Description and SEM Observations of Dolichodorus Marylandicus N. Sp. with a Key to Species of Dolichodorus ~ Stephen A

Total Page:16

File Type:pdf, Size:1020Kb

Description and SEM Observations of Dolichodorus Marylandicus N. Sp. with a Key to Species of Dolichodorus ~ Stephen A i28 journal o] Nematoiogy, Volume 13, No. 2, April 1981 choidea (Nematoda). Indian J. Nematol. 1:25-43. 19. Triantaphyllou, A. C., and H. Hirschmann. 18. Tarjan, A. C. 1973. A synopsis of the genera 1980. Cytogenetics and morphology in relation to and species in the Tylenchorhynchinae (Tylen- evolution and speciation of plant-parasitic nema- choidea, Nematoda). Proc. Helm. Soc. Wash. 40:123- todes. Ann. Rev. Phytopathol. 18:333-359. 144. Description and SEM Observations of Dolichodorus marylandicus n. sp. with a Key to Species of Dolichodorus ~ Stephen A. Lewis and A. Morgan Golden -° Abstract: Dolichodorus marylandicus n. sp. is described and illustrated from grass (Zoysia japonica) in College Park, Maryland. Specimens have also been collected from perennial blue- grass (Poa pratensis) pasture at Beltsville, Maryland, and from pine (Pinus sp.) in North Caro- lina. This new species is related to D. heterocephalus Cobb, D. similis Golden, and D. aestuarius Chow g: Taylor. Females are distinct in having a longer styler and shorter body length than D. aestuarius. The excretory pore is at the level of the isthmus or slightly posterior and the tail is abruptly reduced in diameter, tapering to an acuminate terminus. The tails of D. similis and D. heterocephalus conically taper to a median point, with D. similis having an especially long tail. D. marylandicus does not possess the rounded, sclerotized accessory structures adjacent to the vulva observed in lateral views of D. similis and D. heterocephalus. SEM observations of D. heterocephalus and D. marylandicus revealed details of the head of males and females, and species difference in shape of the oral disc. Key words: taxonomy, morphology, Doliehodorus, awl nema- tode, new species, SEM ultrastructure, grass, Zoysia japonica, Poa pratensis, Pinus, pine. The genus Dolichodorus was established coconut, weeds, and grasses. Dolichodorus by N. A. Cobb in 1914 from specimens ob- spp. are commonly collected from moist tained primarily from Silver Springs, Flor- habitats, but they have also been found 1.2 ida, when he described D. heterocephalus m deep in sandy soil lying 20-40 cm above (6). No other species were described for the water table (15), in dry, shale soil at the more than 40 yr, until D. obtusus Allen in top of a mountain (9), and in coastal sand 1957 (1) and D. similis Golden in 1958 (10). dunes in New Zealand (5). Since then, additional species have been de- Dolichodorus heterocephalus is impor- scribed and placed in this genus. However, tant in Florida agriculture (4,16). In 1975 in 1976 Andr;issy (2) established Neodoli- D. minor Loof g: Sharma was associated with chodorus to accommodate the species with galled roots of diseased cocoa and rubber bluntly rounded tails and four lines in the trees (13), and D. silvestris Gillespie & lateral field; and at the same time trans- Adams was found in 1962 surrounding un- ferred D. obtusus to tiffs new genus as the thrifty white pine tree roots (9). The type and only species. In 1977 Siddiqi (17) Dolichodorus species described herein was shifted five other species from Dolichodorus found (with other associated plant-parasitic to Neodolichodorus. Presently, there are nematodes) in sparse, chlorotic stands of eight Dolichodorus spp. associated with zoysia and perennial bluegrass. The turf varied hosts including corn, celery, turf, stands improved in vigor after nematicide white pine, cocoa, rubber, pepper, clove, application (8). Received for publication 29 July 1980. 1Contribution No. 1800 of the South Carolina Agricul- MATERIALS AND METHODS tural Experiment Station. 2Respectively, Assoicate Professor of Plant Pathology and Specimens used in this description were Physiology, Clemson University, Clemson, SC 29631; and Nematologist, Nematology Laboratory, Plant Protection In- obtained from a zoysia lawn and from cul- stitute, USDA SEA AR, Beltsville, MD 20705. This study tures originating from the lawn and grown was performed while the senior author was on sabbatic leave in the laboratory of Dr. Golden. Appreciation is ex- on zoysia in an isolated area of a green- tended for the financial support of the USDA and to Bruce house. Ingber of the Electron Microscope Laboratory for SEM tech- nical assistance. Males, females, and larvae were collected Dolichodorus Description and SEM Observations: Lewis, Golden 129 from soil by commonly used methods, heat area (labial rib) on each side of the open- relaxed, and fixed in 3% formaldehyde. ing (Figs. 12, 13, 18, 21, 22). Cavities or The procedures used in measuring, drawing, clefts appear under the oral disc in the and preparing specimens were those used dorsal and ventral sectors. Stylet with conus by Golden and Birchfield (11). Living speci- longer than shaft and with slightly pointed mens were prepared for scanning electron knobs sloping posteriorly (Fig. 1). Guides microscope (SEM) observation by fixing in for both the stylet shaft and extension very 3% glutaraldehyde in 0.01 m phosphate faint. Esophagus typical from the genus with buffer pH 6.7, dehydrating in ethanol, the nerve ring encircling the basal portion critical-point drying, and sputter coating of tile isthmus. Excretory pore clearly visible with gold-palladium. and located slightly anterior to the basal bulb but occasionally located from the level of tile upper half of the basal bulb to the SPECIES DESCRIPTION anterior of tile isthmus. Hemizonid 17.4- Dolichodorus marylandicus n. sp. 26.1 /zm and hemizonion 23.2-34.5 /~m be- Females (30): Length 1646-2489 ~tm low excretory pore, respectively. Anterior (average 2120.2 tzm, standard deviation [SD] cephalids opposite, 4-5 annules posterior to 245.7/zna); width 39.2-54.6/~m (45.3 ~tm, SD constriction at lip region. Vulva a transverse 4.0); a = 36-54 (45.5, SD 5.0); b = 6.0-10.1 slit (Fig. 6) without sclerotized accessory (8.5, SD 0.8); c = 30.2-51.4 (38.8, SD 4.9); pieces observed in lateral views of D. V = 50-61 (55, SD 5.0); total styler 83.5- heterocephalus and D. similis. Vagina 92.4 /~m (88.8 /zm, SD 3.0); stylet conus strongly sclerotized near vulva, with ser- 46.6-51.3 /zm (49.3 ttm, SD 1.9); dorsal rated opening and with well-developed, esophageal gland orifice (DGO) 3.8-5.8/~m convoluted cuticular lining extending to (4.9 /zm, SD 0.8) from base of stylet; center almost half the body width (Fig. 7). Am- of median bull) 134.8-154.8 ~tm (147.9 ttm, phidelphic, with o6cytes in several rows in SD 8.7) from anterior end; excretory pore germinal zone. Proximal end of oviduct 156.6-193.9 #m (180.9/xm, SD 11.0) from an- with conspicuous spermatheca. Cuticle terior end; anal body width 29.9-41.8 ~m finely striated with areolated lateral field having three lines, occupying about 1/5 (36.6 t~m, SD 2.9). Holotype (female): Length 2038.4 t~m; body width (Fig. 3). Center line more 40.1 t~m; a = 50.8; b = 8.8; c = 34.8; V = prominent than outer lines and extending 52; stylet 86.7 /zm; stylet conus 47.5 t~m; from a point adjacent to anterior 1/3 of DGO 4.4 /~m from base of stylet; center of stylet to a deeply-cut line just anterior to median bulb 137.2 ttm from anterior end; the phasmid after which tile line becomes excretory pore 181.4 t~m from anterior end; uneven. Outer lines not as distinct, extend- phasmids 46.6 tzm from tail terminus; anal ing from the level of the procorpus to a body width 35.6 ttm. point just anterior to the level of the anus, Description of [emales: Body long and and appearing more faint posterior to the cylindrical, slightly arcuate. Lip region vulva. Phasmids opposite, pore-like, averag- prominent, markedly offset from body (Fig. ing 46.2 ~tm from tail tip in a cleft formed 1), bearing seven very fine annules (Figs. by center line in lateral field (Fig. 3). Tail 10, 13). Lip region en [ace with four lobes 54.9 /~m (50.6-63.8), abruptly tapering to and with an offset oral disc (Figs. 2, 9, 12, an acuminate, often spikate, terminus with 13). Anterior portion of head with strong more reduction in diameter ventrally than cephalic framework and massive basal plate. dorsally or laterally. Tail shape generally Observations of the smooth elongate lips appearing as in Figs. 3, 4, 5, 14, 17 but also with a transmitted-light microscope revealed occurring as in Figs. 15, 16. Juveniles with curved lines in the lateral sectors which tails conically tapering to a long median could not be definitely identified. However, point. SEM micrographs revealed the presence of Males (25): Length 1685.6-2114.1 t~m wide (0.8/zm) amphid openings 2.9-3.3 #m (1950.4 /~m, SD 130.3); width 35.5-44.4 #m long. The shape and width of the openings (42.3 /~m, SD 3.3); a = 41.1-55.8 (46.3, SD may be partially determined by a raised 4.2); b = 6.7-9.4 (8.3, SD 0.6); c = 47.1- i30 .Journal o/ Nematology, Volume 13, No. 2, April 1981 :-r ;, -7-, ~r- 4 5 0 ju.m I I 25F, m p I 2-8 I ] ,'" L,: ,'.: O I :: , tO :, ,, 0 " I ' I I, : °-. :') [ ° u ',,,; \Li Figs. 1-8, Drawings of Dolichodorus marylandicus n. sp. 1) Anterior region of female (note location of excretory pore and massive basal plate of sclerotized labial framework). 2) En face view of head. 3-5) Tail shapes of females (note reduction in tail diameter and location of anus).
Recommended publications
  • A Revision of the Family Heteroderidae (Nematoda: Tylenchoidea) I
    A REVISION OF THE FAMILY HETERODERIDAE (NEMATODA: TYLENCHOIDEA) I. THE FAMILY HETERODERIDAE AND ITS SUBFAMILIES BY W. M. WOUTS Entomology Division, Department of Scientific and Industrial Research, Nelson, New Zealand The family Heteroderidae and the subfamilies Heteroderinae and Meloidoderinae are redefined. The subfamily Meloidogyninae is raised to family Meloidogynidae. The genus Meloidoderita Poghossian, 1966 is transferred to the family Meloidogynidae.Ataloderinae n. subfam. is proposed and diagnosed in the family Heteroderidae. A key to the three subfamilies is presented and a possible phylogeny of the family Heteroderidae is discussed. The family Heteroderidae (Filipjev & Schuurmans Stekhoven, 1941) Skar- bilovich, 1947 was proposed for the sexually dimorphic, obligate plant parasites of the nematode genera Heterodera Schmidt, 1871 and T'ylenchulu.r Cobb, 1913. Because of differences in body length of the female, number of ovaries, position of the excretory pore and presence or apparent absence of the anal opening they were placed in separate subfamilies; Heteroderinae Filipjev & Schuurmans Stek- hoven, 1941 and Tylenchulinae Skarbilovich, 1947. Independently Thorne (1949), on the basis of sexual dimorphism, proposed Heteroderidae to include Heterodera and Meloidogyne Goeldi, 1892; he considered the short rounded tail of the male and the absence of caudal alae as family charac- ters, and included Heteroderinae as the only subfamily. Chitwood & Chitwood ( 1950) ignored sexual dimorphism and based the family on the heavy stylet and general characters of the head and the oesophagus of the adults. They recognised as subfamilies Heteroderinae, Hoplolaiminae Filipjev, 1934 and the new subfamily Nacobbinae. Skarbilovich (1959) re-emphasized sexual dimorphism as a family character and stated that "It is quite illegitimate for the [previous] authors to assign the subfamily Hoplolaiminae to the family Heteroderidae".
    [Show full text]
  • Dolichodorus Aestuarius N. Sp. (Nematode: Dolichodoridae) 1
    Simulation Model Refinement: Ferris 201 5. FERRIS, H., and M. V. McKENRY. 1974. 11. NICHOLSON, A. J. 1933. The balance of Seasonal fluctuations in the spatial distribu- animal populations. J. Anita. "Ecol. 2:132-178. tion of nematode populations in a California 12. OOSTENBRINK, M. 1966. Major characteristics vineyard. J. Nematol. 6:203-210. of the relation between nematodes and plants. 6. FERRIS, H., and R. H. SMALL. 1975. Computer Meded. LandbHogesch. Wageningen 66:46 p. simulation of Meloidogyne arenaria egg 13. SEINHORST, J. W. 1965. The relation between development and hatch at fluctuating tem- nematode density and damage to plants. perature. J. Netnatol. 7:322 (Abstr.). Nematologica 11 : 137-154. 7. FREEMAN, B. M., and R. E. SMART. 1976. 14. TYLER, J. 1933. Development of the root-knot Research note: a root ohservation laboratory nematode as affected by temperature. Hil- for studies with grapevines. Am. J. Enol. gardia 7:391-415. Viticult. 27:36-39. 15. VANDERPLANK, J. E. 1963. Plant Diseases: 8. GRIFFIN, G. D., and J. H. ELGIN, JR. 1977. Epidemics and Control. Academic Press, Penetration and development of Meloidogyne New York. 349 p. hapla in resistant and susceptible alfalfa 16. WALLACE, H. R. 1973. Nematode Ecology and under differing temperatures. J. Nematol. Plant Disease. Edward Arnold, New York. 9:51-56. 228 p. 9. McCLURE, M. A. 1977. Meloidogyne incognita: 17. WINKLER, A. J., J. A. COOK, W. M. a metabolic sink. J. Nematol. 9:88-90. KLIEWER, and L. A. LIDER. 1974. General 10. MILNE, D. L., and D. P. DUPLESSIS. 1964. De- Viticulture. University of California Press, velopment of Meloidogyne javanica (Treub) Berkeley.
    [Show full text]
  • Dolichodorus Heterocephalus Cobb, 1914
    CA LIF ORNIA D EPA RTM EN T OF FOOD & AGRICULTURE California Pest Rating Proposal for Dolichodorus heterocephalus Cobb, 1914 Cobb’s awl nematode Current Pest Rating: A Proposed Pest Rating: A Domain: Eukaryota, Kingdom: Metazoa, Phylum: Nematoda, Class: Secernentea Order: Tylenchida, Suborder: Tylenchina, Family: Dolichodoridae Comment Period: 08/10/2021 through 09/24/2021 Initiating Event: This nematode has not been through the pest rating process. The risk to California from Dolichodorus heterocephalus is described herein and a permanent pest rating is proposed. History & Status: Background: The genus Dolichodorus was created by Cobb (1914) when he named D. heterocephalus collected from fresh water at Silver Springs, Florida and Douglas Lake, Michigan. This nematode is a migratory ectoparasite that feeds only from the outside on the cells, on the root surfaces, and mainly at root tip. They live freely in the soil and feed on plants without becoming attached or entering inside the roots. Males and females are both present. This genus is notable in that its members are relatively large for plant parasites and have long stylets. Usually, awl nematodes are found in moist to wet soil, low areas of fields, and near irrigation ditches and other bodies of fresh water. Because they prefer moist to wet soils, they rarely occur in agricultural fields and are not as well studied as other plant-parasitic nematodes (Crow and Brammer, 2003). Infestations in Florida may be due to soil containing nematodes being spread from riverbanks CA LIF ORNIA D EPA RTM EN T OF FOOD & AGRICULTURE onto fields, or by moving with water during flooding (Christie, 1959).
    [Show full text]
  • Plant-Parasitic Nematodes and Their Management: a Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.8, No.1, 2018 Plant-Parasitic Nematodes and Their Management: A Review Misgana Mitiku Department of Plant Pathology, Southern Agricultural Research Institute, Jinka, Agricultural Research Center, Jinka, Ethiopia Abstract Nowhere will the need to sustainably increase agricultural productivity in line with increasing demand be more pertinent than in resource poor areas of the world, especially Africa, where populations are most rapidly expanding. Although a 35% population increase is projected by 2050. Significant improvements are consequently necessary in terms of resource use efficiency. In moving crop yields towards an efficiency frontier, optimal pest and disease management will be essential, especially as the proportional production of some commodities steadily shifts. With this in mind, it is essential that the full spectrums of crop production limitations are considered appropriately, including the often overlooked nematode constraints about half of all nematode species are marine nematodes, 25% are free-living, soil inhabiting nematodes, I5% are animal and human parasites and l0% are plant parasites. Today, even with modern technology, 5-l0% of crop production is lost due to nematodes in developed countries. So, the aim of this work was to review some agricultural nematodes genera, species they contain and their management methods. In this review work the species, feeding habit, morphology, host and symptoms they show on the effected plant and management of eleven nematode genera was reviewed.
    [Show full text]
  • Theory Manual Course No. Pl. Path
    NAVSARI AGRICULTURAL UNIVERSITY Theory Manual INTRODUCTORY PLANT NEMATOLOGY Course No. Pl. Path 2.2 (V Dean’s) nd 2 Semester B.Sc. (Hons.) Agri. PROF.R.R.PATEL, ASSISTANT PROFESSOR Dr.D.M.PATHAK, ASSOCIATE PROFESSOR Dr.R.R.WAGHUNDE, ASSISTANT PROFESSOR DEPARTMENT OF PLANT PATHOLOGY COLLEGE OF AGRICULTURE NAVSARI AGRICULTURAL UNIVERSITY BHARUCH 392012 1 GENERAL INTRODUCTION What are the nematodes? Nematodes are belongs to animal kingdom, they are triploblastic, unsegmented, bilateral symmetrical, pseudocoelomateandhaving well developed reproductive, nervous, excretoryand digestive system where as the circulatory and respiratory systems are absent but govern by the pseudocoelomic fluid. Plant Nematology: Nematology is a science deals with the study of morphology, taxonomy, classification, biology, symptomatology and management of {plant pathogenic} nematode (PPN). The word nematode is made up of two Greek words, Nema means thread like and eidos means form. The words Nematodes is derived from Greek words ‘Nema+oides’ meaning „Thread + form‟(thread like organism ) therefore, they also called threadworms. They are also known as roundworms because nematode body tubular is shape. The movement (serpentine) of nematodes like eel (marine fish), so also called them eelworm in U.K. and Nema in U.S.A. Roundworms by Zoologist Nematodes are a diverse group of organisms, which are found in many different environments. Approximately 50% of known nematode species are marine, 25% are free-living species found in soil or freshwater, 15% are parasites of animals, and 10% of known nematode species are parasites of plants (see figure at left). The study of nematodes has traditionally been viewed as three separate disciplines: (1) Helminthology dealing with the study of nematodes and other worms parasitic in vertebrates (mainly those of importance to human and veterinary medicine).
    [Show full text]
  • Biology and Control of the Anguinid Nematode
    BIOLOGY AND CONTROL OF THE AIIGTIINID NEMATODE ASSOCIATED WITH F'LOOD PLAIN STAGGERS by TERRY B.ERTOZZI (B.Sc. (Hons Zool.), University of Adelaide) Thesis submitted for the degree of Doctor of Philosophy in The University of Adelaide (School of Agriculture and Wine) September 2003 Table of Contents Title Table of contents.... Summary Statement..... Acknowledgments Chapter 1 Introduction ... Chapter 2 Review of Literature 2.I Introduction.. 4 2.2 The 8acterium................ 4 2.2.I Taxonomic status..' 4 2.2.2 The toxins and toxin production.... 6 2.2.3 Symptoms of poisoning................. 7 2.2.4 Association with nematodes .......... 9 2.3 Nematodes of the genus Anguina 10 2.3.1 Taxonomy and sYstematics 10 2.3.2 Life cycle 13 2.4 Management 15 2.4.1 Identifi cation...................'..... 16 2.4.2 Agronomicmethods t6 2.4.3 FungalAntagonists l7 2.4.4 Other strategies 19 2.5 Conclusions 20 Chapter 3 General Methods 3.1 Field sites... 22 3.2 Collection and storage of Polypogon monspeliensis and Agrostis avenaceø seed 23 3.3 Surface sterilisation and germination of seed 23 3.4 Collection and storage of nematode galls .'.'.'.....'.....' 24 3.5 Ext¡action ofjuvenile nematodes from galls 24 3.6 Counting nematodes 24 3.7 Pot experiments............. 24 Chapter 4 Distribution of Flood Plain Staggers 4.1 lntroduction 26 4.2 Materials and Methods..............'.. 27 4.2.1 Survey of Murray River flood plains......... 27 4.2.2 Survey of southeastern South Australia .... 28 4.2.3 Surveys of northern New South Wales...... 28 4.3 Results 29 4.3.1 Survey of Murray River flood plains...
    [Show full text]
  • Note 20: List of Plant-Parasitic Nematodes Found in North Carolina
    nema note 20 NCDA&CS AGRONOMIC DIVISION NEMATODE ASSAY SECTION PHYSICAL ADDRESS 4300 REEDY CREEK ROAD List of Plant-Parasitic Nematodes Recorded in RALEIGH NC 27607-6465 North Carolina MAILING ADDRESS 1040 MAIL SERVICE CENTER Weimin Ye RALEIGH NC 27699-1040 PHONE: 919-733-2655 FAX: 919-733-2837 North Carolina's agricultural industry, including food, fiber, ornamentals and forestry, contributes $84 billion to the state's annual economy, accounts for more than 17 percent of the state's DR. WEIMIN YE NEMATOLOGIST income, and employs 17 percent of the work force. North Carolina is one of the most diversified agricultural states in the nation. DR. COLLEEN HUDAK-WISE Approximately, 50,000 farmers grow over 80 different commodities in DIVISION DIRECTOR North Carolina utilizing 8.2 million of the state's 12.5 million hectares to furnish consumers a dependable and affordable supply STEVE TROXLER of food and fiber. North Carolina produces more tobacco and sweet AGRICULTURE COMMISSIONER potatoes than any other state, ranks second in Christmas tree and third in tomato production. The state ranks nineth nationally in farm cash receipts of over $10.8 billion (NCDA&CS Agricultural Statistics, 2017). Plant-parasitic nematodes are recognized as one of the greatest threat to crops throughout the world. Nematodes alone or in combination with other soil microorganisms have been found to attack almost every part of the plant including roots, stems, leaves, fruits and seeds. Crop damage caused worldwide by plant nematodes has been estimated at $US80 billion per year (Nicol et al., 2011). All crops are damaged by at least one species of nematode.
    [Show full text]
  • Phylogenetic Implications of Phasmid Absence in Males of Three Genera in Heteroderinae 1 L
    Journal of Nematology 22(3):386-394. 1990. © The Society of Nematologists 1990. Phylogenetic Implications of Phasmid Absence in Males of Three Genera in Heteroderinae 1 L. K. CARTA2 AND J. G. BALDWINs Abstract: Absence of the phasmid was demonstrated with the transmission electron microscope in immature third-stage (M3) and fourth-stage (M4) males and mature fifth-stage males (M5) of Heterodera schachtii, M3 and M4 of Verutus volvingentis, and M5 of Cactodera eremica. This absence was supported by the lack of phasmid staining with Coomassie blue and cobalt sulfide. All phasmid structures, except the canal and ampulla, were absent in the postpenetration second-stagejuvenile (]2) of H. schachtii. The prepenetration V. volvingentis J2 differs from H. schachtii by having only a canal remnant and no ampulla. This and parsimonious evidence suggest that these two types of phasmids probably evolved in parallel, although ampulla and receptor cavity shape are similar. Absence of the male phasmid throughout development might be associated with an amphimictic mode of reproduction. Phasmid function is discussed, and female pheromone reception ruled out. Variations in ampulla shape are evaluated as phylogenetic character states within the Heteroderinae and putative phylogenetic outgroup Hoplolaimidae. Key words: anaphimixis, ampulla, cell death, Cactodera eremica, Heterodera schachtii, Heteroderinae, parallel evolution, parthenogenesis, phasmid, phylogeny, ultrastructure, Verutus volvingentis. Phasmid sensory organs on the tails of phasmid openings in the males of most gen- secernentean nematodes are sometimes era within the plant-parasitic Heteroderi- notoriously difficult to locate with the light nae, except Meloidodera (24) and perhaps microscope (18). Because the assignment Cryphodera (10) and Zelandodera (43).
    [Show full text]
  • Vittatidera Zeaphila (Nematoda: Heteroderidae), a New Genus and Species of Cyst Nematode Parasitic on Corn (Zea Mays)
    Journal of Nematology 42(2):139–150. 2010. Ó The Society of Nematologists 2010. Vittatidera zeaphila (Nematoda: Heteroderidae), a new genus and species of cyst nematode parasitic on corn (Zea mays) 1 2 3 4 5 ERNEST C. BERNARD, ZAFAR A. HANDOO, THOMAS O. POWERS, PATRICIA A. DONALD, ROBERT D. HEINZ Abstract: A new genus and species of cyst nematode, Vittatidera zeaphila, is described from Tennessee. The new genus is superficially similar to Cactodera but is distinguished from other cyst-forming taxa in having a persistent lateral field in females and cysts, persistent vulval lips covering a circumfenestrate vulva, and subventral gland nuclei of the female contained in a separate small lobe. Infective juveniles (J2) are distinguished from all previously described Cactodera spp. by the short stylet in the second-stage juvenile (14-17 mm); J2 of Cactodera spp. have stylets at least 18 mm long. The new species also is unusual in that the females produce large egg masses. Known hosts are corn and goosegrass. DNA analysis suggests that Vittatidera forms a separate group apart from other cyst-forming genera within Heteroderinae. Key words: cyst nematode, Eleusine indica, goosegrass, maize, molecular analysis, new genus, taxonomy, Vittatidera zeaphila, Zea mays. Cyst nematodes are widespread but with the excep- processed to glycerin with a rapid method (Seinhorst tions of Heterodera avenae Wollenweber and H. zeae Koshi, 1959), and mounted in anhydrous glycerin on micro- Swarup & Sethi (Baldwin & Mundo-Ocampo 1991) are scope slides. not significant parasites of Poaceae. In the late 1970s the DNA analyses Juvenile nematodes of Vittatidera zeaphila first author collected specimens of a cyst nematode from were obtained from culture.
    [Show full text]
  • Occurrence of Phytoparasitic Nematodes on Some Crop Plants in Northern Egypt
    Pakistan Journal of Nematology (2016) 34 (2): 163-169 ISSN 0255-7576 (Print) ISSN 2313-1942 (Online) www.pjn.com.pk http://dx.doi.org/10.18681/pjn.v34.i02.p163 Occurrence of phytoparasitic nematodes on some crop plants in northern Egypt I. K. A. Ibrahim1 and Z. A. Handoo2† 1Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt 2Nematology Laboratory, USDA, ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA †Corresponding author: [email protected] Abstract A nematode survey was conducted in northern Egypt and a total of 240 soil and root samples were collected from the rhizosphere of the surveyed plants. Twenty-three genera of phytoparasitic nematodes were detected in the collected soil and root samples. In soil samples from Alexandria governorate, the sugar beet cyst nematode (Heterodera schachtii) was very common on sugar beet while the root-knot nematodes Meloidogyne incognita and M. javanica were very common on guava, olive trees and sugar beet. Helicotylenchus pseudorobustus, M. incognita, Pratylenchus sp., Rotylenchulus reniformis and Xiphinema sp. were observed in spearmint soil samples. The dagger nematode Xiphinema rivesi was found in orange soil samples from El-Nobarria, El-Beheira governorate. In lantana soil samples from El-Giza governorate, Aglenchus geraerti, Bitylenchus ventrosignatus, Coslenchus capsici, Helicotylenchus indicus and Malenchus bryanti were identified for the first time in Egypt. Survey results revealed new host plant records for most of
    [Show full text]
  • New Cyst Nematode, Heterodera Sojae N. Sp
    Journal of Nematology 48(4):280–289. 2016. Ó The Society of Nematologists 2016. New Cyst Nematode, Heterodera sojae n. sp. (Nematoda: Heteroderidae) from Soybean in Korea 1 1 1 1,2 2 2 1,2 HEONIL KANG, GEUN EUN, JIHYE HA, YONGCHUL KIM, NAMSOOK PARK, DONGGEUN KIM, AND INSOO CHOI Abstract: A new soybean cyst nematode Heterodera sojae n. sp. was found from the roots of soybean plants in Korea. Cysts of H. sojae n. sp. appeared more round, shining, and darker than that of H. glycines. Morphologically, H. sojae n. sp. differed from H. glycines by fenestra length (23.5–54.2 mm vs. 30–70 mm), vulval silt length (9.0–24.4 mm vs. 43–60 mm), tail length of J2 (54.3–74.8 mm vs. 40–61 mm), and hyaline part of J2 (32.6–46.3 mm vs. 20–30 mm). It is distinguished from H. elachista by larger cyst (513.4–778.3 mm 3 343.4– 567.1 mm vs. 350–560 mm 3 250–450 mm) and longer stylet length of J2 (23.8–25.3 mm vs. 17–19 mm). Molecular analysis of rRNA large subunit (LSU) D2–D3 segments and ITS gene sequence shows that H. sojae n. sp. is more close to rice cyst nematode H. elachista than H. glycines. Heterodera sojae n. sp. was widely distributed in Korea. It was found from soybean fields of all three provinces sampled. Key words: Heterodera sojae n. sp., morphology, phylogenetic, soybean, taxonomy. Soybean Glycine max (L.) Merr is one of the most im- glycines.
    [Show full text]
  • Pale Cyst Nematode Globodera Pallida
    Michigan State University’s invasive species factsheets Pale cyst nematode Globodera pallida The pale cyst nematode is a serious pest of potatoes around the world and is a target of strict regulatory actions in the United States. An introduction to Michigan may adversely affect production and marketing of potatoes and other solanaceous crops. Michigan risk maps for exotic plant pests. Other common names potato cyst nematode, white potato cyst nematode, pale potato cyst nematode Systematic position Nematoda > Tylenchida > Heteroderidae > Globodera pallida (Stone) Behrens Global distribution Worldwide distribution in potato-producing regions. Mature females (white) and a cyst (brown) of potato cyst nematode attached to the roots. (Photo: B. Hammeraas, Bioforsk - Norwegian Institute for Agricultural Africa: Algeria, Tunisia; Asia: India, Pakistan, and Environmental Research, Bugwood.org) Turkey; Europe: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Cyprus, Faroe Islands, Finland, pale cyst nematode move to, penetrate and feed on host France, Germany, Greece, Hungary, Iceland, Ireland, roots. After mating, fertilized eggs develop inside females Italy, Luxembourg, Malta, Netherlands, Norway, Poland, that are attached to roots. When females die their skin Portugal, Romania, Spain, Sweden, Switzerland, United hardens and becomes a protective brown cover (cyst) Kingdom; Latin America: Argentina, Bolivia, Chile, around the eggs. Each cyst contains hundreds of eggs, and Colombia, Ecuador, Panama, Peru, Venezuela; Oceania: it can remain viable for many years in the absence of host New Zealand; North America: Idaho, Canada (a small plants. One generation normally occurs during one growing area of Newfoundland). season. Quarantine status Identification In 2006, the pale cyst nematode was detected at At flowering or later stages of a host plant, mature a potato processing facility in Idaho.
    [Show full text]