Paleoseismicity Along the Southern Kuril Trench Deduced From

Total Page:16

File Type:pdf, Size:1020Kb

Paleoseismicity Along the Southern Kuril Trench Deduced From Paleoseismicity along the southern Kuril Trench deduced from submarine-fan turbidites ∗ , Atsushi Noda a, Taqumi TuZino a Yutaka Kanai a Ryuta Furukawa a Jun-ichi Uchida b 1 aGeological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Central 7, Higashi 1–1–1, Tsukuba, Ibaraki 305–8567, Japan bDepartment of Earth Science, Faculty of Science, Kumamoto University, 39-1, Kurokami 2-chome, Kumamoto 860-8555, Japan Received 24 August 2007; revised 22 May 2008; accepted 27 May 2008 Abstract Large (> M 8), damaging interplate earthquakes occur frequently in the eastern Hokkaido region, northern Japan, where the Pacific Plate is subducting rapidly beneath the Okhotsk (North American) Plate at approximately 8 cm yr−1. With the aim of estimating the long-term recurrence intervals of earthquakes in this region, seven sediment cores were obtained from a submarine fan located on the forearc slope along the southern Kuril Trench, Japan. The cores contain a number of turbidites, some of which can be correlated among the cores on the basis of the analysis of lithology, chronology, and the composition of sand grains. Foraminiferal assemblages and the composition of sand grains indicate that the upper–middle slope (> 1,000 m water depth) is the source of the turbidites. The deep-sea origin of the turbidites is consistent with the hypothesis that they were derived from slope failures initiated by strong shaking associated with earthquake events. The recurrence intervals of turbidite deposition are 113–439 years for events that occurred over the past 7 kyrs; the short intervals are recorded in the cores obtained from levees on the middle fan. Although many large earthquakes (> 150 cm s−2 of peak ground acceleration at the inferred slump sources) occurred during the 19th and 20th centuries, the pilot core from the upper fan contains only three turbidites located stratigraphically 210 137 above layers of 17th-century volcanic ash. The results of Pbex and Cs dating, combined with simulations of the ground accelerations of historical earthquakes, enable correlation of the three turbidites with known historical earthquakes: the 1952 Tokachi-oki and the 1961 and 1973 Nemuro-oki earthquakes. The turbidites within the sampled cores potentially record about half of the large earthquakes known to have occurred over the interval covered by the cores. The fact that any single core records only a portion of the known seismic events suggests that the recurrence interval of earthquakes in this region is less than 113 years. Key words: Turbidite, Submarine fan, Paleoseismicity, Hokkaido, Japan, Kuril Trench 1. Introduction approaches are useful in estimating the timing and intensity of pre-historic earthquakes. In particular, tsunami deposits within The long-term prediction of earthquakes is one of the most coastal areas and turbidites in deep-sea sediments provide important issues in hazard assessment and risk estimation in useful paleoseismic information. Large tsunami waves are able tectonically active areas. Recurrence intervals and the timing to transport coastal sands and marine fossils to inland areas, of future earthquakes are considered to be predictable provided depositing sediments within lagoons or marshes within which that sufficient historical records are available (e.g., Ando, 1975; mud or peat normally accumulate (e.g., Atwater, 1987; Minoura Shimazaki and Nakata, 1980; Ishibashi, 1981). In regions and Nakaya, 1991; Clarke and Carver, 1992; Dawson and Shi, with limited historical data, archaeological and geological 2000; Nanayama et al., 2003); however, it must be remembered that tsunamis are able to traverse entire oceans from their NOTICE: this is the authors’ version of a work that was accepted for source regions. For example, tsunami waves associated with publication in Marine Geology. Changes resulting from peer review are the giant Chilean earthquake of 1960 arrived at the Japanese reflected, but editing, formatting, and pagination from the publishing processes coast 22–24 hours after the main shock, with up to 3.8 m of are not included in this document. A definitive version will be published in inundation height (Takahashi and Hatori, 1961). These waves http://dx.doi.org/10.1016/j.margeo.2008.05.015. ∗ Corresponding author. Fax: +81 29 861 3653. left tsunami deposits upon marshes (Nanayama et al., 2007). It Email address: [email protected] (Atsushi Noda). is therefore problematic to use tsunami deposits in developing a 1 Present address: M. T. Brain Corporation, Hayakawa Bld., 2-60-2, long-term earthquake model for a given region, as it is difficult Ikebukuro, Toshima-ku, Tokyo 171-0014, Japan Article published in Marine Geology (2008) 1–20 to determine whether tsunami deposits were derived from local earthquakes, as well as the recurrence interval of earthquakes or distant seismic events. during the Holocene. Turbidites in marine sediments have also been widely applied in investigations of paleoseismology conducted over the past 2. Geological setting two decades, including studies in Cascadia (Adams, 1990; Goldfinger et al., 2003, 2007), Japan (Inouchi et al., 1996; The Kushiro–Nemuro district of eastern Hokkaido is largely Ikehara, 2000; Nakajima and Kanai, 2000; Ikehara, 2001; flat-lying, and contains just one significant river, the Kushiro Okamura et al., 2005), Canada (Syvitski and Schafer, 1996; River (Fig. 1). Short ephemeral streams of less than 15 km in Doig, 1998; St-Onge et al., 2004), and the Mediterranean length flow into the sea or estuaries. Marine terraces, lagoons, (Kastens, 1984; Anastasakis and Piper, 1991; McHugh et al., and estuaries are well developed along coastal areas. Steep 2006); however, a number of points must be kept in mind cliffs of the marine terraces are actively eroded by wave action; when using turbidites as a tool in paleoseismic studies. First, coastal erosion is considered to be the main contributor of not all turbidites are generated in association with earthquakes sediment to the sea under the present highstand conditions (e.g., Normark and Piper, 1991). Hyperpycnal flows (Mulder (Noda and TuZino, 2007). The elevation of uplifted terraces et al., 2003), storm waves (Hampton et al., 1996), and rapid − indicates an average uplift rate of 0.16–0.24 mm yr 1 over sedimentation upon slopes (Mandl and Crans, 1981) can also the past 125,000 years (since interglacial stage 5e) (Okumura, lead to slope failure and the generation of turbidity currents. 1996). If turbidites are to be used in studying paleoseismicity, the The average width of the shelf in this area is 20–30 km, selection of coring sites is clearly important in ensuring that with the shelf margin located at 130–180 m water depth. the studied turbidites were likely to have been generated in Shelf sediments range from muddy to gravelly sand (Noda and association with earthquakes rather than other factors (e.g., TuZino, 2007; Noda and Katayama, in press). Fine to very fine Nakajima and Kanai, 2000; Goldfinger et al., 2003). Second, sands are widely distributed across the inner–outer shelf, where any single sediment core is unlikely to record the entire history the thickness of sediment deposited since the last glacial age of local seismic events. Submarine slope failures initiated by is less than 20 m. Gravels and gravelly sands are distributed earthquakes depend on slope stability, which is controlled in across parts of the inner shelf and along the shelf margin. turn by gravity and seismic loading (Lee and Edward, 1986; The mass accumulation rate of shelf sediments is estimated to Lee and Baraza, 1999; Lee et al., 1999; Biscontin et al., 2004; − be ∼0.47 Mt yr 1, representing less than 25% of the material Leynaud et al., 2004; Strasser et al., 2007). The likelihood derived from coastal erosion (Noda and TuZino, 2007). of slope failure depends on the sedimentation rate at the site The forearc slope in this area can be subdivided into three of potential failure, the recurrence interval of earthquakes in zones: the upper slope (from the shelf break to 1,000 m water the area, slope gradient, and the intensity of ground shaking. depth), middle slope (1,000–3,000 m water depth), and lower For reliable predictions of earthquake recurrence intervals, it slope shallower than the outer high (3,000–3,500 m) (Fig. 2). is necessary to correlate turbidite deposits with seismic events The dip of the slope is steepest upon the upper slope (average documented in historical records (e.g., Nakajima and Kanai, ◦ ◦ 5–6 ), reaching 10 in places. The middle slope is less steep 2000; Huh et al., 2004; Garcia-Orellan et al., 2006). ◦ ◦ (1–3 ), and the lower slope is gentle (< 1 ). A middle terrace is Large earthquakes are frequently recorded along the southern recognized at 2,000–2,200 m water depth (Fig. 2). A number of Kuril Trench, eastern Hokkaido, Japan, where the Pacific gullies incise on the upper slope; some cut through the middle Plate is subducting beneath the overriding Okhotsk (North − terrace to the deeper parts of the slope. A submarine fan with American) Plate at approximately 8 cm yr 1 (DeMets et al., 20 km wide and 15 km long is developed on the lower slope. 1990; DeMets, 1992; Seno et al., 1996). Six earthquake source The seaward margin of the fan is bounded by the outer high regions have been defined in this area, labeled A to F from west (Fig. 2), which represents a major boundary between the forearc to east along the northern Japan Trench (A) and the southern basin and accretionary prism (e.g., Clift et al., 1998; Dickinson Kuril Trench (B–F), based on a seismic gap hypothesis (Utsu, and Seely, 1979; McNeill et al., 2000). 1972, 1979, 1995)(Fig.1). The hypothesis is explained in terms of large interplate earthquakes that occur periodically in each of the source regions.
Recommended publications
  • Table S1. Summary of Kayen Et Al
    Table S1. Summary of Kayen et al. (2013) Vs liquefaction case history data Data Crit. Depth Depth to γ (kN/m3) site ID LOCATION Liquefied? total CSR MSF ϕ (°) ORIGINAL SITE REFERENCE Mw GWT (m) σvo (kPa) σ'vo (kPa) amax (g) rd VS1 (m/sec) VS (m/sec) CRRPL=15% Gmax (kPa) Ko σ' mo (kPa) Point Range (m) Above gwt Below gwt 1906 San Francisco Earthquake, California, USA 5 9001 Coyote Valley 7.7 ± 0.10 YES 3.5 - 6 2.4 77.08 ± 8.53 54.03 ± 5.41 15.10 17.30 0.36 ± 0.09 0.89 ± 0.09 0.30 ± 0.09 0.97 171.98 ± 2.00 146.97 0.13 38093 30 0.500 36.02 Barrow, 1983 6 9002 Salinas River North 7.7 ± 0.10 NO 9.1 - 10.6 6.0 155.24 ± 8.31 117.47 ± 6.09 14.00 18.50 0.32 ± 0.08 0.68 ± 0.16 0.19 ± 0.07 0.97 172.05 ± 5.84 178.54 0.13 60113 34 0.441 73.68 Barrow, 1983 1948 Fukui Earthquake, Japan 9 118 HINO GAWA EAST BANK, FUKUI PREF. EQUESTRIAN CENTER, 7.1 ± 0.12 YES 6.0 - 10 1.0 143.50 ± 14.15 74.83 ± 8.10 17.30 18.00 0.50 ± 0.13 0.64 ± 0.14 0.40 ± 0.14 1.08 142.28 ± 17.04 131.91 0.10 31926 30 0.500 49.89 Office of the Engineer (1949); Hamada et al. (1992); This study 10 103 MORITA-CHO GAKKU, HAMADA ET AL.
    [Show full text]
  • Earthquake Swarms and Slow Slip on a Sliver Fault in the Mexican Subduction Zone
    Earthquake swarms and slow slip on a sliver fault in the Mexican subduction zone Shannon L. Fasolaa,1, Michael R. Brudzinskia, Stephen G. Holtkampb, Shannon E. Grahamc, and Enrique Cabral-Canod aDepartment of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056; bGeophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775; cDepartment of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467; and dInstituto de Geofísica, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México Edited by John Vidale, University of Southern California, and approved February 25, 2019 (received for review August 24, 2018) The Mexican subduction zone is an ideal location for studying a large amount of inland seismicity, including a band of intense subduction processes due to the short trench-to-coast distances seismicity occurring ∼50 km inland from the trench (Fig. 1A) that bring broad portions of the seismogenic and transition zones (19). SSEs and tectonic tremor have been well documented of the plate interface inland. Using a recently generated seismicity further inland from this seismicity band (Fig. 1A) (19, 24–28), catalog from a local network in Oaxaca, we identified 20 swarms suggesting this band marks the frictional transition on the plate of earthquakes (M < 5) from 2006 to 2012. Swarms outline what interface from velocity weakening to velocity strengthening (6). appears to be a steeply dipping structure in the overriding plate, Other studies have used shallow-thrust earthquakes to define the indicative of an origin other than the plate interface. This steeply downdip limit of the seismogenic zone in southern Mexico (29– dipping structure corresponds to the northern boundary of the 31), and this corresponds with where the seismicity band occurs Xolapa terrane.
    [Show full text]
  • Repeated Occurrence of Surface-Sediment Remobilization
    Ikehara et al. Earth, Planets and Space (2020) 72:114 https://doi.org/10.1186/s40623-020-01241-y FULL PAPER Open Access Repeated occurrence of surface-sediment remobilization along the landward slope of the Japan Trench by great earthquakes Ken Ikehara1* , Kazuko Usami1,2 and Toshiya Kanamatsu3 Abstract Deep-sea turbidites have been utilized to understand the history of past large earthquakes. Surface-sediment remo- bilization is considered to be a mechanism for the initiation of earthquake-induced turbidity currents, based on the studies on the event deposits formed by recent great earthquakes, such as the 2011 Tohoku-oki earthquake, although submarine slope failure has been considered to be a major contributor. However, it is still unclear that the surface-sed- iment remobilization has actually occurred in past great earthquakes. We examined a sediment core recovered from the mid-slope terrace (MST) along the Japan Trench to fnd evidence of past earthquake-induced surface-sediment remobilization. Coupled radiocarbon dates for turbidite and hemipelagic muds in the core show small age diferences (less than a few 100 years) and suggest that initiation of turbidity currents caused by the earthquake-induced surface- sediment remobilization has occurred repeatedly during the last 2300 years. On the other hand, two turbidites among the examined 11 turbidites show relatively large age diferences (~ 5000 years) that indicate the occurrence of large sea-foor disturbances such as submarine slope failures. The sedimentological (i.e., of diatomaceous nature and high sedimentation rates) and tectonic (i.e., continuous subsidence and isolated small basins) settings of the MST sedimentary basins provide favorable conditions for the repeated initiation of turbidity currents and for deposition and preservation of fne-grained turbidites.
    [Show full text]
  • Large Submarine Earthquakes Occurred Worldwide, 1-Year Period (June 2013 to June 2014), - Contribution to the Understanding of Tsunamigenic Potential
    Paper nhess-2015-71 by Omira et al. Large submarine earthquakes occurred worldwide, 1-year period (June 2013 to June 2014), - Contribution to the understanding of tsunamigenic potential Answers to reviewers comments Reviewer #1 Comment #1 p. 1870, Eq. 1: What does D mean? Answer to comment #1 In equation (Eq. 1) D represents the fault slip. The meanings of all terms in Eq1 are inserted accordingly in the revised version of the manuscript as follow: “Where μ is the shear modulus characterizing the rigidity of the earthquake rupture region, and D is the co-seismic fault slip´ Comment #2 p.1871, the last paragraph: Authors said that the portion of tsunamigenic events is 39%, but they present and discuss the results and comparisons of only single simulation for Mw 8.1 Chile event. Did you perform the simulations for other cases? To acquire reliability of numerical model, more comparisons are needed. Also, the results and comparisons of other simulations will improve the paper. Answer to comment #2 For all the studied earthquake events numerical simulations were performed. In the revised version of the paper we presented in addition to the Mw8.1 Chile event, numerical simulations and comparison with sensors records for the Mw7.1 Japan event that occurred on 25 Oct 2013. The new figures (see bellow) and the corresponding text are inserted in the section 3.2 “Tsunami numerical modelling and comparison with records”. Comment #3 Figure 1: If possible, it is more understandable to affix the earthquake number shown in Table 1 to Figure 1. For example, 2014-05-24 Mw6.9 23 Answer to comment #3 Figure 1 is improved according to the reviewer comment.
    [Show full text]
  • Tsunamis Steven N
    For Publication in: Encyclopedia of Physical Science and Technology - Academic Press 1 Tsunamis Steven N. Ward Institute of Tectonics, University of California at Santa Cruz I. Tsunami = Killer Wave? period, wavelength, and velocity. Unlike com- II. Characteristics of Tsunamis mon sea waves that evolve from persistent sur- III. Tsunami Generation face winds, most tsunamis spring from sudden IV. Tsunami Propagation shifts of the ocean floor. These sudden shifts can V. Tsunami Shoaling originate from undersea landslides and volca- VI. Tsunami Hazard Estimation noes, but mostly, submarine earthquakes parent VII. Tsunami Forecasting tsunamis. Reflecting this heritage, tsunamis often are called seismic sea waves. Compared with GLOSSARY wind-driven waves, seismic sea waves have pe- dispersive: Characteristic of waves whose velocity riods, wavelengths, and velocities ten or a hun- of propagation depends on wave frequency. The dred times larger. Tsunamis thus have pro- shape of a dispersive wave packet changes as it foundly different propagation characteristics and moves along. shoreline consequences than do their common eigenfunction: Functional shape of the horizontal cousins. and vertical components of wave motion versus depth in the ocean for a specific wave frequency. I. Tsunami = Killer Wave? geometrical spreading: Process of amplitude reduction resulting from the progressive expan- Perhaps influenced by Hollywood movies, some sion of a wave from its source. people equate tsunamis with killer waves. Cer- shoal: Process of waves coming ashore. Shoaling tainly a five-meter high tsunami born from a waves slow, shorten their wavelength, and grow great earthquake is impressive. So too is the fact in height. that a tsunami can propagate thousands of kilo- wavenumber: Wavenumber k equals 2p divided by meters and still pack a punch.
    [Show full text]
  • A Methodology for a Comprehensive Probabilistic Tsunami Hazard Assessment: Multiple Sources and Short-Term Interactions
    J. Mar. Sci. Eng. 2015, 3, 23-51; doi:10.3390/jmse3010023 OPEN ACCESS Journal of Marine Science and Engineering ISSN 2077-1312 www.mdpi.com/journal/jmse Article A Methodology for a Comprehensive Probabilistic Tsunami Hazard Assessment: Multiple Sources and Short-Term Interactions Grezio Anita 1;*, Roberto Tonini 2, Laura Sandri 1, Simona Pierdominici 3 and Jacopo Selva 1 1 Istituto Nazionale di Geofisica e Vulcanologia, sezione di Bologna, Via Franceschini 31, 40128 Bologna, Italy; E-Mails: [email protected] (L.S.); [email protected] (J.S.) 2 Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Roma, Italy; E-Mail: [email protected] 3 Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam 14473, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected] ; Tel.: +39-051-4151475; +39-051-4151499. Academic Editor: Valentin Heller Received: 22 August 2014 / Accepted: 18 December 2014 / Published: 15 January 2015 Abstract: We propose a methodological approach for a comprehensive and total probabilistic tsunami hazard assessment (T otP T HA), in which many different possible source types concur to the definition of the total tsunami hazard at given target sites. In a multi-hazard and multi-risk perspective, the approach allows us to consider all possible tsunamigenic sources (seismic events, slides, volcanic eruptions, asteroids, etc.). In this respect, we also formally introduce and discuss the treatment of interaction/cascade effects in the T otP T HA analysis and we demonstrate how the triggering events may induce significant temporary variations in short-term analysis of the tsunami hazard.
    [Show full text]
  • Tsunamigenic Potential of a Holocene Submarine Landslide Along The
    Tsunamigenic potential of a Holocene submarine landslide along the North Anatolian Fault (North Aegean Sea, off Thasos Island): insights from numerical modeling Alexandre JANIN 1, Mathieu RODRIGUEZ 1, Dimitris SAKELLARIOU 2, Vasilis LYKOUSIS 2, and Christian GORINI 3 1Laboratoire de Géologie de l’Ecole normale supérieure de Paris; PSL research university, CNRS UMR 8538, 24 rue Lhomond, 75005 Paris, France. 2Institute of Oceanography, Hellenic Center of Marine Research, GR-19013 Anavyssos, Greece 3Sorbonne Universités, UPMC Université Paris 06, UMR 7193, ISTeP, F-75005, Paris, France. Correspondence to: Alexandre JANIN ([email protected]) Abstract. The North Anatolian Fault in the northern Aegean Sea triggers frequent earthquakes of magnitude up to Mw ∼ 7. This seismicity can be a source of modest tsunamis for the surrounding coastlines with less than 50 cm height according to numerical modelling and analysis of tsunami deposits. However, other tsunami sources may be involved, like submarine landslides. We assess the severity of this potential hazard by performing numerical simulations of tsunami generation and 5 propagation from a Holocene landslide (1:85 km3 in volume) identified off Thasos island. We use a model coupling the simu- lation of the submarine landslide, assimilated to a granular flow, to the propagation of the tsunami wave. The results of these simulations show that a tsunami wave of water height between 1:10 m and 1:65 m reaches the coastline at Alexandroupolis (58:000 inhabitants) one hour after the triggering of the landslide. In the same way, tsunamis waves of water height between 0:80 m and 2:00 m reach the coastline of the Athos peninsula 9 min after the triggering of the landslide.
    [Show full text]
  • Submarine Earthquakes, Part I by Trista L
    Submarine Earthquakes, Part I By Trista L. Pollard 1 When people hear the word earthquake, they visualize shaking buildings, cracked road surfaces, and collapsed bridges. What about submarine earthquakes? A submarine earthquake is an earthquake that occurs under the ocean floor. You are probably saying, "I thought the ocean floor was only made of sand, so how can an earthquake happen?" Let's explore the bottom of the ocean to find out! 2 If we were to drain the water from the world's oceans and take a ride along the bottom, we would see that the land under the sea has similar landforms to the earth's surface that is above water. The ocean bottom begins at the continental shelf. The continental shelf is a gentle sloping underwater plain that surrounds all of the earth's continents. This is also an extension to the coastal plain that exists above the water. As we travel from the continental shelf, we would reach the continental slope and the smooth- surfaced continental rise. All three sections make up the continental margin. 3 Once we pass the continental margin we get into some of the deepest parts of the world's oceans. In this area, the ocean floor has trenches. These trenches can be thousands of kilometers long, hundreds of kilometers wide, and extend three to four kilometers below the surrounding ocean floor. In the Pacific Ocean, there are long V-shaped trenches that border the edges of volcanic islands. In fact, the Pacific basin is encircled or surrounded by these trenches. Beyond the trenches we would see the mid-ocean mountains and mid-ocean ridges.
    [Show full text]
  • Tsunami Scattering and Earthquake Faults in the Deep Pacific Ocean
    Special Issue—Bathymetry from Space Tsunami Scattering and Earthquake Faults in the Deep Pacific Ocean Harold O. Mofjeld • This article has been published in Oceanography, Volume 1 Volume This article in Oceanography, has been published NOAA, Pacific Marine Environmental Laboratory Seattle, Washington USA Rockville, MD 20851-2326, USA. Road, 5912 LeMay The Oceanography machine, reposting, or other means without prior authorization of portion photocopy of this articleof any by Christina Massell Symons, Peter Lonsdale Scripps Institution of Oceanography • La Jolla, California USA Frank I. González, Vasily V. Titov NOAA, Pacific Marine Environmental Laboratory • Seattle, Washington USA Introduction Tectonic processes in the deep ocean occur over an Eruptions of island and submarine volcanoes can immerse range of temporal and spatial scales. The also create tsunamis and are of great interest in under- shortest in time are from seconds to minutes during standing how volcanic islands and seamounts form. 7 which earthquakes and landslides occur. The recur- Examples of recent volcanic events that have or could , Number rence interval between earthquakes, submarine land- generate tsunamis in the Caribbean Sea are the eruptions slides, and volcanic eruptions may be tens, hundreds, of the submarine Kick’em Jenny Volcano near Grenada 1 or thousands of years. At the far end of the range are and the Soufriere Volcano on Montserrat. Other exam- All rights reserved.Reproduction Society. The Oceanography 2003 by Copyright Society. The Oceanography journal, a quarterly of the tens of millions of years over which oceanic plates ples are the eruptions and landslides from Vulcano, and form at the spreading centers and drift, sometimes other islands near Italy, and the worrisome movement of thousands of kilometers with speeds of a few centime- the South Flank on the Island of Hawaii.
    [Show full text]
  • Crustal Faults in the Chilean Andes: Geological Constraints and Seismic Potential
    Andean Geology 46 (1): 32-65. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3067 www.andeangeology.cl Crustal faults in the Chilean Andes: geological constraints and seismic potential *Isabel Santibáñez1, José Cembrano2, Tiaren García-Pérez1, Carlos Costa3, Gonzalo Yáñez2, Carlos Marquardt4, Gloria Arancibia2, Gabriel González5 1 Programa de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected] 2 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]; [email protected] 3 Departamento de Geología, Universidad de San Luis, Ejercito de Los Andes 950, D5700HHW San Luis, Argentina. [email protected] 4 Departamento de Ingeniería Estructural y Geotécnica y Departamento de Ingeniería de Minería, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected] 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. The Chilean Andes, as a characteristic tectonic and geomorphological region, is a perfect location to unravel the geologic nature of seismic hazards. The Chilean segment of the Nazca-South American subduction zone has experienced mega-earthquakes with Moment Magnitudes (Mw) >8.5 (e.g., Mw 9.5 Valdivia, 1960; Mw 8.8 Maule, 2010) and many large earthquakes with Mw >7.5, both with recurrence times of tens to hundreds of years. By contrast, crustal faults within the overriding South American plate commonly have longer recurrence times (thousands of years) and are known to produce earthquakes with maximum Mw of 7.0 to 7.5.
    [Show full text]
  • Science of Tsunami Hazards
    ISSN 8755-6839 SCIENCE OF TSUNAMI HAZARDS Journal of Tsunami Society International Volume 33 Number 2 2014 REMOTE: RECONNAISSANCE AND MONITORING OF TSUNAMI EVENTS Frank C. Lin1*, Kingkarn Sookhanaphibarn1, Virulh Sa-yakanit2, George Pararas-Carayannis3 1Multimedia Intelligent Technology Laboratory School of Science and Technology, Bangkok University Rama 4 Rd, Khlong Toei, Bangkok 10110, Thailand. 2Center of Excellence in Forum for Theoretical Science Department of Physics, Faculty of Science, Chulalongkorn University Bangkok 10330, Thailand 3Tsunami Society International, Honolulu, Hawaii 96815, USA ABSTRACT The present study describes a prototype we built and named REMOTE for detecting and monitoring in real time tsunami events, based on changes in infrared radiation emitted from the sea when up thrust crustal movements from a major or a great tsunamigenic earthquake disturb the ocean floor and change the thermal properties of the water column in the source region. Specifically, we describe the hardware and software components of this system and present its performance results from recent tsunamis. Declouding of satellite images is often required and this is accomplished by the application of wavelet analysis. Also, in the present study we address the problem of signal delay due to the satellite scanning cycle and discuss possible solutions. Finally, we enumerate the relative benefits of our system. Our proposed system is available to all the countries with access to a geostationary weather satellite. Keywords: Tsunami Warning, Infrared Space, REMOTE, Tsunami Signal, Weather Satellite *Corresponding author. Email:[email protected]. Tel/Fax: +662 612 4705. Vol. 33, No. 2, page 86 (2014) 1. INTRODUCTION Tsunami(s) are a series of destructive ocean waves usually generated by major or great earthquakes along zones of tectonic subduction where tectonic plates collide.
    [Show full text]
  • Downtime Estimation of Lifelines After an Earthquake
    Pacific Earthquake Engineering Research Center University of California, Berkeley Master Research: DOWNTIME ESTIMATION OF LIFELINES AFTER AN EARTHQUAKE Alejandro D´ıaz-DelgadoBragado Supervised by: Stephen Mahin Gian Paolo Cimellaro i Many thanks to the University of California, Berkeley, for the opportunity to be able to work in such an inspiring environment and also my home university, BarcelonaTech, for making things convenient. I would also like to show my gratitude to all the professionals that have helped me in any way: S. Mahin, G.P. Cimel- laro & The Resilience Group, L. Johnson, V. Terzic and C. Scawthorn. Abstract Downtime estimation of lifelines after an earthquake is one of the most impor- tant elements in seismic risk management because of the significant economic con- sequences. This research is focused on the development of a empirical model for the estimation of duration of lifeline disruption based on damage data of earthquakes during the last hundred years. First of all a database of lifeline earthquake damage was created with emphasis on the duration of the restoration process. Afterwards, restoration curves are modeled for each lifeline with gamma cumulative distribution functions, based on the average and standard deviation of the duration of lifeline disruption. Future works are also presented in the research in order to eventually continue and improve this study in the future. Keywords: Downtime, Lifelines, Utilities, Outages, Infrastructures, Power, Wa- ter, Gas, Telecommunications, Restoration curves, Earthquakes. Abstracto Un aspecto muy importante de la gesti´onde riesgos s´ısmicoses la estimaci´ondel tiempo que estar´anlas infraestructuras despu´esde un terremoto. Esta investigaci´on se ha basado en el desarrollo de un modelo emp´ırico para estimar dicho tiempo, bas´andoseen informaci´ony datos sobre el da~norecibido por parte de las diferentes infraestructuras tras diferentes sismos ocurridos en los ´ultimoscien a~nos.
    [Show full text]