations in a California 12. OOSTENBRINK, M. 1966. Major characteristics vineyard. J. Nematol. 6:203-210. of the relation between nematodes and plants. 6. FERRIS, H., and R. H. SMALL. 1975. Computer Meded. LandbHogesch. Wageningen 66:46 p. simulation of Meloidogyne arenaria egg 13. SEINHORST, J. W. 1965. The relation between development and hatch at fluctuating tem- nematode density and damage to plants. perature. J. Netnatol. 7:322 (Abstr.). Nematologica 11 : 137-154. 7. FREEMAN, B. M., and R. E. SMART. 1976. 14. TYLER, J. 1933. Development of the root-knot Research note: a root ohservation laboratory nematode as affected by temperature. Hil- for studies with grapevines. Am. J. Enol. gardia 7:391-415. Viticult. 27:36-39. 15. VANDERPLANK, J. E. 1963. Plant Diseases: 8. GRIFFIN, G. D., and J. H. ELGIN, JR. 1977. Epidemics and Control. Academic Press, Penetration and development of Meloidogyne New York. 349 p. hapla in resistant and susceptible alfalfa 16. WALLACE, H. R. 1973. Nematode Ecology and under differing temperatures. J. Nematol. Plant Disease. Edward Arnold, New York. 9:51-56. 228 p. 9. McCLURE, M. A. 1977. Meloidogyne incognita: 17. WINKLER, A. J., J. A. COOK, W. M. a metabolic sink. J. Nematol. 9:88-90. KLIEWER, and L. A. LIDER. 1974. General 10. MILNE, D. L., and D. P. DUPLESSIS. 1964. De- Viticulture. University of California Press, velopment of Meloidogyne javanica (Treub) Berkeley. 710 p. Chit., on tobacco under fluctuating soil temperatures. S. Afr. J. Agr. Sci. 7:673-680. Dolichodorus aestuarius n. sp. (Nematode: Dolichodoridae) 1 F. H. CHOW and A. L. TAYLOW Abstract: Dolichodorus aestuarius n. sp. from an estuarine habitat near Cedar Key, Florida is described. This nematode has a stylet range of 62-76 #m in females and 60-72 #m in males. The styler is shorter than those of all described species except D. brevistilus. The probable host plant is Juncus roemerianus. Key Words: nematode, taxonomy. During May 1976, a survey of nematode 11.7), c 58.9 (52.6-67.9), stylet 66.2 /zm fauna in estuarine habitats in the Cedar (60-72 tLm). Spicule 49.43 /~m (47-51 #m) Key, Florida area was conducted, and a new and gubernaculum 26.8 t~m (26-29 /~m) species of the awl nematode (Dolichodorus) (average of 7 specimens). was found in a habitat where Juncus Allotype (male): L 2.31 mm, a 51.3, b roemerianus Scheele was the only plant. It 9.7, c 60.8, styler 68 /zm, spicule 48 izm, is presumed that the nematode was feeding gubernaculum 29/~m. upon the roots of this plant. DESCRIPTION: Dolichodorus aestuarius n.sp. Females.--Body long and cylindrical, DIMENSIONS: somewhat ventrally curved; tapers gradually Paratypes (14 females): L 2.66 mm (2.50- anteriorly and abruptly posteriorly to con- cave, conoid terminus (Fig. 1-C,H). Cuticle 2.87 mm), a 42.6 (38.8-47.8), b 11.3 (10.1- very finely striated, 1.5 /zm/annule at mid- 12.1), c 34.7 (30.9-44.8), V 55% (51-59%), body; lateral field areolated with three stylet 68.1 /~m (62-76 t~m). Holotype (female): L 2.87 mm, a 44.2, incisures on most of the body; incisures start b 11.9, c 39.9, V 2s.2, 53 %, ~0.s, stylet 68 /~m. as one, about 15 annules posterior to head, and end as one, just anterior to phasmid Paratypes ( 11 males): L 2.32 mm (2.11- (Fig. 1-C,E,H). Head with six lips; laterals 2.59 mm), a 48.1 (39.1-60.0), b 10.1 (9.2- bear amphid (Fig. l-B). Stylet with com- Received for publication 30 March 1977. paratively broad shaft and rounded knobs; xFlorida Agricultural Experiment Station Journal Series No. stylet slopes gently at posterior; guiding 462. ~Department of Entomology and Nematology, University of ring not seen. Esophagus typical for genus; Florida, Gainesville, Florida 32611. dorsal gland orifice about 5 tzm behind 202 Journal o[ Nematology, Volume 10, No. 2, April 1978 ," ~:\ l/ P', J',/1 , ....... .,H /. '~ I. '.:k ,. .... .s~ ' .: l~7 J f ,'.,'" I. ,' // /- / ,'.,' /t ',,", t': // t~l ',,, 't ~i ',',1 "r ', /1 illl );I/ It l( ' II I',II If',/ ° I',II i "30pro FIG. I-(A-I-I). Dolichodorus aestuarius n. sp..4) Entire female and reproductive system, lateral view. B) Female, en face view. (7) Female, anterior end, lateral view. D) Female, vulval region, lateral view. E) Female tail, lateral view. F) Male tail, ventral view. G) Male tail, lateral view. H) Female, head region, lateral view. Dolichodorus aestuarius n. sp.: Chow, Taylor 203 stylet knob; nerve ring encircles posterior found 1.4 km from state road 24, on the part of isthmus (Fig. l-C). Excretory pore unpaved road southwest of Cedar Key city located slightly anterior to basal bulb. dump area, Cedar Key, Florida, U.S.A. Hemizonid not observed. Intestine without peculiar characteristic. Vulva slit-like and DIAGNOSIS: deep with four peg-like cuticularized struc- DoIichodorus aestuarius n. sp. has three tures around opening; muscles of vagina incisures in the lateral field, which distin- uterina well developed (Fig. l-D). Ovaries guishes it from D. obtusus Allen, 1957; D. outstretched (Fig. l-A). Concave conoid arenarius Clark, 1963; D. adelaidensis point of tail with more abrupt reduction in Fisher, 1964; D. brevistilus Heyns and Har- diameter ventrally than dorsally. There are ris, 1973; and D. cassati Luc and Dalmasso, about 60 annules on the tail; anal body 1971, all of which have four incisures (1, 2, diameter is about 37/~m; the last 15 annules 4, 7, 11). D. aestuarius may be separated on the tip are at an angle of 30-45 ° to from other species having three incisures as preceding annules (Fig. l-E). Phasmids follows: from D. silvestris Gillespie and located about 25-30 /~m posterior to anus Adams, 1962; D. puIvinus Khan and (Fig. l-E). Seshadri, 1971; D. profundus Luc, 1960; and Males.--About 10-12% shorter but about D. nigeriensis Luc and Caveness, 1963 in as wide as females; similar to females as that tile excretory pore is a little anterior regards anterior part, nerve ring, excretory to tile basal bulb in D. aestuarius and op- pore, intestine, annulation, and lateral posite tile medium bulb in tire others (5, 8, field. Bursa tri-lobed with striations to tips 9, 10). In D. similis Golden, 1958, the ex- (Fig. 1-F,G); spicules massive, heavily cretory pore is opposite the middle of cuticularized; gubernaculum mostly straight tile basal bulb (6). The stylet of D. with curved and pointed distal end (Fig. heterocephalus is more than I00 /~m long l-G). (3) in comparison with 68 /~m in D. DISTRIBUTION: aestuarius. Holotype (female).--Collected on May LITERATURE CITED 12, 1976 by F. H. Chow and D. E. Stokes. Type collection, Nematology Laboratory, 1. ALLEN, M. W. 1957. A new species of the U.S.D.A., Beltsville, Maryland, U.S.A. genus Dolichodorus from California. (Nema- tode: Tylenchida). Proc. Helminthol. Soc. Allotype (male).--Same as holotype. Wash. 24:95-98. Paratypes.--Same data as holotype, and 2. CLARK, W. C. 1963. A new species of distributed as follows: Dolichodorus (Nematoda: Tylenchida) from Four females, four males: Department of coast dune sand. New Zealand J. Sci. 6:531- Entomology and Nematology, University of 534. 3. COBB, N. A. 1914. The North American free- Florida, Gainesville, Florida, U.S.A. living freshwater nematodes. Contributions Four females, four males: Department of to a science of nematology. Tr. Am. Micr. Entomology and Nematology, University of Soc. 33:69-134. Florida, Gainesville, Florida, U.S.A. 4. FISHER, J. M. 1964. Dolichodorus adelaidensis Two females, one male: Same as holo- n. sp. and Paralongidorus eucalypti n. sp. from S. Australia. Nematologica. 10:464-470. type. 5. GILLESPIE, W. H., and R. E. ADAMS. 1962. Two females, one male: Department of An awl nematode, Dolichodorus silvestris Nematology, University of California, n. sp. from West Virginia. Nematologica. 8: Riverside, California, U.S.A. 93 -98. Two females, one male: Laboratorium 6. GOLDEN, A. M. 1958. Dolichodorus similis, (Dolichodorinae), a new species of plant voor Nematologie, Binnenhaven 15, Wagen- nematode. Proc. Hehninthol. Soc. Wash. 25: ingen, The Netherlands. 17-20. One female, one male. Nematology 7. HEYNS, J., and R. H. G. HARRIS. 1973. Department, Rothamsted Experimental Dolichodorus brevistilus n.sp. (Tylenchida) a plant parasitic nematode found in surgar- Station, Harpenden, Herts., England. cane fields in Natal. I'hytophylactica. 5:123- TYPE LOCALITY: 126. 8. KHAN, E., A. R. SESHADRI, B. WEISCHER, Around roots of ]uncus roernerianus and K. MATHEN. 1971. Five new nematode Scheele, a common brackish marsh plant, species associated with coconut in Kerala, 204 Journal o[ Nematology, Volume 10~ No. 2, April 1978 India. India J. Nematol. 1:116-127. Dolichodoridae). Proc. Helminthol. Soc. Wash. 9.-LUC, M. 1960. Dolichodorus profundus n. sp. 30:297-299. (Nematoda Tylenchida). Nematologica. 5:1-6. 11. LUC, M., and A. DALMASSO. 1971. Dolicho- 10. LUC, M., and F. E. CAVENESS. 1963. dorus cassati n. sp. Ann. Zool. Ecol. Anita. 3: Dolichodorus nigeriensis n. sp. (Nematoda: 97-101. Phytoparasitic Nematodes Adjacent to Established Strawberry Plantations 1 R. V. CROW and D. H. MACDONALD ~ Abstract: Plant-nematode populations associated with uncultivated vegetation, adjacent straw- berry plants, and alternate crop sites were studied at three locations in Minnesota. At one site (Forest Lake), Paratylenchus projectus, Meloidogyne hapla, and Pratylenchus tenuis were fre- quently associated with the roots of native vegetation.
Recommended publications
  • Description and Identification of Four Species of Plant-Parasitic Nematodes Associated with Forage Legumes
    5 Egypt. J. Agronematol., Vol. 17, No.1, PP. 51-64 (2018) Description and Identification of Four Species of Plant-parasitic Nematodes Associated with Forage Legumes * * Mahfouz M. M. Abd-Elgawad ; Mohamed F.M. Eissa ; Abd-Elmoneim Y. ** *** **** El-Gindi ; Grover C. Smart ; and Ahmed El-bahrawy . * Plant Pathology Department, National Research Centre. ** Department of Agricultural Zoology and Nematology, Faculty of Agriculture, University of Cairo, Giza, Egypt. *** Department of Entomology and Nematology, IFAS, University of Florida, USA. **** Institute for Sustainable Plant Protection, National Council of Research, Bari, Italy. Abstract Four species of plant parasitic nematodes were present in soil samples planted with forage legumes at Alachua County, Florida, USA. The detected species Belonolaimus longicaudatus, Criconemella ornate, Hoplolaimus galeatus, and Paratrichodorus minor were described in the present study. They belong to orders Rhabditida (Belonolaimus longicaudatus, Criconemella ornate, and Hoplolaimus galeatus) and Triplonchida (Paratrichodorus minor) and to taxonomical families Dolichodoridae (Belonolaimus longicaudatus), Hoplolaimidae (Hoplolaimus galeatus) Criconematidae (Criconemella ornate), and Trichodoridae (Paratrichodorus minor). The identification of the present specimens was based on the classical taxonomy, following morphological and morphometrical characters in the species specific identification keys. Keywords: Belonolaimus longicaudatus, Criconemella ornate, Hoplolaimus galeatus, Paratrichodorus minor, morphology,
    [Show full text]
  • Dolichodorus Heterocephalus Cobb, 1914
    CA LIF ORNIA D EPA RTM EN T OF FOOD & AGRICULTURE California Pest Rating Proposal for Dolichodorus heterocephalus Cobb, 1914 Cobb’s awl nematode Current Pest Rating: A Proposed Pest Rating: A Domain: Eukaryota, Kingdom: Metazoa, Phylum: Nematoda, Class: Secernentea Order: Tylenchida, Suborder: Tylenchina, Family: Dolichodoridae Comment Period: 08/10/2021 through 09/24/2021 Initiating Event: This nematode has not been through the pest rating process. The risk to California from Dolichodorus heterocephalus is described herein and a permanent pest rating is proposed. History & Status: Background: The genus Dolichodorus was created by Cobb (1914) when he named D. heterocephalus collected from fresh water at Silver Springs, Florida and Douglas Lake, Michigan. This nematode is a migratory ectoparasite that feeds only from the outside on the cells, on the root surfaces, and mainly at root tip. They live freely in the soil and feed on plants without becoming attached or entering inside the roots. Males and females are both present. This genus is notable in that its members are relatively large for plant parasites and have long stylets. Usually, awl nematodes are found in moist to wet soil, low areas of fields, and near irrigation ditches and other bodies of fresh water. Because they prefer moist to wet soils, they rarely occur in agricultural fields and are not as well studied as other plant-parasitic nematodes (Crow and Brammer, 2003). Infestations in Florida may be due to soil containing nematodes being spread from riverbanks CA LIF ORNIA D EPA RTM EN T OF FOOD & AGRICULTURE onto fields, or by moving with water during flooding (Christie, 1959).
    [Show full text]
  • Morphological, Molecular and Phylogenetic Study of Filenchus
    Alvani et al., J Plant Pathol Microbiol 2015, S:3 Plant Pathology & Microbiology http://dx.doi.org/10.4172/2157-7471.S3-001 Research Article Open Access Morphological, Molecular and Phylogenetic Study of Filenchus aquilonius as a New Species for Iranian Nematofauna and Some Other Known Nematodes from Iran Based on D2D3 Segments of 28 srRNA Gene Somaye Alvani1, Esmat Mahdikhani Moghaddam1*, Hamid Rouhani1 and Abbas Mohammadi2 1Department of Plant Pathology, Ferdowsi University of Mashhad, Mashhad, Iran 2Department of Plant Pathology, University of Birjand, Birjand, Iran Abstract Ziziphus zizyphus is very important crop in Iran. Because there isn’t any research of plant parasitic nematodes on Z. zizyphus, authors were encouraged to work on it. Nematodes isolated from the soil samples by whitehead method (1965) and permanent slides were prepared. Among the species Filenchus aquilonius is redescribed for the first time from Southern Khorasan province.F. aquilonius is characterized by lip region rounded, not offset, with fine annuls; four incisures in lateral line; Stylet moderately developed, 10-11.8 µm long with rounded knobs; Hemizonid immediately in front of excretory pore; Deirids at the level of excretory pore; Spermatheca an axial chamber and offset pouch; Tail about 120-157 µm, tapering gradually to a pointed terminus. For molecular identification the large subunit expansion segments of D2/D3 were performed for F. aquilonius to examine the phylogenetic relationships with other Tylenchids. DNA sequence data revealed that F. aquilonius had closet phylogenetic affinity withIrantylenchus vicinus as a sister group and with other Filenchus species for this region and placed them in one clade with 100% for bootstap value support.
    [Show full text]
  • Theory Manual Course No. Pl. Path
    NAVSARI AGRICULTURAL UNIVERSITY Theory Manual INTRODUCTORY PLANT NEMATOLOGY Course No. Pl. Path 2.2 (V Dean’s) nd 2 Semester B.Sc. (Hons.) Agri. PROF.R.R.PATEL, ASSISTANT PROFESSOR Dr.D.M.PATHAK, ASSOCIATE PROFESSOR Dr.R.R.WAGHUNDE, ASSISTANT PROFESSOR DEPARTMENT OF PLANT PATHOLOGY COLLEGE OF AGRICULTURE NAVSARI AGRICULTURAL UNIVERSITY BHARUCH 392012 1 GENERAL INTRODUCTION What are the nematodes? Nematodes are belongs to animal kingdom, they are triploblastic, unsegmented, bilateral symmetrical, pseudocoelomateandhaving well developed reproductive, nervous, excretoryand digestive system where as the circulatory and respiratory systems are absent but govern by the pseudocoelomic fluid. Plant Nematology: Nematology is a science deals with the study of morphology, taxonomy, classification, biology, symptomatology and management of {plant pathogenic} nematode (PPN). The word nematode is made up of two Greek words, Nema means thread like and eidos means form. The words Nematodes is derived from Greek words ‘Nema+oides’ meaning „Thread + form‟(thread like organism ) therefore, they also called threadworms. They are also known as roundworms because nematode body tubular is shape. The movement (serpentine) of nematodes like eel (marine fish), so also called them eelworm in U.K. and Nema in U.S.A. Roundworms by Zoologist Nematodes are a diverse group of organisms, which are found in many different environments. Approximately 50% of known nematode species are marine, 25% are free-living species found in soil or freshwater, 15% are parasites of animals, and 10% of known nematode species are parasites of plants (see figure at left). The study of nematodes has traditionally been viewed as three separate disciplines: (1) Helminthology dealing with the study of nematodes and other worms parasitic in vertebrates (mainly those of importance to human and veterinary medicine).
    [Show full text]
  • 2020.01.27.921304.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.27.921304; this version posted January 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A novel metabarcoding strategy for studying nematode 2 communities 3 4 Md. Maniruzzaman Sikder1, 2, Mette Vestergård1, Rumakanta Sapkota3, Tina Kyndt4, 5 Mogens Nicolaisen1* 6 7 1Department of Agroecology, Aarhus University, Slagelse, Denmark 8 2Department of Botany, Jahangirnagar University, Savar, Dhaka, Bangladesh 9 3Department of Environmental Science, Aarhus University, Roskilde, Denmark 10 4Department of Biotechnology, Ghent University, Ghent, Belgium 11 12 13 *Corresponding author 14 Email: [email protected] 15 16 Abstract 17 Nematodes are widely abundant soil metazoa and often referred to as indicators of soil health. 18 While recent advances in next-generation sequencing technologies have accelerated 19 research in microbial ecology, the ecology of nematodes remains poorly elucidated, partly due 20 to the lack of reliable and validated sequencing strategies. Objectives of the present study 21 were (i) to compare commonly used primer sets and to identify the most suitable primer set 22 for metabarcoding of nematodes; (ii) to establish and validate a high-throughput sequencing 23 strategy for nematodes using Illumina paired-end sequencing. In this study, we tested four 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.27.921304; this version posted January 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Note 20: List of Plant-Parasitic Nematodes Found in North Carolina
    nema note 20 NCDA&CS AGRONOMIC DIVISION NEMATODE ASSAY SECTION PHYSICAL ADDRESS 4300 REEDY CREEK ROAD List of Plant-Parasitic Nematodes Recorded in RALEIGH NC 27607-6465 North Carolina MAILING ADDRESS 1040 MAIL SERVICE CENTER Weimin Ye RALEIGH NC 27699-1040 PHONE: 919-733-2655 FAX: 919-733-2837 North Carolina's agricultural industry, including food, fiber, ornamentals and forestry, contributes $84 billion to the state's annual economy, accounts for more than 17 percent of the state's DR. WEIMIN YE NEMATOLOGIST income, and employs 17 percent of the work force. North Carolina is one of the most diversified agricultural states in the nation. DR. COLLEEN HUDAK-WISE Approximately, 50,000 farmers grow over 80 different commodities in DIVISION DIRECTOR North Carolina utilizing 8.2 million of the state's 12.5 million hectares to furnish consumers a dependable and affordable supply STEVE TROXLER of food and fiber. North Carolina produces more tobacco and sweet AGRICULTURE COMMISSIONER potatoes than any other state, ranks second in Christmas tree and third in tomato production. The state ranks nineth nationally in farm cash receipts of over $10.8 billion (NCDA&CS Agricultural Statistics, 2017). Plant-parasitic nematodes are recognized as one of the greatest threat to crops throughout the world. Nematodes alone or in combination with other soil microorganisms have been found to attack almost every part of the plant including roots, stems, leaves, fruits and seeds. Crop damage caused worldwide by plant nematodes has been estimated at $US80 billion per year (Nicol et al., 2011). All crops are damaged by at least one species of nematode.
    [Show full text]
  • Plant-Parasitic Nematodes in Iowa
    Journal of the Iowa Academy of Science: JIAS Volume 96 Number Article 8 1989 Plant-parasitic Nematodes in Iowa Don C. Norton Iowa State University Let us know how access to this document benefits ouy Copyright © Copyright 1989 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Norton, Don C. (1989) "Plant-parasitic Nematodes in Iowa," Journal of the Iowa Academy of Science: JIAS, 96(1), 24-32. Available at: https://scholarworks.uni.edu/jias/vol96/iss1/8 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Jour. Iowa Acad. Sci. 96(1):24-32, 1989 Plant-parasitic Nematodes in Iowa1 DON C. NORTON Department of Plant Pathology, Iowa State University, Ames, IA 50011 Ninety-nine species of plant-parasitic nematodes are recorded from Iowa. Twenty-seven are new scare records. Mose samples were collected from around maize or from prairies or woodlands. Similarity (Sorensen's index) of species was highest for rhe maize-prairie habitats (0.49), compared with maize-woodlands (0. 23), or prairie-woodland (0. 3 7) habirars. Nematode communities were most diverse in prairies with a Shannon-Weiner index (H') of 2.74, compared wirh I.65 and 1.07 for woodlands and maize habitats, respectively.
    [Show full text]
  • Morphological Comparison and Taxonomic Utility of Copulatory Structures of Selected Nematode Species 1
    Journal of Nematology 19(3):314-323. 1987. © The Society of Nematologists 1987. Morphological Comparison and Taxonomic Utility of Copulatory Structures of Selected Nematode Species 1 ABDALLAH RAMMAH ~ AND HEDWIG HIRSCHMANN 3 Abstract: Spicules of 9 Meloidoffyne, 2 Heterodera, 3 Globodera, and 12 other plant-parasitic, insect- parasitic, and free-living nematodes were excised and examined using scanning electron microscopy (SEM). Gubernacula of some of the species were also excised, and their structure was determined. The two spicules of all species examined were symmetrically identical in morphology. The spicule typically consisted of three parts: head, shaft, and blade with dorsal and ventral vela. The spicular nerve entered through the cytoplasmic core opening on the lateral outer surface of the spicule head and generally communicated with the exterior through one or two pores at the spicule tip. Spicules ofXiphinema sp. and Aporcelaimellus sp. were not composed of three typical parts, were less sclerotized, and lacked a cytoplasmic core opening and distal pores. Spicules of Aphelenchoides spp. had heads expanded into apex and rostrum and had very arcuate blades with thick dorsal and ventral edges (limbs). Gubernaculum shapes were stable within a species, but differed among species examined. The accessory structures of Hoplolaimus galeatus consisted of a tongue-shaped gubernaculum with two titillae at its distal end and a plate-like capitulum terminating distally in two flat, wing-like structures. A comparison of spicules of several species of Meloidogyne by SEM and light microscopy revealed no striking morphological differences. Key words: spicule, gubernaculum, capitulum, titillae, scanning electron microscopy, light mi- croscopy, Aphelenchoides, Aporcelaimel~us, Belonolaimus, Dolichodorus, Globodera, Heterorhabditis, Het- erodera, Hoplolaimus, Meloidogyne, Mesorhabditis, PanagreUus, Tylenchorhynchus, Xiphinema.
    [Show full text]
  • Evaluation of Some Vulval Appendages in Nematode Taxonomy
    Comp. Parasitol. 76(2), 2009, pp. 191–209 Evaluation of Some Vulval Appendages in Nematode Taxonomy 1,5 1 2 3 4 LYNN K. CARTA, ZAFAR A. HANDOO, ERIC P. HOBERG, ERIC F. ERBE, AND WILLIAM P. WERGIN 1 Nematology Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: [email protected], [email protected]) and 2 United States National Parasite Collection, and Animal Parasitic Diseases Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: [email protected]) ABSTRACT: A survey of the nature and phylogenetic distribution of nematode vulval appendages revealed 3 major classes based on composition, position, and orientation that included membranes, flaps, and epiptygmata. Minor classes included cuticular inflations, protruding vulvar appendages of extruded gonadal tissues, vulval ridges, and peri-vulval pits. Vulval membranes were found in Mermithida, Triplonchida, Chromadorida, Rhabditidae, Panagrolaimidae, Tylenchida, and Trichostrongylidae. Vulval flaps were found in Desmodoroidea, Mermithida, Oxyuroidea, Tylenchida, Rhabditida, and Trichostrongyloidea. Epiptygmata were present within Aphelenchida, Tylenchida, Rhabditida, including the diverged Steinernematidae, and Enoplida. Within the Rhabditida, vulval ridges occurred in Cervidellus, peri-vulval pits in Strongyloides, cuticular inflations in Trichostrongylidae, and vulval cuticular sacs in Myolaimus and Deleyia. Vulval membranes have been confused with persistent copulatory sacs deposited by males, and some putative appendages may be artifactual. Vulval appendages occurred almost exclusively in commensal or parasitic nematode taxa. Appendages were discussed based on their relative taxonomic reliability, ecological associations, and distribution in the context of recent 18S ribosomal DNA molecular phylogenetic trees for the nematodes.
    [Show full text]
  • Nematology Training Manual
    NIESA Training Manual NEMATOLOGY TRAINING MANUAL FUNDED BY NIESA and UNIVERSITY OF NAIROBI, CROP PROTECTION DEPARTMENT CONTRIBUTORS: J. Kimenju, Z. Sibanda, H. Talwana and W. Wanjohi 1 NIESA Training Manual CHAPTER 1 TECHNIQUES FOR NEMATODE DIAGNOSIS AND HANDLING Herbert A. L. Talwana Department of Crop Science, Makerere University P. O. Box 7062, Kampala Uganda Section Objectives Going through this section will enrich you with skill to be able to: diagnose nematode problems in the field considering all aspects involved in sampling, extraction and counting of nematodes from soil and plant parts, make permanent mounts, set up and maintain nematode cultures, design experimental set-ups for tests with nematodes Section Content sampling and quantification of nematodes extraction methods for plant-parasitic nematodes, free-living nematodes from soil and plant parts mounting of nematodes, drawing and measuring of nematodes, preparation of nematode inoculum and culturing nematodes, set-up of tests for research with plant-parasitic nematodes, A. Nematode sampling Unlike some pests and diseases, nematodes cannot be monitored by observation in the field. Nematodes must be extracted for microscopic examination in the laboratory. Nematodes can be collected by sampling soil and plant materials. There is no problem in finding nematodes, but getting the species and numbers you want may be trickier. In general, natural and undisturbed habitats will yield greater diversity and more slow-growing nematode species, while temporary and/or disturbed habitats will yield fewer and fast- multiplying species. Sampling considerations Getting nematodes in a sample that truly represent the underlying population at a given time requires due attention to sample size and depth, time and pattern of sampling, and handling and storage of samples.
    [Show full text]
  • Use of an Anthranilic Diamide Derivatives with Heteroaromatic and Heterocyclic Substituents in Combination with a Biological Control Agent
    (19) TZZ Z¥ _T (11) EP 2 606 732 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.06.2013 Bulletin 2013/26 A01N 43/713 (2006.01) A01N 63/00 (2006.01) A01N 63/02 (2006.01) A01N 63/04 (2006.01) (2009.01) (2009.01) (21) Application number: 11194336.1 A01N 65/00 A01N 65/22 A01N 31/08 (2006.01) A01P 7/04 (2006.01) (22) Date of filing: 19.12.2011 (84) Designated Contracting States: (71) Applicant: Bayer CropScience AG AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 40789 Monheim (DE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (72) Inventor: The designation of the inventor has not Designated Extension States: yet been filed BA ME (54) Use of an anthranilic diamide derivatives with heteroaromatic and heterocyclic substituents in combination with a biological control agent (57) A composition comprising a compound of for- in which R1, R2, R3, R4, R5, R6, A, Q and n can have the mula (I): definitions stated in the description, and at least one bi- ological control agent selected from bacteria, fungi or yeasts, protozoas, viruses, entomopathogenic nema- todes, and botanical extracts, or products produced by microorganisms including proteins or secondary metabolites" and optionally an inoculant, for reducing overall damage of plants and plant parts as well as losses in harvested fruits or vegetables caused by insects, nem- atodes and phytopathogens. EP 2 606 732 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 606 732 A1 Description [0001] The present invention relates to the use of anthranilic diamide derivatives with heteroaromatic and heterocyclic substituents in combination with a biological control agent as well as to a preparation method of compositions containing 5 anthranilic diamide derivatives and a selected biological control agent, and compositions containing anthranilic diamide derivatives and at least one biological control agent.
    [Show full text]
  • Taxonomy and Morphology of Plant-Parasitic Nematodes Associated with Turfgrasses in North and South Carolina, USA
    Zootaxa 3452: 1–46 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:14DEF8CA-ABBA-456D-89FD-68064ABB636A Taxonomy and morphology of plant-parasitic nematodes associated with turfgrasses in North and South Carolina, USA YONGSAN ZENG1, 5, WEIMIN YE2*, LANE TREDWAY1, SAMUEL MARTIN3 & MATT MARTIN4 1 Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA. E-mail: [email protected], [email protected] 2 Nematode Assay Section, Agronomic Division, North Carolina Department of Agriculture & Consumer Services, Raleigh, NC 27607, USA. E-mail: [email protected] 3 Plant Pathology and Physiology, School of Agricultural, Forest and Environmental Sciences, Clemson University, 2200 Pocket Road, Florence, SC 29506, USA. E-mail: [email protected] 4 Crop Science Department, North Carolina State University, 3800 Castle Hayne Road, Castle Hayne, NC 28429-6519, USA. E-mail: [email protected] 5 Department of Plant Protection, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People’s Republic of China *Corresponding author Abstract Twenty-nine species of plant-parasitic nematodes were recovered from 282 soil samples collected from turfgrasses in 19 counties in North Carolina (NC) and 20 counties in South Carolina (SC) during 2011 and from previous collections. These nematodes belong to 22 genera in 15 families, including Belonolaimus longicaudatus, Dolichodorus heterocephalus, Filenchus cylindricus, Helicotylenchus dihystera, Scutellonema brachyurum, Hoplolaimus galeatus, Mesocriconema xenoplax, M. curvatum, M. sphaerocephala, Ogma floridense, Paratrichodorus minor, P. allius, Tylenchorhynchus claytoni, Pratylenchus penetrans, Meloidogyne graminis, M. naasi, Heterodera sp., Cactodera sp., Hemicycliophora conida, Loofia thienemanni, Hemicaloosia graminis, Hemicriconemoides wessoni, H.
    [Show full text]