Radiation Applications and Waste Management: Taking the Final Steps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indium, Caesium Or Cerium Compounds for Treatment of Cerebral Disorders
Europaisches Patentamt 298 644 J European Patent Office Oy Publication number: 0 A3 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 88305895.0 © intci.s A61K 31/20, A61K 31/28, A61K 33/24 @ Date of filing: 29.06.88 © Priority: 07.07.87 GB 8715914 © Applicant: EFAMOL HOLDINGS PLC Efamol House Woodbridge Meadows © Date of publication of application: Guildford Surrey GU1 1BA(GB) 11.01.89 Bulletin 89/02 @ Inventor: Horrobin, David Frederick © Designated Contracting States: c/o Efamol House Woodbridge Meadows AT BE CH DE ES FR GB GR IT LI LU NL SE Guildford Surrey GU1 1BA(GB) Inventor: Corrigan, Frank ® Date of deferred publication of the search report: c/o Argyll & Bute Hospital 14.11.90 Bulletin 90/46 Lochgilphead, Argyll PA3T 8ED Scotland(GB) © Representative: Caro, William Egerton et al J. MILLER & CO. Lincoln House 296-302 High Holborn London WC1V 7 JH(GB) © Indium, caesium or cerium compounds for treatment of cerebral disorders. © A method of treatment of schizophrenia or other chronic cerebral disorder in which cerebral atrophy is shown, is characterised in that one or more as- similable or pharmaceutically acceptable indium caesium or cerium compounds is associated with a pharmaceutically acceptable diluent or carrier. CO < CD 00 O> Xerox Copy Centre PARTIAL EUROPEAN SEARCH REPORT Application number European Patent J which under Rule 45 of the European Patent Convention Office shall be considered, for the purposes of subsequent EP 88 30 5895 proceedings, as the European search report DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE ategory of relevant passages to claim APPLICATION (Int. -
The Infrared Spectrum of Indium in Silicon Revisited A
The infrared spectrum of indium in silicon revisited A. Tardella, B. Pajot To cite this version: A. Tardella, B. Pajot. The infrared spectrum of indium in silicon revisited. Journal de Physique, 1982, 43 (12), pp.1789-1795. 10.1051/jphys:0198200430120178900. jpa-00209562 HAL Id: jpa-00209562 https://hal.archives-ouvertes.fr/jpa-00209562 Submitted on 1 Jan 1982 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Physique 43 (1982) 1789-1795 DTCEMBRE 1982, 1789 Classification Physics Abstracts 71.55 - 78.50 The infrared spectrum of indium in silicon revisited A. Tardella and B. Pajot Groupe de Physique des Solides de l’Ecole Normale Supérieure, Université Paris VII, Tour 23, 2, place Jussieu, 75251 Paris Cedex 05, France (Reçu le 27 mai 1982, révisé le 22 juillet, accepté le 23 août 1982) Résumé. 2014 Le spectre d’absorption de l’indium dans le silicium a été mesuré dans des conditions où l’élargisse- ment des raies par effet de concentration est négligeable. Avec une résolution appropriée, on détecte 17 transitions et les composantes d’un doublet serré sont attribuées à deux transitions calculées. A 6 K, la largeur intrinsèque des raies varie de 2,6 à 0,8 cm-1, ce qui indique un effet lié à la structure de la bande de valence du silicium. -
Soldering to Gold Films
Soldering to Gold Films THE IMPORTANCE OF LEAD-INDIUM ALLOYS Frederick G. Yost Sandia Laboratories, Albuquerque, New Mexico, U.S.A. Reliable solder joints can be made on gold metallised microcircuits using lead-indium solders providing certain important conditions are understood and carefully controlled. This paper reviews the three fundamental concepts of scavenging, wetting, and ageing, which are relevant when soldering to gold films. Alloys containing indium have been used for solder- sition and a body centred tetragonal space lattice. ing electronic components to thin gold films and wires Although considerable work has been addressed for at least 14 years. Braun (1, 2) investigated the to the question of clustering and phase separation potential of several multicomponent alloys based in the a field below 20°C (7, 8, 9) the practical signifi- upon the lead-tin-indium ternary alloy system. cance of this phenomenon has not yet materialised. More recently, work on lead-indium binary alloys The most commonly used alloy is the 50 weight has been reported by Jackson (3) and Yost, et al per cent indium composition which has a liquidus (4, 5, 6). In this paper we intend to define, to discuss, temperature of approximately 210°C and a solidus and to illustrate three fundamental concepts relevant temperature of approximately 185°C. Alloys in the to soldering to gold films using lead-indium solders. lead rich phase field, a, freeze dendritically by The lead-indium phase diagram, shown in Figure forming lead rich stalks. The formation of these 1, contains a wealth of useful solder alloys having dendrites causes a surface rumpling which gives the solidus temperatures which range from 156.6°C solder surface a somewhat frosty rather than a shiny (pure indium) to 327.5 °C (pure lead). -
Radionuclides (Including Radon, Radium and Uranium)
Radionuclides (including Radon, Radium and Uranium) Hazard Summary Uranium, radium, and radon are naturally occurring radionuclides found in the environment. No information is available on the acute (short-term) noncancer effects of the radionuclides in humans. Animal studies have reported inflammatory reactions in the nasal passages and kidney damage from acute inhalation exposure to uranium. Chronic (long-term) inhalation exposure to uranium and radon in humans has been linked to respiratory effects, such as chronic lung disease, while radium exposure has resulted in acute leukopenia, anemia, necrosis of the jaw, and other effects. Cancer is the major effect of concern from the radionuclides. Radium, via oral exposure, is known to cause bone, head, and nasal passage tumors in humans, and radon, via inhalation exposure, causes lung cancer in humans. Uranium may cause lung cancer and tumors of the lymphatic and hematopoietic tissues. EPA has not classified uranium, radon or radium for carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (5), which contains information on oral chronic toxicity and the RfD for uranium, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profiles for Uranium, Radium, and Radon. (1) Uses Uranium is used in nuclear power plants and nuclear weapons. Very small amounts are used in photography for toning, in the leather and wood industries for stains and dyes, and in the silk and wood industries. (2) Radium is used as a radiation source for treating neoplastic diseases, as a radon source, in radiography of metals, and as a neutron source for research. -
Periodic Table 1 Periodic Table
Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. -
Highly Selective and Rapid Uptake of Radionuclide Cesium
Article pubs.acs.org/cm Highly Selective and Rapid Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange Strategy † † † † † † † Huajun Yang, Min Luo, Li Luo, Hongxiang Wang, Dandan Hu, Jian Lin, Xiang Wang, ‡ ‡ § ⊥ † Yanlong Wang, Shuao Wang, Xianhui Bu,*, Pingyun Feng,*, and Tao Wu*, † College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China ‡ School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Jiangsu 215123, China § Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States ⊥ Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States *S Supporting Information ABSTRACT: The safe use of nuclear energy requires the development of advanced adsorbent technology to address environment damage from nuclear waste or accidental release of radionuclides. Recently developed amine-directed chalcogenide frameworks have intrinsic advantages as ion-exchange materials to capture radionuclides, because their exceptionally negative framework charge can lead to high cation-uptake capacity and their 3-D multidimensional intersecting channel promotes rapid ion diffusion and offer a unique kinetic advantage. Prior to this work, however, such advantages could not be realized because organic cations in the as-synthesized materials are sluggish during ion exchange. Here we report an ingenious approach on the activation of amine- directed zeolitic chalcogenides through a stepwise ion-exchange strategy and their use in cesium adsorption. The activated porous chalcogenide exhibits highly enhanced cesium uptake compared to the pristine form and is comparable to the best metal chalcogenide sorbents so far. Further ion-exchange experiments in the presence of competing ions confirm the high selectivity for cesium ions. -
Genius of the Periodic Table
GENIUS OF THE PERIODIC TABLE "Isn't it the work of a genius'. " exclaimed Academician V.I. Spitsyn, USSR, a member of the Scientific Advisory Committee when talking to an Agency audience in January. His listeners shared his enthusiasm. Academician Spitsyn was referring to the to the first formulation a hundred years ago by Professor Dmitry I. Mendeleyev of the Periodic Law of Elements. In conditions of enormous difficulty, considering the lack of data on atomic weights of elements, Mendeleyev created in less than two years work at St. Petersburg University, a system of chemical elements that is, in general, still being used. His law became a powerful instrument for further development of chemistry and physics. He was able immediately to correct the atomic weight numbers of some elements, including uranium, whose atomic weight he found to be double that given at the time. Two years later Mendeleyev went so far as to give a detailed description of physical or chemical properties of some elements which were as yet undiscovered. Time gave striking proof of his predictions and his periodic law. Mendeleyev published his conclusions in the first place by sending, early in March 186 9, a leaflet to many Russian and foreign scientists. It gave his system of elements based on their atomic weights and chemical resemblance. On the 18th March that year his paper on the subject was read at the meeting of the Russian Chemical Society, and two months later the Society's Journal published his article entitled "The correlation between properties of elements and their atomic weight". -
INDALLOY CONTAINING INDIUM with TIN, LEAD, SILVER, COPPER.Rtf
MSDS - IN 009 INDALLOY CONTAINING INDIUM WITH TIN, LEAD OR SILVER OR COPPER INDIUM CORPORATION OF AMERICA ®\EUROPE \ASIA-PACIFIC INDIUM CORPORATION (SUZHOU) SAFETY DATA SHEET This material safety data sheet represents a family grouping of all metal mixes that contain indium metal. A table is provided at the end that lists all metal groupings. 1. PRODUCT AND COMPANY IDENTIFICATION Product Identifier: INDALLOY CONTAINING INDIUM WITH TIN, LEAD, SILVER, COPPER MSDS Number: MSDS-IN 009 Revised Date: 11 JUNE 2012 Product Use: INDUSTRIAL USE - METAL ALLOY CONSISTING OF INDIUM MIXED WITH ONLY TIN AND/OR, LEAD AND/OR SILVER AND/OR COPPER. SEE TABLE FOR VARIOUS MIX PERCENTAGES. MANUFACTURER: In America: EMERGENCY PHONE: The Indium Corporation of America CHEMTREC 24 hrs. 1676 Lincoln Ave., Utica NY 13502 USA: 1 (800) 424-9300 Information: (315) 853-4900 Outside USA: +1 (703) 527-3887 [email protected] In Europe: In China: Indium Corporation of Europe Indium Corporation (Suzhou), Co. Ltd. 7 Newmarket Ct. No. 428 Xinglong Street Kingston, Milton Keynes, UK, MK 10 OAG Suzhou Industrial Park Information: +44 [0] 1908 580400 Suchun Industrial Square Unit No. 14-C Jiangsu Province, China 215126 Information: (86) 512-6283-4900 In Asia: Asia-Pacific Operations-Singapore 29 Kian Teck Avenue Singapore 628908 Information: +65 6268-8678 Page 1 of 12 MSDS - IN 009 INDALLOY CONTAINING INDIUM WITH TIN, LEAD OR SILVER OR COPPER 2. HAZARDS IDENTIFICATION lead containing products Signal Word: Warning Hazard statement(s) H303 May be harmful if swallowed H315 Causes -
Radioactive Equipment DISPOSAL
Radioactive Equipment DISPOSAL EQUIPMENT WITH RADIOACTIVE MATERIAL REQUIRES EVALUATION BEFORE DISPOSAL Contact the Division of Research Safety if you see the following equipment. Aircraft Gauges, Timepieces, Ceramic Plates Alnor Dew Pointer Switches, and Breakers Inside Electrical Switches Devices from the 1910s Quickly determines dew These 600-pound though the ‘60s used points of gases. Some switches have ceramic radioactive paint for glow- contain a label indicating plates containing in-the-dark applications. radioactive material. radioactive material. Compound: Radium Compound: Radium-226 Compound: Thorium Densitometers or Soil Corning Uranium-Glass Emergency Signs Optical Filter Density Gauges An optical filter to A tool that measures Glow-in-the-dark devices, transmit or absorb light the density and inner like exit signs, may con- in the ultraviolet, visible, structure of the test tain radioactive material. and infrared spectrum. material. Compound: Tritium (H-3) Compound: Uranium Compounds: Americium/ beryllium and cesium-137 [email protected] | 217-333-2755 Gas Chromatographs Geiger Counters Ionization Smoke Detectors Chromatographs that Civil defense Cold War Some smoke detectors, use an electron capture Geiger counters often especially older mod- device contain a sealed included chips of uranium. els, contain radioactive radioactive source. sources. Compound: Uranium Compounds: Iron-55 Compounds: Am-241 or nickel-63 or nickel-63 Liquid Scintillation Photographic Lenses Radioactive Power Counters Resistors These devices contain -
Radium & Uranium in Public Drinking Water Systems Brochure
WHAT SHOULD I DO? RADIUM AND We cannot eliminate radiation from our environment. We can, however, reduce possible URANIUM IN health risks by minimizing our exposures to it. The risks to health from radium in water do not represent a health emergency and radium can FOR MORE INFORMATION PUBLIC DRINKING be controlled by your water provider by using treatment or finding a supply with lower levels. WATER SYSTEMS The risk estimates* from exposure to radium and Georgia Division of Public Health uranium in drinking water assume that an Chemical Hazards Program individual drinks two liters of water each day for (404) 657-6534 70 years. If you drink less tap water or consume more bottled water instead, your health risk will www.health.state.ga.us/programs/hazards be reduced. Sensitive Populations Infants and young children are the population Georgia Environmental Protection most at risk for adverse health effects from Division repeated exposure to radium and uranium in Drinking Water Compliance Program drinking water. Because of their body weight and (404) 656-4807 developing systems, infants and children are exposed to higher doses. Their growing bodies www.gaepd.org absorb more contamination and can sustain permanent damage if exposures occur during critical growth stages. U.S. Environmental Protection Agency Therefore, pregnant and nursing women, Radiation Protection Programs women who may become pregnant, infants and small children are sensitive populations that (404) 562-9459 should avoid consuming large quantities for an www.epa.gov/radiation/basic extended period of time. The estimated health risks from exposure to low levels of radium and uranium are small, and short term exposures pose only extremely small risks. -
Indium Article2
A Study of Indium/Lead Solders Karl Seelig AIM Cranston, Rhode Island Indium/Lead Solders on Gold Because they do not leach or dissolve gold as readily as tin/lead solders, indium/lead solders are recommended for soldering to gold. As seen in fig. 1, the phase diagrams of tin/gold shows that tin dissolves approximately 18 percent by weight of gold at soldering temperatures of 225-250°C.1 Under the same conditions the indium/gold phase diagram shows dissolution of only 2 to 4 percent of gold in indium. Thus, with a substantial reduction in the dissolution of gold, less intermetallics are formed and improved solder flow over the gold surface occurs. Tin/lead soldering of gold is possible if the layer of gold is sufficiently thin (1.27 µm (50 µin) or less) to allow dipping in a pre-solder to remove the gold. However, if this does not occur then there is a high probability of solder joint failure. Immediately after soldering, a neat solder joint will be observed and it will pass electrical test. However, over time the tin will dissolve the gold by solid state diffusion and leave an opening in the electrical contact. For the above reasons, whenever possible an indium/lead solder should be used on a gold alloy. If indium/lead cannot be used due to either environmental reasons or temperature conditions, it is recommended to use a gold/tin alloy. The two gold/tin alloys that are Fig. 1 commonly used are the Sn90/Au80 217°C eutectic and the Au80/Sn20 280°C eutectic. -
Agenda 10/25/2017 Slip Quiz - Last One in This Booklet
Agenda 10/25/2017 Slip quiz - Last one in this booklet Turn in homework notes The Modern Periodic Table - Pointing Out Patterns Main Groups - (Group 1 Demonstration) Group 2 - students can do Periodic table - cut and stick activity Element research project + poster Slip Quiz - You may refer to your notes from the video. 1) Name 2 elements that can be added to iron and carbon to make special steels with special properties. 2) Which 3 elements are found in “Field’s metal”? What are their symbols and atomic numbers? Slip Quiz - You may refer to your notes from the video. 1) Name 2 elements that can be added to iron and carbon to make special steels with special properties. 2 from niobium, nickel, chromium, manganese, or aluminum. 2) Which 3 elements are found in “Field’s metal”? What are their symbols and atomic numbers? Slip Quiz - You may refer to your notes from the video. 2) Which 3 elements are found in “Field’s metal”? What are their symbols and atomic numbers? Indium In atomic number = 49 Tin Sn atomic number = 50 Bismuth Bi atomic number = 83 Turn in the “The Modern Periodic Table” Sheet with notes from video and your Metallic Bonding notes Periodic Table - Patterns and Useful Classifications Periods - go across the periodic table - rows Row 1 has 2 elements 1 Periods - go across the periodic table - rows Row 2 has 8 elements (2.8. 2 Periods - go across the periodic table - rows 8 elements (2.8.8. 3 Periods - go across the periodic table - rows 18 elements (2.8.8.18 4 Periods - go across the periodic table - rows 18 elements (2.8.8.18.18.