Diode Limiters Or Clipper Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Diode Limiters Or Clipper Circuits Diode Limiters or Clipper Circuits Circuits which are used to clip off portions of signal voltages above or below certain levels are called limiters or clippers. Types of Clippers • Positive Clipper • Negative Clipper Positive Clipper • The circuit that limits or clips the positive part of the input voltage, is called a positive limiter or positive clipper. Working of Positive Clipper • As the input voltage goes positive, the diode becomes forward-biased and conducts current. • Since the cathode is at ground potential (0V), the anode cannot exceed 0.7V (for Si). • So point A is limited to +0.7V when the input voltage exceeds this value. • When the input voltage goes back below 0.7V, the diode is reverse-biased and appears as an open. • The output voltage looks like the negative part of the input voltage, but with magnitude determined by the voltage divider formed by R1 and load resistor RL; Negative Clipper • The circuit that limits or clips the negative part of the input voltage, is called a negative limiter or negative clipper. Working of Negative Clipper • If the diode is turned around, the negative part of the input voltage is clipped off. • When the diode is forward-biased during the negative part of the input voltage, point A is held at -0.7V by the diode drop. • When the input voltage goes above –0.7V, the diode is no longer forward- biased; and a voltage appears across RL proportional to input voltage. Practical Problem • What will be the output waveform across RL in the limiter circuit shown in figure Clamper Circuits Clamping is the process of introducing a dc level into an ac signal. Clampers are also known as dc restorers. Types of Clampers • Positive Clampers • Negative Clampers Positive Clampers The circuit inserts a positive dc level in the output waveform. Working of Positive Clamper • When the input voltage initially goes negative, the diode is forward – biased, allowing the capacitor to charge to near the input (Vp(in) – 0.7V). • Just after the negative peak , the diode is reverse-biased. This is because the cathode is held near Vp(in) – 0.7V by the charge on the capacitor. • The capacitor can only discharge through high resistance of RL. So , from the peak of one negative half-cycle to the next, the capacitor discharges very little. • For good clamping action, the RC time constant should be at least ten times the period of the input frequency. Working of Positive Clamper • The net effect of the clamping action is that the capacitor retains a charge approximately equal to the peak value of the input less the diode drop. • The capacitor voltage acts essentially as a battery in series with the input voltage. • The dc voltage of the capacitor adds to the input voltage by superposition. Negative Clampers The circuit inserts a negative dc level in the output waveform. Working of Negative Clamper • If the diode is turned around, a dc voltage is added to the input voltage to produce the output voltage. Zener Diode Reverse-biased heavily doped pn-junction diode which operated in the breakdown region. Junction Breakdown • By increasing reverse bias voltage, a point is reaches where the junction breakdown and reverse current rises sharply to a value limited only by the external resistance connected in series with the junction. • This breakdown voltage depends on the width of the depletion region, which depends upon doping level. Types of Breakdown in Zener Diode • There are two types of reverse breakdown in zener diode; – Avalanche Breakdown • It occurs in both rectifier diode and zener diode at a sufficiently high reverse voltage. – Zener Breakdown • It occurs in a zener diode at low reverse voltages. Avalanche Breakdown • It occurs in junctions which have wide depletion layers due to light doping level. • Minority carriers (accelerated by this field) collide with semiconductor atoms in depletion region. • On collision with valance electrons, covalent bonds are broken and electron-hole pairs are generated. • These newly-generated charge carriers also accelerated by electric field resulting in more collisions and hence further production of charge carriers. • This leads to an avalanche (flood) of charge carriers. • Note:- Junction have very low resistance in breakdown region. Zener Breakdown • It occurs in junctions which have narrow depletion layers due to heavily doped. • Breakdown voltage setup a very strong electric field across this narrow layer. • This field rupture or break the covalent bonds; thereby creating electron-hole pairs. • A slight further increase in reverse voltage is capable of producing large number of current carriers. • Note:- Junction have very low resistance in breakdown region. Zener Biasing • Diode should be; – Reverse Biased – Have voltage across it greater than Vz – Be in a circuit where current is less than Izmax Note:- If a zener diode is forward-biased, it operates in the same way as a rectifier diode does. V / I Characteristics Vz = Zener breakdown voltage Izmin = Minimum current to sustain zener breakdown Izmax = Maximum zener current limited by maximum power dissipation For an ideal zener diode, the voltage does not change once it goes into breakdown. It means that Vz remains constant even when Iz increases considerably. V / I Characteristics • As the reverse voltage (VR) is increased, the reverse current (IR) remains extremely small upto the “knee” of the curve. • The reverse current is also called the zener current, IZ. • At this point, the breakdown effect begins; the internal zener resistance, also known as zener impedance (ZZ), begins to decrease as the reverse current increase rapidly. • Note that from the bottom of the knee, the zener breakdown voltage (VZ) remains nearly constant. Zener Impedance A change in zener current (ΔIZ) produces a small change in zener voltage (ΔVZ). This is represented as zener impedance (ZZ), as ZZ = ΔVZ ΔIZ Voltage Regulation A voltage regulation is a measure of a circuit’s ability to maintain a constant output voltage even when either input voltage or load current varies. Operating Principle Zener voltage (Vz) remains constant even zener current (Iz)increases considerably. As the input voltage increases, the output voltage remains constant As the input voltage decreases, the output voltage remains constant Voltage Regulation VIN = Input d.c voltage whose variations are to be regulated RL = Load resistance across which a constant voltage Vout is required, is connected in parallel with the diode Regulation Condition • Applying Kirchhoff’s Current Law; I = Iz + IL Under all conditions Vout = Vz Vin = IR + Vout Vin = IR + Vz Case 1 • Let R is kept constant but supply voltage Vin is increased slightly. It will increase I. • This increase in I will be absorbed by the zener diode without affecting IL. • The increase in Vin will be dropped across R thereby keeping Vout (or Vz) constant. Case 2 • Vin is fixed but IL varies. • When IL increases, diode current Iz decreases thereby keeping I and hence IR drop constant. In this way Vout remains constant. • When IL decreases, Iz increases in order to keep I and hence IR drop constant. Again Vout remains unaffected. Vin - IR = Vout Vout = Vin – (Iz + IL) R R = Vin – Vout Iz + IL When the diode current reaches its maximum value IL becomes zero ; R = Vin - Vout Iz (max) LED Operating Principle • When the device is forward-biased, electrons cross the pn-junction from the n-type material and recombine with the holes in the p-type material. • When the recombination takes place, the recombining electrons release energy in the form of heat and light. • This process is known as “electroluminescence”. LED LED Symbol • Various impurities are added during the doping process to establish the wavelength of the emitted light (i.e the color of light). • LED Semiconductor Material – Gallium Arsenide (GaAs) (emit infrared radiation) – Gallium Arsenide Phosphate (GaAsP) (red or yellow light) – Gallium Phosphate (GaP) (red or green light) LED Biasing • The forward voltage across an LED is considerably greater than for a silicon diode (typically the maximum Vf for LED is between 1.2V and 3.2V). • Reverse breakdown for an LED is much less than for a silicon rectifier diode (3V to 10V). Light Output • The LED emits light in response to a sufficient forward current. • The amount of power output translated into light is directly proportional to the forward current. Application • Seven-Segment Display – Combinations of the segments form the ten decimal digits. – Each segment in the display is an LED. – By forward-biasing selected combinations of segments any decimal digit and decimal point can be formed. .
Recommended publications
  • Ee320l 05 Experiment 5.Pdf
    EE320L Electronics I Laboratory Laboratory Exercise #5 Clipping and Clamping Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of this lab is to understand the operation of clipping and clamping circuits and their applications. Equipment Used: Power Supply Oscilloscope Function Generator Breadboard Jumper Wires TL082 or LF412 Dual JFET Input Operational Amplifiers 10x Scope Probes Various Resistors and Capacitors Background: Clipping and Clamping Circuits Diodes, despite being two terminals devices have more uses than it may seem. While the application most commonly associated with diodes is rectification for power supplies and radio frequency detection, diodes are also used for clipping and clamping signals. Clipping is simply bounding a signal to limited amplitude. Clamping is shifting the center of an AC signal to a different value. Both of these operations can be implemented with a diode and a few passive components. Active versions of these circuits are implemented with op-amps. As is commonly the case, using op-amps allows the performance of a circuit to approach theoretical ideals. Clipping and clamping circuits find widespread use in audio and video circuitry. A brief digression into the types of diodes is important for designing clipping and clamping circuits. Diodes can be classified based on their material type, application and structure. Most diodes today are made out of silicon. These diodes have a forward voltage drop of around 0.6V. In the past, germanium diodes were more common and had a forward voltage drop of 0.3V. They can still be purchased if one looks hard enough.
    [Show full text]
  • Lab #5: Clipping and Clamping Circuits
    EE320L Electronics I Laboratory Laboratory Exercise #5 Clipping and Clamping Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of this lab is to understand the operation of clipping and clamping circuits and their applications. Equipment Used: Power Supply Oscilloscope Function Generator Breadboard Jumper Wires TL082 or LF412 Dual JFET Input Operational Amplifiers 10x Scope Probes Various Resistors and Capacitors Background: Clipping and Clamping Circuits Diodes, despite being two terminals devices have more uses than it may seem. While the application most commonly associated with diodes is rectification for power supplies and radio frequency detection, diodes are also used for clipping and clamping signals. Clipping is simply bounding a signal to limited amplitude. Clamping is shifting the center of an AC signal to a different value. Both of these operations can be implemented with a diode and a few passive components. Active versions of these circuits are implemented with op-amps. As is commonly the case, using op-amps allows the performance of a circuit to approach theoretical ideals. Clipping and clamping circuits find widespread use in audio and video circuitry. A brief digression into the types of diodes is important for designing clipping and clamping circuits. Diodes can be classified based on their material type, application and structure. Most diodes today are made out of silicon. These diodes have a forward voltage drop of around 0.6V. In the past, germanium diodes were more common and had a forward voltage drop of 0.3V. They can still be purchased if one looks hard enough.
    [Show full text]
  • Zener Diode As Voltage Regulator
    The Hashemite University Department of Electrical Engineering Electronics.1 Laboratory Manual Table of Content Page 1. General Lab Rules i 2. Electronics.1 Lab Experiments: - Experiment 1: Diode Characteristics 1 - Experiment 2:Rectifiers and Filters 9 - Experiment 3:Clippers, Clampers and Voltage Regulator 16 - Experiment 4:Zener Diode as Voltage Regulator 24 - Experiment 5:Transistor Characteristics and DC Biasing 31 - Experiment 6:The Common Emitter Amplifier 40 - Experiment 7:The Common Collector Amplifier 46 - Experiment 8:JFET Characteristics and DC Biasing 53 - Experiment 9:Darlington Transistor Pair 60 - Small Project Design 64 3. Appendixes: a) Multisim Tutorial General Lab Rules • Be PUNCTUAL for your laboratory session. • Foods, drinks and smoking are NOT allowed. • Open-toed shoes are NOT allowed. • The lab timetable must be strictly followed. Prior permission from the Lab Supervisor must be obtained if any change is to be made. • Experiment must be completed within the given time. • Respect the laboratory and its other users. Noise must be kept to a minimum. • Workspace must be kept clean and tidy at all time. Points might be taken off on student/group who fail to follow this. • Handle all apparatus with care. • All students are liable for any damage to equipment due to their own negligence. • At the end of your experiment make sure to switch off all the instruments. • Students are strictly PROHIBITED from taking out any items from the laboratory without permission from the Lab Supervisor. • Students are NOT allowed to work alone in the laboratory. • Please consult the Lab Supervisor if you are not sure on how to operate the laboratory equipment.
    [Show full text]
  • Diode Circuits Rectifier Circuits
    Chapter 2: Diode Circuits Rectifier Circuits 11/12/2015 JUEE – Electronics I –Dr. Hani Jamleh 1 Preview • In the last chapter, we discussed some of the properties of semiconductor materials and introduced the diode. 11/12/2015 JUEE – Electronics I –Dr. Hani Jamleh 2 Preview • We presented the ideal current–voltage relationship of the diode and considered the piecewise linear model, which simplifies the dc analysis of diode circuits. 11/12/2015 JUEE – Electronics I –Dr. Hani Jamleh 3 Preview • In this chapter, the techniques and concepts developed in Chapter 1 are used to analyze and design electronic circuits containing diodes. 11/12/2015 JUEE – Electronics I –Dr. Hani Jamleh 4 Goals • A general goal of this chapter is: • To develop the ability to use the piecewise linear model and approximation techniques in the hand analysis and design of various diode circuits. 11/12/2015 JUEE – Electronics I –Dr. Hani Jamleh 5 Preview • Each circuit to be considered accepts an input signal at a set of input terminals and produces an output signal at a set of output terminals. • This process is called signal processing: The circuit “processes” the input signal and produces an output signal that is a different shape or a different function compared to the input signal. • We will see in this chapter how diodes are used to perform these various signal processing functions. 11/12/2015 JUEE – Electronics I –Dr. Hani Jamleh 6 In chapter 2 of the book, we will: 1. Determine the operation and characteristics of diode rectifier circuits, which, in general, form the first stage of the process of converting an ac signal into a dc signal in the electronic power supply.
    [Show full text]
  • Study and Analysis of Clipper and Clamper Circuits
    © AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880 Study and Analysis of Clipper and Clamper Circuits MOH MOH KHAING1, YI LAY NGE2, KHIN THANDAR OO3 1, 2, 3 Department of Electronic Engineering, Technological University (Myitkyina) Abstract -- This paper presents the analysis of diode II. BASIC CIRCUITS AND WORKING clipper and clamper circuits that are commonly used in PRINCIPLE analog television receivers and FM transmitters. Different configurations of diode clipper circuits and clamper circuits are designed and analyzed through simulation In electronic circuits, the diode is the simplest and the results. Ordinary diodes, Zener diodes, resistors and most fundamental non-linear circuit element. A capacitors are used as circuit elements and circuit clipper circuit is one of the simple diode circuits and analyses are performed with the help of Multisim software. it has the ability to “clip off” a portion of the input signal without distorting the remaining part of the ac Indexed Terms: diode clipper circuits, clamper circuits, Simulation, Multisim Software waveform. Figure 1 illustrates the basic clipper circuit that can clipped off the positive or negative part of the input signal depending on the direction of I. INTRODUCTION the diode. The half-wave rectifier is an example of the simplest form of diode clipper. A clipping circuit designed with diodes is an electronic circuit that is used to „clip‟ the input D1 voltage to prevent it from attaining a value larger than a predefined one. The basic components V1 RL required for a clipping circuit are a diode and a resistor. Clipper circuits can be classified depend upon their biasing, configurations, level of clipping.
    [Show full text]
  • Diode Applications Diode Clipper and Clamper Circuits These Are Diode Wave-Shaping Circuits I.E
    It is the same of for ordinary full wave rectifier (f) Advantages: 1. No centre-tap is required on the transformer. 2. Much smaller transformers are required. 3. It is suitable for high-voltage applications. 4. It has less PIV rating per diode. The obvious disadvantage is the need for twice as many diodes as for the centre- tapped transformer version. Diode Applications Diode Clipper and Clamper Circuits These are diode wave-shaping circuits i.e. circuits meant to control the shape of the voltage and current waveforms to suit various purposes. Each performs the wave- shaping function indicated by its name. The output of the clipping circuit appears as if a portion of the input signal were clipped off. But clamper circuits simply lams (i.e. lift up or down) the input signal to a different dc level. Clippers A clipping circuit requires a minimum of two components i.e. a diode and a resistor. Often, dc battery is also used to fix the clipping level. The input waveform can be clipped at different levels by simply changing the battery voltage and by 20 interchanging the position of various elements. We will use an ideal diode which acts like a closed switch when forward-biased and as an open switch when reverse- biased. Such circuits are used in radars and digital computers etc. when it is desired to remove signal voltages above or below a specified voltage level. Another application is in radio receivers for communication circuits where noise pulses that rise well above the signal amplitude are clipped down to the desired level.
    [Show full text]
  • Analog Electronics and Opamp
    CONTENT GENERATION [UNDER EDUSAT PROGRAMME] AANNAALLOOGG EELLEECCTTRROONNIICCSS AANNDD OOPPAAMMPP [[EETTTT 332211]] 3RD SEM ELECTRICAL ENGG. Under SCTE&VT, Odisha PPRREEPPAARREEDD BBYY:: -- 1. Er. DEBI PRASAD PATNAIK [Sr. Lecture, Dept of ETC, UCP ENGG. SCHOOL, Berhampur] 2. Er. PARAMANANDA GOUDA [Lecturer (PT), Dept of ETC, UCP ENGG. SCHOOL, Berhampur [ PAGE – 1. 1 ] CHAPTER - 1 -------------------------------------- [P-N JUNCTION DIODE ] -------------------------------- DEFINITION:- When a p-type semiconductor is suitably joined to n-type semiconductor, the contact surface is called p-n Junction. FORMATION OF PN JUNCTION In actual practice, the characteristic properties of PN junction will not be apparent if a p- type block is just brought in contact with n-type block. It is fabricated by special techniques and one common method of making PN junction is called Alloying. In this method, a small block of indium (trivalent impurity) is placed on an n-type germanium slab as shown in Fig (i). The system is then heated to a temperature of about 500ºC. The indium and some of the germanium melt to form a small puddle of molten germanium-indium mixture as shown in Fig (ii). The temperature is then lowered and puddle begins to solidify. Under proper conditions, the atoms of indium impurity will be suitably adjusted in the germanium slab to form a single crystal. The addition of indium overcomes the excess of electrons in the n-type germanium to such an extent that it creates a p-type region. As the process goes on, the remaining molten mixture becomes increasingly rich in indium. When all germanium has been re-deposited, the remaining material appears as indium but- ton which is frozen on to the outer surface of the crystallized portion as shown in Fig (iii).
    [Show full text]
  • Clippers and Clampers
    Section B8: Clippers And Clampers We’ve been talking about one application of the humble diode – rectification. These simple devices are also powerful tools in other applications. Specifically, this section of our studies looks at signal modification in terms of clipping and clamping. Clippers Clipping circuits (also known as limiters, amplitude selectors, or slicers), are used to remove the part of a signal that is above or below some defined reference level. We’ve already seen an example of a clipper in the half-wave rectifier – that circuit basically cut off everything at the reference level of zero and let only the positive-going (or negative-going) portion of the input waveform through. To clip to a reference level other than zero, a dc source (shown as a battery in your text) is put in series with the diode. Depending on the direction of the diode and the polarity of the battery, the circuit will either clip the input waveform above or below the reference level (the battery voltage for an ideal diode; i.e., for Von=0). This process is illustrated in the four parts of Figure 3.43: ¾ Without the battery, the output of the circuit below would be the negative portion of the input wave (assuming the bottom node is grounded). When vi > 0, the diode is on (short-circuited), vi is dropped across R and vo=0. When vi <0, the diode is off (open-circuited), the voltage across R is zero and vo=vi. (Don’t worry; we won’t be doing this for all the circuits!) Anyway, the reference level would be zero.
    [Show full text]
  • Pulse and Integrated Circuits Lab
    Pulse and Integrated Circuits Lab EC-352 Prepared by M Baby Lecturer, ECE. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING BAPATLA ENGINEERING COLLEGE: : BAPATLA (AUTONOMOUS) BAPATLA-522 101 Index 1. Linear Wave Shaping 2(a). Non Linear Wave Shaping-Clippers 2(b). Non Linear Wave Shaping-Clampers 3. Astable Multivibrator using Transistors 4. Monostable Multivibrator using Transistors 5(a). Schmitt Trigger using Transistors 5(b). Schmitt Trigger Circuits- using IC 741 6. Measurement of op-Amp parameters 7. Applications of Op-Amp 8. Instrumentation Amplifier using op-Amp 9. Waveform generation using op-amp (square & triangular) 10. Design Of Active Filters – Lpf, Hpf (First Order) 11. Applications of ic 555 timer ( Monostable &Astable multivibrators) 12. PLL Using 1C 565 13. IC723 Voltage Regulator 14. Design of VCO using IC 566 15. 4 bit DAC using OP AMP 2 1. Linear Wave Shaping Aim: i) To design a low pass RC circuit for the given cutoff frequency and obtain its frequency response. ii) To observe the response of the designed low pass RC circuit for the given square waveform for T<<RC,T=RC and T>>RC. iii) To design a high pass RC circuit for the given cutoff frequency and obtain its frequency response . iv) To observe the response of the designed high pass RC circuit for the given square waveform for T<<RC, T=RC and T>>RC. Apparatus Required: Name of the Specifications Quantity Component/Equipment 1K Ω 1 Resistors 2.2K Ω,16 K Ω 1 Capacitors 0.01 µF 1 CRO 20MHz 1 Function generator 1MHz 1 Theory: The process whereby the form of a non sinusoidal signal is altered by transmission through a linear network is called “linear wave shaping”.
    [Show full text]
  • Pulse and Digital Circuits Lecture Notes B.Tech (Ii Year – Ii Sem)
    PULSE AND DIGITAL CIRCUITS LECTURE NOTES B.TECH (II YEAR – II SEM) (2017-18) Prepared by: Mr. R. Chinnarao Assistant Professor Mrs. D.Asha Assistant Professor Department of Electronics and Communication Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India UNIT – I LINEAR WAVESHAPING ……………………………………………………………………………. High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs. RC network as differentiator and integrator, attenuators, its applications in CRO probe, RL and RLC circuits and their response for step input, Ringing circuit. ……………………………………………………………………………………………………… A linear network is a network made up of linear elements only. A linear network can be described by linear differential equations. The principle of superposition and the principle of homogeneity hold good for linear networks. In pulse circuitry, there are a number of waveforms, which appear very frequently. The most important of these are sinusoidal, step, pulse, square wave, ramp, and exponential waveforms. The response of RC, RL, and RLC circuits to these signals is described in this chapter. Out of these signals, the sinusoidal signal has a unique characteristic that it preserves its shape when it is transmitted through a linear network, i.e. under steady state, the output will be a precise reproduction of the input sinusoidal signal. There will only be a change in the amplitude of the signal and there may be a phase shift between the input and the output waveforms.
    [Show full text]
  • United States Patent (11) 3,562,549 [72] Inventor Juergen Teichmann Dresden, Germany [56] References Cited 2 L ) Appl
    United States Patent (11) 3,562,549 [72] Inventor Juergen Teichmann Dresden, Germany [56] References Cited 2 l ) Appl. No. 730,869 UNITED STATES PATENTS [22] Filed May 21, 1968 3,445,680 5/1969 Foster et al. .................. 307/215 [45] Patented Feb. 9, 1971 3,458,719 7/1969 Weiss ........................... 307/2 15X [73] Assignee Arbeitsstelle Fur Molekularelektronik Primary Examiner-John S. Heyman Dresden, Germany Assistant Examiner-John Zazworsky Attorney-Nolte and Nolte [54] SEMICONDUCTOR LOGIC CIRCUIT 7 Claims, 4 Drawing Figs. ABSTRACT: A plurality of diode inputs is connected through [52] U.S. Cl.......................... • • • • • • • • • • • • • • • • • • • • - a * * a * * · * 307/215, a Zener diode clipper and amplifier circuit with a subsequent 307/237; 328/93 output stage so that the Zener voltage determines the initial [51 ] Int. Cl............................ • • • • • • • • • • • • • • • • • • • • • ******** H03k 19/36, shifting voltage level. To change this initial level, a conven H03k 5/08 tional negator controls a transistor connected in parallel with [50] Field of Search............................ 307/25, said clipper and amplifier circuits, and turns off the latter in 237, 253, 289, 300; 328/93 dependence on the output condition. PATENTED FEB 9 1971 3,562,549 M . E out (V) S o INVENTOR JURGEN TECHMANN 3,562,549 1 2 SEMICONDUCTOR LOGIC CIRCUIT FIG. 2 is a hysteresis curve of the circuit of FG. 1. DESCRIPTION OF THE PREFERRED EMBODIMENTS BACKGROUND OF THE INVENTION In FIG. 1, there is shown a logic NAND circuit comprisinga l Field of the Invention 5 plurality of input diodes 4, 5 and 6, the cathodes of which are This invention relates to a semiconductor or solid state in tegrated circuit for performing various logical functions, connected to input terminals 1, 2 and 3 whereas the anodes preferably an “and-not,” (i.e.,NAND) function.
    [Show full text]
  • Diode Circuit Applications Procedure 1 Voltage Clipper Circuits
    Experiment-2 Experiment-2 Diode Circuit Applications Introduction The objectives of this experiment are to observe the operating characteristics of several very common diode circuits and the effects of non-ideal diode characteristics on their performance. Precautions None of the devices used in this set of procedures are particularly static sensitive; nevertheless, you should pay close attention to the circuit connections and to the polarity of the power supplies, diodes, and oscilloscope inputs. Some of the capacitors are electrolytics which are polar capacitors and must be installed in the correct polarity in order to function properly. Comment Many of the procedures in this experiment will utilize the ±6.3 VAC laboratory transformer as the signal generator for the circuits. You may wish to set up the input to your solderless breadboard so that the transformer output is always introduced at the same end of the breadboard, e.g. from the left. Procedure 1 Voltage clipper circuits Set-Up Using the solderless breadboard, construct the circuit shown in Fig. E2.1 using the following components: R1 = 10 kΩ 5% 1/4W D1 = 1N4148 SCOPE CH-1 (X) R1 SCOPE CH-2 BLACK (Y) 10 k VS D1 1N4148 LAB XFMR VBB DC SUPPLY SCOPE GND WHITE Figure E2.1 Turn the power switch OFF on the laboratory transformer and plug the unit into a 120 VAC line receptacle. Connect the transformer to the circuit board using leads from the black and white banana jacks as shown in Fig. E2.1. R. B. Darling EE-331 Laboratory Handbook Page E2.1 Experiment-2 This will apply a 10 V peak sinewave to the circuit once the power is turned on.
    [Show full text]