Review Role of Opsonophagocytosis in Immune Protection against Malaria Wolfgang W. Leitner 1, Megan Haraway 2, Tony Pierson 2 and Elke S. Bergmann-Leitner 2,* 1 Basic Immunology Branch, Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
[email protected] 2 Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
[email protected] (M.H.);
[email protected] (T.P.) * Correspondence:
[email protected]; Tel.: +1-301-319-9278 Received: 8 May 2020; Accepted: 26 May 2020; Published: 30 May 2020 Abstract: The quest for immune correlates of protection continues to slow vaccine development. Todate, only vaccine-induced antibodies have been confirmed as direct immune correlates of protection against a plethora of pathogens. Vaccine immunologists, however, have learned through extensive characterizations of humoral responses that the quantitative assessment of antibody responses alone often fails to correlate with protective immunity or vaccine efficacy. Despite these limitations, the simple measurement of post-vaccination antibody titers remains the most widely used approaches for vaccine evaluation. Developing and performing functional assays to assess the biological activity of pathogen-specific responses continues to gain momentum; integrating serological assessments with functional data will ultimately result in the identification of mechanisms that contribute to protective immunity and will guide vaccine development. One of these functional readouts is phagocytosis of antigenic material tagged by immune molecules such as antibodies and/or complement components. This review summarizes our current understanding of how phagocytosis contributes to immune defense against pathogens, the pathways involved, and defense mechanisms that pathogens have evolved to deal with the threat of phagocytic removal and destruction of pathogens.