KATRIN Experiment: Frrt Rerultr and Future Prorpectr
Total Page:16
File Type:pdf, Size:1020Kb
KATRIN experiment: frrt rerultr and future prorpectr Alexey Lokhov on behalf of KATRIN collaboration (University of Muenster & INR RAS) 40th International Conference on High Energy Physics Institut für Kernphysik Westfälische Wilhelms-Universität Münster BBBB.... LLLLeeeehhhhnnnneeeerrrrtttt PPPPlllleeeennnnaaaarrrryyyy IIIIVVVV Three wayr to arrerr the abrolute neutrino marr (Planck)rcale 2 0.12 eV ) 4 i 2 c m( 2 + m 2 c ) 2 ( Cosmologyvery sensitive: era of precision cosmology 2 = p Ho 1) ● m 163 ● compares power at different scales use E current sensitivity: ● EXO-200, KamLAND-Zen, GERDA, < 0.1-0.4 eV Search for 0 Sensitive to Majoranam neutrinos, model-dependent, from supernova) LNV 2) ● ( ) < 2 eV (Mainz & Troitsk) Upper limits by ● m( CUORE: Direct neutrino mass determination 3) ● No further assumptions needed, ● Time-of-flight measurements ● Kinematics of weak decays / beta decays, e.g. tritium, best upper limits before KATRIN: N. Aghanim et al. (Planck), (2018), arXiv:1807.06209; M. J. Dolinski, A. W. Poon, and W. Rodejohann, Annual Review of Nuclear and Particle Science 69, 219 (2019); Eur. Phys. J. C 40, 447 (2005); Phys. Rev. D 84, 112003 Tritium -decay ● continuous -spectrum described by Fermi´s Golden Rule, measurement of efective mass m$e) based on kinematic parameterr & energy conrervation 3 d Γ 2 2 2 =C⋅p⋅( E+m )⋅(E −E)⋅ U ⋅ (E −E) −m ⋅F (E ,Z )⋅θ(E − E−m ) e 0 ∑| ei| √ 0 i 0 i dE i=1 3 2 2 m(e )≝ |U ei|⋅mi ) ∑ s i=1 t √ i n 6 u . b r a ( e 4 t a r t n u 2 o c 0 5 10 15 electron energy (keV) 3 Tritium -decay 3 ● continuous Need:Need: ß-spectrumlowlow endpoint endpoint described energy energy by Fermi´s Golden Rule, TritiumTritium measurement 3HH –– 18.6 18.6 ofkeV keV short half-life (superallowed) – 12.3 yr efective massshort m$ ehalf-life) based (superallowed)on kinematic parameterr & energy conrervation– 12.3 yr dΓ 163 i C p (E m )(E E) (E E)2 m2 ((F163(HoHoE, electron Zelectron)θ (E capture) capture) E m ) dE e 0 0 i 0 i veryvery high high energy energy resolution resolution & & 3 m( ) U 2 m2 veryvery high high luminosity luminositye & & ei i MAC-E-FilterMAC-E-Filter KATRINKATRIN ) i1 s t cryogenic bolometers i cryogenic bolometers n 6 u very low background ECHo, HOLMES very low background ECHo, HOLMES . b CRES PROJECT 8 r CRES PROJECT 8 a ( e 4 t graphene substrate of T target+TES+... PTOLEMY a graphene substrate of T target+TES+... PTOLEMY r t n u 2 o c 0 5 10 15 electron energy (keV) 4 The KATRIN experiment at Karlrruhe Inrtitute of Technology Gaseous T2 source Transport section Pre-Spectrometer Main Spectrometer Detector s c i t keV s E > 10 o n g a i D 70 m 5 The KATRIN Windowlerr Gareour Molecular Tritium Source beam tube Ø = 9 cm , L = 10 m temperature T = 30 K ± 30 mK, can be adjusted in the range 30-110 K guiding field 2.52 T T flow rate 5·1019 molecules/s (40 g of T / day) 2 2 T2 purity 95% ± 0.1 % -3 T2 inlet pressure 10 mbar ± 0.1 % 17 2 11 column density 5·10 T2/cm luminosity 1.7·10 Bq 6 MAC-E-Filter: high-rerolution - rpectrorcopy Magnetic Adiabatic Collimation & Electrostatic Filter: Analyzing plane electrode Giant spectrometer: solenoid solenoid high energy resolution & acceptance U0 Us detector B Bmax Bs min µ = E / B = const. ┴ adiabatic conversion E → E ┴ ‖ Inner electrode system: Momentum transformation without the E-field background suppression & potential shaping 7 Beta spectrum: R Model of the experimental rpectrum (E,m 2 ( e )) Experimental response: f(E-qU) Ä Calibration with electron 83m E gun and Kr conversion 0 NeutrinoNeutrino physicsphysics –– PosterPoster electrons E M.M. SefcikSefcik single0 tritium scan and fit 8 Firrt Tritium (2-week engineering run in 2018) systematic uncertainty ± 0.1% reference First Tritium: ● low tritium concentration: ~1% DT and ~99% D2 ● functionality of all system components at nominal column density rd (5∙1017 cm-2) ● stability of the source parameters → sub per mille level KATRIN Collab, EPJ C 80 (2020) 264 9 KATRIN neutrino marr run # 1 4-week long measuring campaign in spring 2019 with high-purity tritium ● April 10 – May, 13 2019: 780 h ● high-purity tritium (eT = 97.5 % by laser-Raman spectr.) ● high source activity (22% nominal): 10 2.45 ∙ 10 Bq ● high-quality data collected ● full analysis chain using two independent methods + Bayesian 10 Tritium rcanning rtrategy 274 scans of tritium -spectrum: 22 HV set points 5 HV set points ● alternating up- / down- scans ● 2 h net scanning time single tritium scan E0 ● analysis: 27 HV set points and fit ● [ E0 – 40 eV , E0 + 50 eV] still limited bg-slope Measurement point distribution maximizes -mass sensitivity ● focus on region close to E0 11 Fitting tritium -decay rpectrum High-statistics -spectrum - 2 million events in in 90-eV-wide interval (522 h of scanning, 274 indiv. scans) - fit with 4 free parameters: 2 m ( ), R , A , E 2 e bg s 0 neutrino mass square m (e) excellent goodness-of-fit c2 = 21.4 for 23 d.o.f. (p-value = 0.56) Bias-free analysis - blinding of FSD - full analysis chain first on MC data sets - final step: unblinded FSD for experimental data KATRIN Collab, Phys. Rev. Lett. 123 (2019) 221802 12 Analyrir methodr and -marr rerult two independent analysis methods to propagate uncertainties & infer parameters - Covariance matrix: covariance matrix + c2-estimator - MC propagation: 105 MC samples + likelihood (-2 ln L) - both methods agree to a few percent -mass and E : best fit results 0 2 +0.9 2 m (e) = -1.0 -1.1 eV KATRIN Collab, Phys. Rev. Lett. 123 (2019) 221802 E0 = (18573.7 ± 0.1) eV → Q-value: (18575.2 ± 0.5) eV E.G. Myers, A. Wagner, H. Kracke, 3 3 B.A. Wesson, → Q-value[ΔM( H, He)]: (18575.72 ± 0.07) eV Phys. Rev. Lett. 114, 013003 (2015) 13 New upper limit on neutrino marr confidence belts: procedures of Lokhov and Tkachov (LT) + Feldman and Cousins (FC) - for this first result we follow the robust LT method - LT yields experimental sensitivity 2 by construction for m (e) < 0 - KATRIN upper limit on neutrino mass: LT m() < 1.1 eV (90% CL) FC m() < 0.8 eV (90% CL) Bayesian m() < 0.9 eV (90% CI) A.V. Lokhov, F.V. Tkachov, Phys. Part. Nucl. 46 (2015) 347 flat prior, m2>0 G. J. Feldman, R. D. Cousins, Phys. Rev. D 57 (1998) 3873 KATRIN Collab, Phys. Rev. Lett. 123 (2019) 221802 14 Sterile neutrino rearcher with KATRIN ● Same data-set as for the neutrino mass ● 3+1 sterile neutrino model ● 2 Grid search in m4, |Ue4| plane ● Neutrino mass fixed to the minimal allowed value from oscillations (0.009 eV) 15 eV-rcale rterile neutrino ● 2 High Dm 41 values: ─ Improve exclusion with respect to DANSS, PROSPECT, STEREO ─ Exclude parameter space of Reactor Anomaly (RAA) ● 2 Low Dm 41 values: ─ Improve on Mainz and Troitsk limit ─ Approaching Neutrino-4 hint ● Probe a large fraction of RAA in future 16 KATRIN rearch for keV rterile neutrinor ● Deep scan $1.6 keV below E0 ) with low-activity commissioning data – Excellent agreement of model and data -3 – Senritivity to mixing of 10 @ m4 = 0.4 keV ● TRISTAN project: – novel multi-pixel Silicon Drift Detector array – large count rater – good energy rerolution Preliminary segmented Si-PIN wafer S. Mertens et al., J.Phys.G 46 (2019) 6, 065203; T. Brunst et al., JINST 14 (2019) 11, P11013 17 Outlook: Background reduction Background reduction spectrometer bake-out successful AP SAP more effective 219Rn retention Volume dependent background rate ● Reduce the volume of the flux upgraded air coil system modified fields configuration „shifted analyzing plane“ (SAP) – factor 2 signal/background improvement – background & calibration & tritium scans Two large air coil systems: background suppression & B-field shaping 18 Outlook: Statur & future planr mass 1 mass 2 mass 3 Calibration and Optimization 2nd neutrino mass campaign ● Extensive study of plasma properties at different ● Measurement time: 31 days gas densities, temperature and boundary ● Gas density: 84% conditions ● Isotopic purity: 98.6% tritium ● Reduced background with shifted analyzing plane ● Source activity: 9.8 · 1010 Bq 3rd neutrino mass campaign finished on ● Total statistics: 4 · 106 Monday, analysis is ongoing » Data soon to be un-blinded 19 Conclurion ● New world-best direct neutrino mass measurment: m < 1.1 eV (90 % C.L.) ● KATRIN is taking data to reach ultimate sensitivity of ~0.2 eV 90 % C.L.) after 5 years ● First constraints on the eV-scale sterile neutrinos ● First search for keV-scale sterile neutrinos ● BSM physics searches ● Next KATRIN run with optimized settings just completed! – reduced background – optimized source confguration Stay tuned for the new results from KATRIN! 20 Thank you for your attention! We acknowledge the support of Helmholtz Associaton (HGF), Ministry for Educaton and esearch BMBF (05A17PM3, 05A17PX3, 05A17VK2, 05A17PDA, and 05A17WO3), Helmholtz Alliance for Astropartcle Physics (HAP), the doctoral school KSETA at KIT, and Helmholtz Young Investgator Group (VH-NG-1055), Max Planck esearch Group (MaxPlanck@TUM), and Deutsche Forschungsgemeinschaf DFG ( esearch Training Groups Grants No. G K 1694, G K 1694 and G K 2149, Graduate School Grant No. GSC 1085-KSETA, and SFB-1258 in Germany ; Ministry of Educaton, Youth and Sport (CANAM- LM2015056, LTT19005) in the Czech epublic; and the Department of Energy through grants DE-FG02-97E 41020, DE-FG02-94E 40818, DE-SC0004036, DE-FG02-97E 41033, DE-FG02-97E 41041, DE-AC02-05CH11231, and DE- SC0011091 in the United States.