Environmental Protection in the Petroleum Industry

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Protection in the Petroleum Industry 10.3 Environmental protection in the petroleum industry 10.3.1 Introduction whole, the world is witnessing an internationalization of environmental controls, as international law-making The Oil and Gas (O&G) industry, by its very nature, is on environmental matters is becoming more environmentally intrusive. Various environmental centralized, thus reducing the room for standard problems arise throughout the entire petroleum cycle, setting at the individual state level. including upstream and downstream phases, but they International regulations, primarily in the form of especially occur at the stage of O&G Exploration and various international treaties, often directly or Production (E&P) and transportation. The indirectly determine (through the process of national international petroleum industry is encountering implementation), both the content of national increasing pressure from governments and civil regulations, and the general conduct of states and the society for continued enhancement of its performance industry. At the global level, there is a large group of from the point of view of limiting its impact on the binding instruments as well as numerous soft law environment. (non-binding) type documents of relevance to the oil Posing a serious challenge to the O&G industry and gas industry. The most important of these will be are: a) demands for significant reduction of hazardous discussed in this paper, which will provide an in-depth wastes at source; b) more stringent regulation of analysis of some selected areas of international discharges and emissions from petroleum production environmental regulation of particular concern to the installations and refineries; c) stricter controls of oil E&P activities. This will be followed by a more transportation by ships and pipelines; and d) general overview of the national environmental legal rehabilitation of the production sites upon frameworks and industry-specific environmental abandonment and increased energy efficiency. At the management practices. same time, international petroleum companies are exposed to a rapidly growing body of international and national regulations, standards and various guidelines, 10.3.2 Environmental impact as well as to risks associated with environmental of the petroleum industry litigation. Three main levels of regulation can be identified O&G activities always entail certain environmental within the complex and intertwined web of effects, or impacts, at local, regional and even global environmental norms and standards that currently level. These impacts vary depending on the type of exist: international (global and regional); national; and activity – petroleum E&P, transportation by ships or corporate self-regulation in the form of industry-wide pipelines, refining, processing of crude oil and gas or individual company guidelines. The balance products and burning of fossil fuels for energy between various levels of regulation and their relative production, as well as its scale, location (onshore or importance primarily depends on the type and nature offshore) and the nature and sensitivity of the of activity in question. The higher the potential for surrounding environment. international implications – whether in the form of Petroleum E&P activities are accompanied by a pollution or any other transboundary effect – the more variety of operational discharges, some of which are prominent the role played by international law. On the more harmful than others. At the E&P stage, most of VOLUME IV / HYDROCARBONS: ECONOMICS, POLICIES AND LEGISLATION 507 INTERNATIONAL LAW the impact is relatively localized, but may acquire a submarine petroleum pipelines’ construction and transboundary dimension in the case, for example, of operation have the potential for a variety of an offshore development. Seismic operations and environmental impacts, from the destruction of exploratory drilling are usually associated with noise, habitats and clearance of vegetation during the vibration, various disturbances of the local construction, to oil spillages and leakages resulting environment – including vegetation and wildlife – soil from possible pipeline ruptures due to natural and erosion and changes in surface hydrology. Onshore man-related causes. The impact of thousands of activities may require construction of roads and construction workers on the local environment during vegetation clearance over significant territories. several years of construction can be massive. During exploration drilling, discharges are mostly Trenching for buried submarine pipelines creates composed of drilling fluids and cuttings, which may major impact on the benthos environment and habitats. contain hydrocarbons and surface-active chemicals. Impact on wetlands and surface water bodies may be Similarly, produced waters at varying degrees of particularly serious. salinity are discharged. Disposal of waste, atmospheric At the stage of processing oil and gas, petroleum emissions and discharges of effluents, containing oil, refineries and petroleum distribution systems generate chemicals and other harmful substances is a common a series of different kinds of hazardous wastes. environmental problem. These may also contain Refining operations produce wastes from each step of hydrocarbons and residual treatment fluids. Although the refining process: both water and sludges impact during this stage of operations is usually contaminated with petroleum, hazardous waste relatively minor and confined in terms of time and containing persistent and toxic contaminants, spent space, it can be substantial in sensitive areas. catalysts (which often contain heavy-metal Impact becomes more pronounced during constituents), as well as atmospheric emissions such as production activities, as this phase involves active benzene, toluene and other toxic air pollutants. recovery of hydrocarbons from producing formations. Finally, petroleum processing – especially burning Operations at the development and production stage of the fossil fuels – is the major source of criteria air often result in increased discharges. This stage is also pollutants: Particulate Matter (PM), carbon dioxide characterized by growing risks of accidental pollution (CO2), nitrogen oxides (NOx), carbon monoxide (CO), by oil, soil and water contamination from spillage and hydrogen sulphide (H2S), and sulphur dioxide (SO2). leakage. In particular, these emissions lead to two principal Rehabilitation, restoration, reinstatement, environmental problems: long-range transboundary air reclamation of the petroleum E&P sites – including pollution causing acid rain; and more importantly, the disposal of offshore oil platforms – are among the global warming as a result of build-up of the so-called most technically and economically serious problems greenhouse gases in the atmosphere. The latter is a which face the petroleum industry in the long-term problem of a truly global proportion, of concern to perspective. As oil fields approach the end of their both international community and global petroleum productive life, the question of what to do with industry. existing structures has to be addressed. Thus, the main environmental media affected by Decommissioning covers: a) cessation of well various oil and gas activities include the atmosphere, operations; b) removal of plant and equipment; aquatic environment (both freshwater and marine), c) removal or partial removal of any fixed or floating terrestrial ecosystems – especially structures; d) removal or stabilization of drill cuttings; environmentally-sensitive, including wild fauna and e) decommissioning or removal of pipelines; f ) and flora. The primary sources of atmospheric emissions rehabilitation of the seabed, along with any related include combustion processes, gas flaring, fugitive onshore activities (e.g. recycling or stabilization of gases from loading operations, and particulates from waste). Although decommissioning, as such, does not other burning sources. Waste streams from E&P pose serious threats to the environment, abandoned operations, including produced water, drilling fluids, offshore installations can create obstacles for other process and drainage water and so forth affect the uses of the sea – primarily navigation and fishing aquatic environment. Potential impact on terrestrial activities – and their complete removal is seen as the ecosystems, including soil, plant and animal best solution in the majority of cases. communities, arise from construction, contamination At the transportation stage of oil and petroleum as consequence of spills and solid waste disposal, and products, the operational pollution by discharges of other physical disturbances. Consequently, various oily waters and drainage from ships, as well as oil petroleum activities constituting the entire spills resulting from collisions or other accidents hydrocarbon fuel cycle are exposed to environmental involving oil tankers is of primary concern. On-land or regulations – international and national – that deal 508 ENCYCLOPAEDIA OF HYDROCARBONS ENVIRONMENTAL PROTECTION IN THE PETROLEUM INDUSTRY with specific areas of the global environment, such as at the end of the life of petroleum resources, an annual water, air, biodiversity and others. sustainable yield equal to the income portion of the receipts from petroleum resources (Gao, 1998). The overall objective of this approach is to save a portion 10.3.3 International environmental of the state’s wealth for future generations by, among legal frameworks relevant
Recommended publications
  • Annual Report
    DNB ASSET MANAGEMENT Annual Report 2020 Responsible Investments 2 Responsible and sustainable investment strategies have been fundamental in our work for many years and are integrated across all strategies and asset classes. As a long-term and responsible investor, the consideration for and integration of ESG risks and opportunities combined with our work with active ownership are essential. We strive to deliver excellent investment performance while at the same time contribute to a more sustainable world. FACTS DNB Asset Management DNB Asset Management (DNB AM) is part of Wealth Management (WM), a business area in the DNB Group DNB AM had 165 full-time employees across three locations in Europe at the end of 2020 DNB AM managed NOK 742 billion by year-end in fixed income, equities, hedge funds, and private equity – on behalf of institutional and retail clients The DNB Group, Norway’s largest bank, aims to promote sustainable value creation by integrating ESG (Environmental, Social, Governance) aspects into all business operations Annual Report 2020 | Responsible Investments DNB Asset Management Table of contents 1. Report from the CEO 6 2. Highlights 2020 8 3. How has COVID-19 impacted the ESG space? 9 4. Our Responsible Investment Team 10 5. Our Responsible Investment Principles 11 Initiatives and Standards 13 6. Regulations and Trends 14 7. Responsible Investment Approach: Four Pillars 17 Standard Setting 17 Active Ownership 18 Exclusions 20 ESG Integration 21 Our External Resources 22 8. Engagement Strategy 23 9. Integrating the UN Sustainable Developments Goals 25 10. Long-term Focus Areas 27 Human Rights 29 Climate Change 31 Water 45 11.
    [Show full text]
  • Waste Management
    10 Waste Management Coordinating Lead Authors: Jean Bogner (USA) Lead Authors: Mohammed Abdelrafie Ahmed (Sudan), Cristobal Diaz (Cuba), Andre Faaij (The Netherlands), Qingxian Gao (China), Seiji Hashimoto (Japan), Katarina Mareckova (Slovakia), Riitta Pipatti (Finland), Tianzhu Zhang (China) Contributing Authors: Luis Diaz (USA), Peter Kjeldsen (Denmark), Suvi Monni (Finland) Review Editors: Robert Gregory (UK), R.T.M. Sutamihardja (Indonesia) This chapter should be cited as: Bogner, J., M. Abdelrafie Ahmed, C. Diaz, A. Faaij, Q. Gao, S. Hashimoto, K. Mareckova, R. Pipatti, T. Zhang, Waste Management, In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Waste Management Chapter 10 Table of Contents Executive Summary ................................................. 587 10.5 Policies and measures: waste management and climate ....................................................... 607 10.1 Introduction .................................................... 588 10.5.1 Reducing landfill CH4 emissions .......................607 10.2 Status of the waste management sector ..... 591 10.5.2 Incineration and other thermal processes for waste-to-energy ...............................................608 10.2.1 Waste generation ............................................591 10.5.3 Waste minimization, re-use and
    [Show full text]
  • Strengthening the International Law Framework
    1 Chapter 1 The Nature of the Marine Environment Beyond National Jurisdiction 1.1 Introduction From a human perspective the open ocean has always been a source of great mystique and unpredictability.1 Although some intrepid humans traversed the surface of the open oceans in vessels in earlier centuries, the majority of humankind tended to regard the sea with awe and to retreat from its elemental fury.2 Human exploration of the deep sea did not begin in earnest until the mid nineteenth century3 and it is only in recent decades that marine scientific research has begun to reveal the true physical characteristics and resource potential of the open ocean and deep seabed.4 Until the latter half of the twentieth century, human use of the oceans beyond a narrow strip of sea adjacent to the land masses was largely confined to navigation, fishing, whaling5 and from the mid nineteenth century the laying of submarine cables and pipelines for communication purposes.6 With the advent of concepts such as the continental shelf and the exclusive economic zone in the latter half of the twentieth century, coastal states extended their jurisdictional reach to a wider coastal domain for specific purposes such as resource exploitation and marine scientific research.7 A combination of factors such as the depletion of inshore fish stocks and an increase in global maritime trade is now leading to greater usage of the vast maritime area beyond 1 Jonathan Raban (ed.), The Oxford Book of the Sea (1992), 1. 2 Ibid, 432-433. 3 Sylvia Earle, Sea Change: A Message of the Oceans (1995), 21.
    [Show full text]
  • Exhibitor Service Manual
    WEF - RESIDUALS & BIOSOLIDS 2020 APRIL 1-2, 2020 MINNEAPOLIS CONVENTION CENTER MINNEAPOLIS, MINNESOTA SERVICE INFORMATION BOOTH EQUIPMENT quick facts Each 10' x 10' booth will be set with 8' high Green / Black back drape, 3' high Green side dividers, and a 7" x 44" one-line identification sign. EXHIBIT HALL CARPET The exhibit area is NOT carpeted; however, the aisles will be carpeted in Tuxedo. DISCOUNT PRICE DEADLINE DATE Order early on FreemanOnline to take advantage of advance order discount rates, place your order by March 10, 2020. FREEMAN SHOW SCHEDULE EXHIBITOR MOVE-IN For more information and helpful hints on pre-show procedures and move-in, please go to Pre-Show FAQ Tuesday March 31, 2020 8:00 AM - 4:30 PM EXHIBIT HOURS Wednesday April 01, 2020 10:00 AM - 6:15 PM Thursday April 02, 2020 10:00 AM - 3:45 PM EXHIBITOR MOVE-OUT For more information and helpful hints on post-show procedures and move-out, please go to Post-Show FAQ Thursday April 02, 2020 3:45 PM - 7:00 PM We will begin returning empty containers once aisle carpet is removed. DISMANTLE AND MOVE-OUT INFORMATION All exhibitor materials must be removed from the exhibit facility by Thursday, April 02, 2020 at 7:00 PM. To ensure all exhibitor materials are removed from the exhibit facility by the Exhibitor Move-Out deadline, please have all carriers check-in by Thursday, April 02, 2020 at 6:00 PM. 01/20 (496486) Page 1 of 4 POST SHOW PAPERWORK AND LABELS Our Exhibitor Services Department will gladly prepare your outbound Material Handling Agreement and labels in advance.
    [Show full text]
  • Custom and Land-Based Pollution of the High Seas James E
    Maurice A. Deane School of Law at Hofstra University Scholarly Commons at Hofstra Law Hofstra Law Faculty Scholarship 1978 Custom and Land-Based Pollution of the High Seas James E. Hickey Jr. Maurice A. Deane School of Law at Hofstra University Follow this and additional works at: https://scholarlycommons.law.hofstra.edu/faculty_scholarship Part of the Law Commons Recommended Citation James E. Hickey Jr., Custom and Land-Based Pollution of the High Seas, 15 San Diego L. Rev. 409 (1978) Available at: https://scholarlycommons.law.hofstra.edu/faculty_scholarship/1212 This Article is brought to you for free and open access by Scholarly Commons at Hofstra Law. It has been accepted for inclusion in Hofstra Law Faculty Scholarship by an authorized administrator of Scholarly Commons at Hofstra Law. For more information, please contact [email protected]. Custom and Land-Based Pollution of the High Seas* JAMES E. HICKEY, JR.** Until very recently, States have paid little attention to the control of pollution originatingon land which threatensthe high seas. However, in the past few years the international community has taken the first tentative steps toward an in- ternationalorder for the control of land-based high seas pol- lution. This Article examines the foundations in customary international law for these steps. In particular,it reviews evidence of State practicein analogousareas of international law, the protests of States, treaties, judicial decisions, ac- tivities of the United Nations, declarationsof international bodies and published commentary to determine whether ex- isting customary internationallaw norms are applicable to the pollution of the high seas from land-basedsources. INTRODUCTION AND DEFINITIONS The purpose of this Article is to explore existing legal sources to determine whether customary international law applies to land- based pollution of the high seas.
    [Show full text]
  • Food Protection Trends 2010-05: Vol 30 Iss 5
    2010 | Vol. 30, No. 5 May ISSN:1541-9576 Periodicals 6200 Aurora Avenue ¢ Suite 200W Des Moines, lowa 50322-2864, USA Food Protection Trends Science and N@WS from the international Association for Food Protection www.foodprotection.org Does your technology stack up in the battle against E.coli0157:H7? Developed in collaboration with the USDA Agricultural Research Service, the new DuPont Qualicon BAX System Real-Time PCR Assay for E. coli 0157:H7 accurately detects all known sub-types of this pathogen in beef, trim and produce. Using the power of real-time PCR, the BAX System can process up to 96 enriched samples in less than an hour. With advanced Scorpion probes, the new assay incorporates the latest in real-time PCR technology to deliver superior sensitivity and specificity—so you can get the reliable results you need to help keep even the biggest burgers safe. Accurate, flexible and easy to use—with an elusive enemy like E. coli 0157:H7, you can trust DuPont Qualicon to deliver science and technology that stacks up to any challenge. See the latest science from a global leader in food diagnostics. 1-800-863-6842 realtime-ecoli.com Technology rules. Results matter. Campylobacter E. coli 0157:H7 E. sakazakii DuPont Listeria L. monocytogenes Salmonella ns © Staphylococcus aureus & ?- ~% Vibrio Oe Qualicon - *, 0 %, YeastandMold °<S W © t QUIN e , and BAX are trademarks yr its affiliates. All rights reserved. The miracles of science” IAFP Exhibitor IAFP Gold Sustaining Member In collaboration with ILSI Europe, ebehhetbeiale melele STAY Worldwide the Society for Applied Microbiology and the World Health Organization.
    [Show full text]
  • Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities
    Sustainability 2020, 12, 8360 Review Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities Supplementary Material–Policies Table S1. Global Frameworks, Declarations and Conventions Signed to Date to Protect the Marine Environment. Date No. of Framework/Declaration/Commitment Targets/Goal Additional Comments Signed/launched Signatories/Parties As of March 2018, there London Convention on the Prevention of Marine are 87 Contracting To control sea pollution The United States of America Pollution by Dumping of Wastes and Other Matter [48] 1972 Parties to the London through marine dumping is a contracting party Convention Convention for the control dumping of harmful OSLO Dumping Convention [47] Prevention of Marine substances from ships and 1972 13 signatories Pollution by Dumping aircraft into the sea, including from Ships and Aircraft plastic International Convention for the Prevention of Marine prevention of pollution of complete ban imposed on the Pollution from Ships, 1973 (MARPOL 73/78) and its 174 Member States and 3 the marine environment 1973 disposal into the sea of all revised Annex V Associate Members. by ships from operational forms of plastics. [49,272] or accidental causes. for the prevention of Paris Convention Replaced by OSPAR 1974 13 countries marine pollution from [50,272] Convention of 1992 land-based sources Legally Binding Regional Plan on Marine Litter Management. After amendment in 1995, it Initially adopted in To reduce or eliminate Barcelona Convention (The Convention for the Protection 22 countries as became known as 1976 and amended marine pollution from sea of the Mediterranean Sea Against Pollution) [51, 272] signatories (a) “Convention for the in 1995.
    [Show full text]
  • PVC (Polyvinyl Chloride)~ FACT SHEET & Talking Points
    PVC (Polyvinyl Chloride)~ FACT SHEET & Talking Points http://archive.greenpeace.org/toxics/html/contenUpvc1.html http://www.greenpeace.org/usa/en/campaigns/toxics/go-pvc-free/ http://www.who.inUmediacentre/factsheets/fs225/en/ http://www.greenpeace.org/usa/en/campaigns/!oxics/go-pvc-free/ http://www.ens-newswire.com/ens/jan2011/2011-01-21-01.html What is PVC? >- The most environmentally damaging plastic. In fact, this commonplace plastic is one of the most toxic substances saturating our planet and its inhabitants >- From cradle to grave, the PVC Lifecycle (production, use and disposal) results in the release of toxic, chlorine based chemicals. P:. One of the world's largest dioxin sources ~ These toxins build up in water, air and in the food chain. ;... The results: severe health problems, including cancer, immune system damage and hormone disruption. ;... No one can escape contamination. P:. Everyone everywhere has measureable levels of chlorinated toxins in their bodies. How can we get rid of PVC? >- Since safer alternatives are available for virtually all uses of PVC, it is possible to protect human health and the environment by replacing and eventually phasing out this poison plastic. >- Policymakers at the local, state and federal level should enact and implement laws that steadily reduce impacts of PVC disposal and lead to a complete phase­ out of PVC use and waste incineration within ten years. >- A new materials policy for PVC that embraces aggressive source reduction of PVC should be adopted to steadily reduce the use of PVC over time liPage Background Information "Due to the omnipresence of dioxins, all people have background exposure and a certain level of dioxins in the body, leading to the so-called body burden.
    [Show full text]
  • Gene,.1 A••Embly Diltr
    ~,:, ; . ' UNITED NATIONI A Gene,.1 A••embly Diltr. GENBRAL • 1./44/461 18 September 1989 ORIGINALa BNGLISH Forty-fourth ses,ion Item 30 of the provisional agenda* LAW or THB SEA Protection and preservation of the marine environment Report of the Secretary-General CONTENTS Paragraphs fIQA I. INTRODUCTION •••••••••••••••••••••••••••••••••••••••••••••• 1 - 3 4 II. THB SIGNIFICANCB or THE UNITBD NATIONS CONVINTION ON THB LAW or THE SBA TO THE PROTBCTION AND PRESERVATION or THB MARINE ENVIRONMENT •••••••••••••••••••••••••••••••••••••••• 4 - 20 4 A. A global legal framework for the marine environment ••• 4 - 8 4 B. A mechanism fo~ accommodating ocean uses and lnterests 9 5 C. A system for sustainable development •••••••••••••••••• 10 - 13 6 D. An in8tr~ent promoting the development and transfer of marine Bcience and marine technology •••••••••••••••••• 14 7 E. h model for the evolution of international environmental law ••••••••••••••••••••••••••••••••••••• 15 - 20 7 * A/44/150. 89-20276 1018g (E~ I• •• L/64.1661 111l91hh Pat- 2 CONTENTS (continued) Paragr.pb. 2IRI :nr. 'tHI PROTECTION AND PRESERVATION 01' THE MARINI INVIRONMBNT mmlR THE UNITBD NATIONS CONVENTION ON THI LAW 01' THI SIA 21 - 74 8 ~. Ri.torical background ••••••••••••••••••••••••••••••••• 21 - 25 8 a. Definition of pollution of the marine environment ••••• 26 C. Obligation. of States ••••••••••••••••••••••••••••••••• 21 - 51 1. Land-based sources of pollution ••••••••••••••••••• 39 12 2. Sea·bed activities subject to national jurisdiction 40 - 41 12 3. Activities in the Area •••••••••••••••••••••••••••• 42 - 44 13 4 • Dumping ••••••••••••••••••••••••••••••••••••••••••• 45 13 5. Vessel-source pollution ••••••••••••••••••••••••••• 46 - 54 14 6. Ice-covered areas ••••••••••••••••••••••••••••••••• 5S 16 7. Pollution from or through the atmosphere •••••••••• 56 16 8. Marine scientific research •••••••••••••••••••••••• 51 16 D.
    [Show full text]
  • Converting Municipal Waste to Energy Through the Biomass Chain, a Key Technology for Environmental Issues in (Smart) Cities
    sustainability Article Converting Municipal Waste to Energy through the Biomass Chain, a Key Technology for Environmental Issues in (Smart) Cities Catalin Vrabie Faculty of Public Administration, National University of Political Studies and Public Administration, 012244 Bucharest, Romania; [email protected]; Tel.: +40-723689314 Abstract: Cities around the world should prioritize the management of municipal solid waste (MSW). For this to be effective, there is a strong need to buildup a complex system that involves social, economic, and environmental processes, leading to a supply chain (SC). The actors involved in dealing with MSW—from suppliers, collectors, distributors, industries, and managers—should be engaged in strategic planning. This paper focuses on alternative energy solutions and uses existing SC models of managing MSW, as well as the existing literature, to identify successful stories in cities like Bergen and Tønsberg in Norway, London in UK and Barcelona in Spain and draw a conceptual framework for city officials in Romanian municipalities (but not only) to innovate—and convert MSW in biogas to be used in delivering public services, i.e., public transportation. The article shows that when the innovation is accepted and well implemented by all actors, the benefits for the citizens and the municipality are considerably higher than by using conventional methods of collecting and depositing MSW. The proposed approach is also relevant for implementing the EU environment policy, where delays are usually observed (as the case for Romania). Citation: Vrabie, C. Converting Keywords: biogas; energy; supply chain; environment; smart cities Municipal Waste to Energy through the Biomass Chain, a Key Technology for Environmental Issues in (Smart) Cities.
    [Show full text]
  • Land-Based Marine Pollution in Arctic
    LAND-BASED MARINE POLLUTION IN ARCTIC UiT-LLM Thesis November 2014 Candidate number 8 1 TABLE OF CONTENTS Chapter 1 1.1 Introduction …………………………………………………………… 5 1.2 Environmental protection of the Arctic – a short history………....... 8 Chapter 2 Sources and Effects of Land-Based Maritime Pollution In The Arctic……………………………………………………………….10 2.1 Persistent Organic Pollutants and other hazardous substances………15 2.1.1 International law on POPs……………………………………………. 16 2.1.2 The 1979 Convention on Long range trans boundary Air Pollution 16 2.1.3 The Stockholm Convention on Persistent Organic Pollutants………17 2.1.4 The 1989 Basel Convention on the Control of Trans boundary Movements of Hazardous Wastes and they’re Disposal……………………17 2.1.5 International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978 (MARPOL)……………………..17 2.1.6 Arctic Council………………………………………………………….17 2.2 Heavy metals in the Arctic……………………………………………. 18 2.3 Physical alteration and destruction of habitats in Arctic…………..19 2.4 Radionuclides…………………………………………………………20 2.5 Petroleum hydrocarbons……………………………………………..20 2.6 Sewage and nutrients…………………………………………………21 2.7 Sediments………………………………………………………………21 2.8. Litter……………………………………………………………………22 2 Chapter 3 Legal regimes for land based sources of marine pollution in Arctic 3.1 Introduction……………………………………………………………23 3.2 Customary International Law and General Principles of Law ……23 3.2.1 The Trial Smelter Arbitration……………………………………………………24 3.2.2 The Corfu Channel Case…………………………………………………………25 3.3. The UN Convention on the Law of the Sea (1982)………………….26 3.4 Arctic Council's Regional Programme for Action for the Protection of the Arctic Marine Environment from Land-based marine pollution….
    [Show full text]
  • ESG & Sustainability
    ESG & Sustainability ESG Equity | Global | ESG & Sustainability 07 November 2012 A Blue Revolution – global water Sarbjit Nahal Equity Strategist Water: a global sustainability megatrend MLI (UK) - As part of our ongoing work on sustainability megatrends, we are updating our Valery Lucas-Leclin 2011 report on water. Water scarcity remains a global reality with 783m people Equity Strategist lacking access to clean drinking water and 2.6bn having no access to proper Merrill Lynch (France) sanitation. Water is under growing pressure both on the supply side (insufficient - freshwater, uneven distribution, poor quality, non-revenue water, climate change) and the demand side (rapidly growing use by agriculture, industry, and municipal/residential). Peak water: the 21st century oil Indications suggest that we have already arrived at peak water globally. The long- term supply challenges are vast and demand is projected to overshoot supply by 40% in the next 20 years, with half of the world’s population living under conditions of “water stress” by 2030. Water looks set to become scarcer than oil, with potential for the supply/demand imbalance to manifest itself in increased domestic social unrest and trans-boundary disputes (30 countries on three continents are potential locations for future conflicts over water). Click the image above to watch the video. US$500bn market today with 6-7% CAGR Water is a US$500bn market today, which, despite the downturn, is delivering a global CAGR of 6-7%, well above global growth rates. Growth drivers include a range of megatrends: water scarcity, population growth, urbanisation, industrial growth, infrastructure development and renewal, pricing, growing private sector investment, food and energy security, stakeholder pressure, and tightening regulation.
    [Show full text]