ANHANG Zahlenbeispiele Allgemeine Hinweise 1. in Den Folgenden

Total Page:16

File Type:pdf, Size:1020Kb

ANHANG Zahlenbeispiele Allgemeine Hinweise 1. in Den Folgenden ANHANG I. TEIL Zahlenbeispiele Allgemeine Hinweise 1. In den folgenden Zahlenbeispielen wurde in mehreren Fallen unterstellt, da/3 die Zeitsignale der astronomischen Weltzeit UT 0 entsprechen, da die Be­ obachtungen teilweise vor der Beriicksichtigung der Unregelmi:i/3igkeiten der Erddrehung bei der Zeitfestlegung gemacht wurden, und/oder die Signalkorrek­ tionen bei der Auswertung nicht bekannt waren. Die Laufzeit der Signale vom Sender bis zum Empfi:inger wurde in diesen Fallen nicht beriicksichtigt. Auf eine nachtragliche Beriicksichtigung der Signalkorrektionen und der Laufzeit wurde verzichtet, da die Absolutwerte der Zeit-, Langen- und Azimutbestim­ mungen fiir das Handbuch eine untergeordnete Bedeutung haben, und Breiten­ bestimmungen dadurch nicht beeinflu/3t werden. Die strenge Ermittlung der W eltzeiten UT 2 und UT 0 durch Anschlu/3 der Beobachtungsuhr an Zeitsignale wird in Zahlenbeispiel 1 gezeigt. 2. Abkiirzungen: App. Pl. 64 = Apparent Places of Fundamental Stars 1964, AE 64 = The Astronomical Ephemeris 1964, Bull. Hor. = Bulletin Horaire, Serie J, BIR, Circulaire D = Bureau International de l'Heure, Circulaire D. 3. Die Herkunft der in den Zahlenbeispielen angegebenen Formeln wird durch die Nummern des Paragraphen und der Formel angegeben, z.B. § 14(3). 1. Ermittlung der Weltzeiten UT2 und UTO durch AnschluB der Beobachtungs­ uhr an Zeitsignale Die am 10. Juli 1968 auf der astronomischen Beobachtungsstation der Uni­ versiti:it Stuttgart (<pr:::: 48° 4 7', AE r:::; 9° 13') mit einem geni:ihert auf Weltzeit ein­ regulierten Druckchronographen registrierte Uhrzeit U = ist in die entsprechenden Weltzeiten U T2 und U TO umzurechnen. Die kurz zuvor durch den Anschlu/3 an den Sender DIZ Nauen, der die vom Geodi:itischen In- 702 ZAHLENBEISPIELE stitut Potsdam ermittelten Dauerzeitsignale ausstrahlt, ohne Beriicksichtigung der Laufzeit der elektromagnetischen Wellen bestimmte Uhrkorrektion betragt u = + OU49. Der Uhrgang ist vernachlassigbar klein. Die Entfernung Nauen­ Stuttgart betragt 500km. Da der Sender im Kurzwellenbereich (Wellenlange 66,3 m) arbeitet, ist nach § 38 (8) fiir die Ausbreitungsgeschwindigkeit der elek­ tromagnetischen Wellen v = 280000 km/sec zu setzen. Unter Beriicksichtigung von § 38(4), (6), (9) und § 14(11), (12) gilt. UTO = Sollzeit Signal+ E +UL= U + u + E +UL, UL= s/v, UT2 UTO + (UT2 - UTO), UTO UT 0 + (UT 1 - UT 0) - LI)., 1• § 14(13): LI ).s =(UT 1 - U TO)•= 1511 (x ·sin Aw -y ·cos Aw)· tg<p. 1. Berechnung von UT 0 u = U= + 0,149 E = 0,0004 (BIH, Circulaire D 22) UL= + 0,0018 UTO = 2. Berechnung von UT 2 UTO = (UT 2 - UT 0) = + 0,0280 (BIH, Circulaire D 22) UT2 = 3. Berechnung von LI). x = + o:on, y = + 0:181, (BIH, Circulaire D 22), Aw= -9°13', sinlw= -0,160, cosAw= +0,987; <p=48°47', tg<p= 1,142, 1• LI;. = - (- o:on · 0,160- 0:181·o,987).1,142 = - 15" 4. Berechnung von UT 0 UTO= (UT1 - UTO) = + 0,0147 (BIH, Circulaire D 22) - LI).= + 0,0145 UTO = Anmerkung: Ist die Reduktion der Zeitsignale auf UT2 bzw. UTO bei der Auswertung der Beobachtungen noch nicht bekannt, so beriicksichtigt man vor­ laufig nur die Laufzeit UL. Nach dem Bekanntwerden der Signalkorrektion wer­ den dann die aus den Beobachtungen abgeleiteten vorlaufigen Werte der Lange bzw. Zeit oder des Azimuts entsprechend verbessert. Eine Verbesserung der Breite ist in der Regel nicht erforderlich, da bei den meisten Verfahren zur Brei­ tenbestimmung ein kleiner Zeitfehler ohne Einflul3 ist. ZAHLENBEISPIELE 703 Es sei auf die Arunerkung in§ 111 iiber den vom BIH 1959-67 verwendeten mittleren Pol verwiesen. Um UTO im neuen System 1900-05, also bezogen auf den internationalen konventionellen Ursprung, zu erhalten, geniigt es nicht, bei der Berechnung von L1 A. die Polkoordinaten des IPMS zu verwenden oder die Polkoordinaten des BIH um L1x = + L1y = + zu verbessern; auch die UT 2 def. mul3 auf das neue System 1900-05 reduziert werden. Die dazu not­ wendigen Angaben sind im ,,Rapport annuel pour 1967" des BIH auf Seite 38 zu finden. 2. Umrechnung von Weltzeit UTO in Sternzeit Der Zeitpunkt 10. Juli 1968 ist in Sternzeit, bezogen auf den Meridian AE = 9° 12' umzurechnen. § 16(18) und (13): 6)h = B8,ar + UTOh + {} UTOh ± + L1lp · cose. § 16(10) : {} = 0,0027379093. § 13(7): L1 lp • cos e = N' + N" = Gleichung der Aquinoktien. N' = langperiodischer Anteil, N" = kurzperiodischer Anteil. L1 lp · cos e ist in AE, N' und N" in App. Pl. vertafelt. B8, Gr= 19h ) N'= 0,200 App. Pl. 68, S. 482 N"= + 0,016 U TOh = 22 16 28,014 {} · UTO = + 3 39,548 Anhang Tafel 5 + = + 36 51,025 Anhang Tafel 3 6> = 3. Umrechnung von Sternzeit in Weltzeit Aus astronomischen Beobachtungen wurde am 10. Juli 1968 fiir den Beobachtungsort rp 48°47', AE = = 36ID5H025 die Sternzeit 6> = ermittelt. Diese Zeit ist in die Weltzeiten UTO und UT2 umzurechnen. 1. Berechnung von UT 0 § 16(20): ear= 6>-L1lp. cose =f § 13 (7): L1 lp · cos e = N' + N" = Gleichung der Aquinoktien. N' = langperiodischer Anteil, N" = kurzperiodischer Anteil. L1 lp • cos e ist in A E, N' und N" in App. Pl. vertafelt. -h - iii -h -h iii §16(19): UTOli= (Bar- B8,ar) · ih -'f} ·(Bar- Bo, Gr)· th" § 16 (9): 'f/ = 0,0027304336. 704 ZAHLENBEISPIELE Da zur Interpolation von LI "P • coss = N' + N" UT genahert bekannt sein mul3, rechnen wir besser nach folgender Gleichung E - iii E -h iii UTOli = (@h =f J.hw- ih -11. (@h =f A.hw- <">o,Gr). ih iii iii - LI tp • cos s · - 11 · LI "P • cos s · - . 1h + 1h 1st @Gr bzw. (@ =f @o,Gr, so sind 24h zu addieren. e = - AE = - 36 51,025 e - AE = 17h 32m @0 , Gr= 19 11 55,i64 (AE 68, S. i4) - iii (@- AE- <">0, Gr)· ih = -11(<">-AE- <">o,Gr) 3 39,547 (Anhang Tafel 6) UT Oli -Ll'l/)·COSS= + 0,184 (AE 68, S. 14) + 11 • Ll'I/) ·COSS= - 0,0Qi (Anhang Tafel 6) UTOli = 2. Berechnung von UT 2 § i4(11), (12): UT2 = UTO+ LI l+LITs = UTO+LI A.+ (UT2- UT1) = UTO+Lll+ (UT2- UTO)-(UT1- UTO). i• § 14(13): LI J.s = (UT1 - U TO)•= 15,,(x · sinA.w-y · cosA.w) · tg<p. x = + 0:073, y = + o:isi (BIR, Circulaire D 22). lw = -9°13', sinlw = -O,i60, cosA.w = 0,987; <p = 48°47', tg<p = 1,142. 1• LI J. = -(- 0:073 · 0,160 - 0:1s1·0,987)·1,142 = - 15" UTO = LI A.= 0,0145 (UT2-UT0)= + 0,0280} . _ (UTi _ UTO) = O,Oi 47 (BIR, C1rculaire D 22) UT2 = 4. Ermittlung der Rektaszension und Deklination der Sonne Gesucht wird die scheinbare Rektaszension und Deklination der Sonne am 5. Juni 1965 10h25mo1• Weltzeit UT2. Wir verwandeln zunachst UT 2 in Ephemeridenzeit ET durch Addition von LIT, das wir aus den Astronomical Ephemeris 1965, Seite VII, entnehmen. Wir erhalten ZAHLENBEISPIELE 705 Dail die Zeitdifferenz LI T nur auf volle Sekunden angegeben werden kann, - der genaue Wert kann erst nachtraglich berechnet werden - ist fiir den vor­ liegenden Zweck nicht storend, da sich die Rektaszension und Deklination von Sonne, Mond und Planeten nur langsam andern. In den Astronomical Ephemeris 1965 finden wir ferner auf Seite 25 folgende Werte fiir ex und lJ jeweils fiir Oh ET vertafelt: ex lJl lJ2 lJ3 4. Juni + 5. Juni 4 51 05,58 + + 247,13 6. Juni 4 55 12,71 + 0,29 + 247,42 7. Juni 4 59 20,13 + 0,61 lJ lJl lJ2 lJ3 4. Juni + 22°231 01:1 + 418:0 5. Juni + 22 29 59,1 -23:6 + 394,4 6. Juni + 22 36 33,5 -24,0 - 0:4 + 370,4 7. Juni + 22 42 43,9 -47,6 Zur Berechnung von p = (10h25m368 )/24h verwenden wir die Tafel zur Ver­ wandlung von Stunden, Minuten und Sekunden in Dezimalteile des Tages (An­ hang Tafel 4). Dabei ist darauf zu achten, daLl p bei der Interpolation von ex (lJ) auf mindestens 5(4) Stellen ermittelt wird, da die ersten Differenzen von ex (lJ) fiinfstellige (vierstellige) Zahlen sind und einem Fehler dp = 1·10-5 (1 · 10-4) der Interpolationsfehler dex = (dlJ = o:04) entspricht. Wir erhalten 10h25m = 0,434028 368 = 0,000 417 p = 0,434445. exo = + p ·lJ,12 = + 0,434445 · 247U3 = + + B2 · (lJ3 + lJf) = - 0,0614 · lJo = + 22° 29' 59:1 + p. lJ,,. = + 0,434445. 394:4 = + 2'51:35 + B2 • (lJ3 + lJf) = - 0,0614 · (- 47:6) = + 2:92 lJ = + 22° 32' 53:4 Dabei wurde B 2 aus Anhang Tafel 7 entnommen. 5. Ermittlung der Rektaszension und Deklination eines Fixsterns Gesucht wird die scheinbare Rektaszension und Deklination von lJ Persei am 18. Marz 1965 fiir die mittlere Sternzeit e = bezogen auf den Ort .ii.= 9°14' 43n Ost, cp = 48°47'15n Nord. Nach den App. Pl. 65, S. 58, ist J.E.K. Ila 45 706 ZAHLENBEISPIELE 151 Marz 2.7 a= 3h40m24U55 - 244 t2.7 +27 -2t7 +to 22.7 + 37 - t80 April 1.6 + 64 151 Marz 2.7 15 = + - 88 t2.7 46,03 -24 -112 +t 22.7 44,9t -23 - t35 April 1.6 43,56 -47 Berechnung von UT fiir den Interpolationszeitpunkt D: - - h - t Ii -Ii E -h t Ii U (@Gr - @8, Gr)· ((0 =f A.hw)- 00,Gr) · th· @h - (Anh. Tafel 3) R> t 3h 50m Ei8,Gr (App. Pl. 65. Tafel II) R> 11h4tm U Tli R> 21i 09fii 04090 D R> Marz Berechnung von UT fiir obere Kulmination Greenwich am t2. Marz: iii § t9(7) UTli (och - @8 • Gr)·-.th 3h40m 11ht8m D0 Marz t2,68. Berechnung des Interpolationsfaktors p und des Besselkoeffizienten Ba: § t9(8):p=0,t003 (D-D0 ). p = 0,1003 (t8,09 - t2,68) = O,t003. 5,41 = 0,543. Ba= - 0,0620 (Anh.
Recommended publications
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Apparent and Absolute Magnitudes of Stars: a Simple Formula
    Available online at www.worldscientificnews.com WSN 96 (2018) 120-133 EISSN 2392-2192 Apparent and Absolute Magnitudes of Stars: A Simple Formula Dulli Chandra Agrawal Department of Farm Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi - 221005, India E-mail address: [email protected] ABSTRACT An empirical formula for estimating the apparent and absolute magnitudes of stars in terms of the parameters radius, distance and temperature is proposed for the first time for the benefit of the students. This reproduces successfully not only the magnitudes of solo stars having spherical shape and uniform photosphere temperature but the corresponding Hertzsprung-Russell plot demonstrates the main sequence, giants, super-giants and white dwarf classification also. Keywords: Stars, apparent magnitude, absolute magnitude, empirical formula, Hertzsprung-Russell diagram 1. INTRODUCTION The visible brightness of a star is expressed in terms of its apparent magnitude [1] as well as absolute magnitude [2]; the absolute magnitude is in fact the apparent magnitude while it is observed from a distance of . The apparent magnitude of a celestial object having flux in the visible band is expressed as [1, 3, 4] ( ) (1) ( Received 14 March 2018; Accepted 31 March 2018; Date of Publication 01 April 2018 ) World Scientific News 96 (2018) 120-133 Here is the reference luminous flux per unit area in the same band such as that of star Vega having apparent magnitude almost zero. Here the flux is the magnitude of starlight the Earth intercepts in a direction normal to the incidence over an area of one square meter. The condition that the Earth intercepts in the direction normal to the incidence is normally fulfilled for stars which are far away from the Earth.
    [Show full text]
  • On the Polar Distances of the Greenwich Transit Circle
    fi 1260-1263. l'he prominence, which iR due in many astronoiiiicsl re- ortlcr to restore this uniforiiiify , which is otiviously of the searches to the long and excellent series of the Greenwich iiiost esseritial iiriporhiicbe, 1 have rel'errctl all the otiser- mericliorial oliservations, gives to any changes of the instrri- vatioiis to the Circle reatlirigs. which corresporrtl to the Naclir nients, by means of which these ohservatioiis are procurecl, observations of the wire. It iiiight have heen tlcsirahle to a higher and more general importance, than they woulcl other- get rid, as much as pnssilile, of' pere~nalecpitions in the wise possess. Hence the interest, with which astrononicrs reading of iiiicroscope - iiiicronieters etc. hy iisiclg for each are wont to regRrtl the construction and cfhiency of any new observer his own Zenithpoints. A closer inspec:tiori sjiotv,, instrunient of superior pretensions, is greatly enhanced in however, that, owing to several ciiwes, this (:nurse is for the case of the powerful Greenwich Transit Circle, and the the past observations inipracticable. I have 'coiiserperitly asiral question, concerning the degree of correctness, which considered it best to adopt the same periods of uri;iltered the results of a new apparatus have attained, acquires addi- Zenithpoints, as have Iieerl used in the Greenwiclr rechictioris. tional claims to be answered. As I an1 not aware, that a The values of the corrections, which it was accordingly seces- strict determination of this point has yet been attempted, 1 sary to apply to the single ohservations, fluctuate I)ct\veeri shall here niake it the suhject of inquiry with reepect to -fO"45 and TO"71.
    [Show full text]
  • 2001 Astronomy Magazine Index
    2001 Astronomy magazine index Subject index Chandra X-ray Observatory, telescope of, free-floating planets, 2:20, 22 12:76 A Christmas Star, 1:102 absolute visual magnitude, 1:86 cold dark matter, 3:24, 26 G active region 9393, 7:22 colors, of celestial objects, 9:82–83 Gagarin, Yuri, 4:36–41 Africa, observation from, 4:107–112, 10:48– Comet Borrelly, 9:33–37 galaxies 53 comets, 2:93 clusters of Andromeda Galaxy computers, accessing image archives with, in constellation Leo, 5:28 constellations of, 11:64–69 7:40–45 Massive Cluster Survey (MACS), consuming other galaxies, 12:25 corona of Sun, 1:24, 26 3:28 warp in disk of, 5:22 cosmic rays collisions of, 6:24 animal astronauts, 4:43–47 general information, 1:36–39 space between, 9:81 apparent visual magnitude, 1:86 origin of, 1:43–47 gamma ray bursts, 1:28, 30 Apus (constellation), 7:80–84 cosmology Ganymede (Jupiter's moon), 5:26 Aquila (constellation), 8:66–70 and particle physics, 6:39–43 Gemini Telescope, 2:26, 28 Ara (constellation), 7:80–84 unanswered questions, 6:46–52 Giodorno Bruno crater, 11:28, 30 Aries (constellation), 11:64–69 Gliese 876 (red dwarf star), 4:18 artwork, astronomical, 12:80–85 globular clusters, viewing, 8:72 asteroids D green stars, 3:82–85 around Zeta Leporis (star), 11:26 dark matter Groundhog Day, 2:96–97 cold, 3:24, 26 near Earth, 8:44–49 astronauts, animal as, 4:43–47 distribution of, 12:30, 32 astronomers, amateur, 10:88–89 whether exists, 8:26–31 H Hale Telescope, 9:46–53 astronomical models, 9:22, 24 deep sky objects, 7:87 HD 168443 (star), 4:18 Astronomy.com website, 1:78–84 Delphinus (constellation), 10:72–76 HD 82943 (star), 8:18 astrophotography DigitalSky Voice software, 8:65 HH 237 (meteor), 6:22 black holes, 1:26, 28 Dobson, John, 9:68–71 HR 1998 (star), 11:26 costs of basic equipment, 5:86 Dobsonian telescopes HST.
    [Show full text]
  • Volume 75 Nos 3 & 4 April 2016 News Note
    Volume 75 Nos 3 & 4 April 2016 In this issue: News Note – Galaxy alignment on a cosmic scale News Note – Presentation of EdinburghMedal Port Elizabeth Peoples’ Observatory Updated Biographical Index to MNASSA and JASSA EDITORIAL Mr Case Rijsdijk (Editor, MNASSA ) BOARD Mr Auke Slotegraaf (Editor, Sky Guide Africa South ) Mr Christian Hettlage (Webmaster) Prof M.W. Feast (Member, University of Cape Town) Prof B. Warner (Member, University of Cape Town) MNASSA Mr Case Rijsdijk (Editor, MNASSA ) PRODUCTION Dr Ian Glass (Assistant Editor) Ms Lia Labuschagne (Book Review Editor) Willie Koorts (Consultant) EDITORIAL MNASSA, PO Box 9, Observatory 7935, South Africa ADDRESSES Email: [email protected] Web page: http://mnassa.saao.ac.za MNASSA Download Page: www.mnassa.org.za SUBSCRIPTIONS MNASSA is available for free download on the Internet ADVERTISING Advertisements may be placed in MNASSA at the following rates per insertion: full page R400, half page R200, quarter page R100. Small advertisements R2 per word. Enquiries should be sent to the editor at [email protected] CONTRIBUTIONS MNASSA mainly serves the Southern African astronomical community. Articles may be submitted by members of this community or by those with strong connections. Else they should deal with matters of direct interest to the community . MNASSA is published on the first day of every second month and articles are due one month before the publication date. RECOGNITION Articles from MNASSA appear in the NASA/ADS data system. Cover picture: An image of the deep radio map covering the ELAIS-N1 region, with aligned galaxy jets. The image on the left has white circles around the aligned galaxies; the image on the right is without the circles.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • Astronomical Detection of a Radioactive Molecule 26Alf in a Remnant of an Ancient Explosion
    Astronomical detection of a radioactive molecule 26AlF in a remnant of an ancient explosion Tomasz Kamiński1*, Romuald Tylenda2, Karl M. Menten3, Amanda Karakas4, 5 6 5 6 1 Jan Martin Winters , Alexander A. Breier , Ka Tat Wong , Thomas F. Giesen , Nimesh A. Patel 1Harvard-Smithsonian Center for Astrophysics, MS 78, 60 Garden Street, Cambridge, MA 02138, USA 2Department for Astrophysics, N. Copernicus Astronomical Center, Rabiańska 8, 87-100, Toruń, Poland 3Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 4Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800, Australia 5IRAM, 300 rue de la Piscine, Domaine Universitaire de Grenoble, 38406, St. Martin d’Héres, France 6Laborastrophysik, Institut für Physik, Universität Kassel, Heinrich-Plett-Straße 40, Kassel, Germany *Correspondence to: [email protected] Decades ago, γ-ray observatories identified diffuse Galactic emission at 1.809 MeV (1-3) originating from β+ decays of an isotope of aluminium, 26Al, that has a mean-life time of 1.04 million years (4). Objects responsible for the production of this radioactive isotope have never been directly identified, owing to insufficient angular resolutions and sensitivities of the γ-ray observatories. Here, we report observations of millimetre-wave rotational lines of the isotopologue of aluminium monofluoride that contains the radioactive isotope (26AlF). The emission is observed toward CK Vul which is thought to be a remnant of a stellar merger (5-7). Our constraints on the production of 26Al combined with the estimates on the merger rate make it unlikely that objects similar to CK Vul are major producers of Galactic 26Al.
    [Show full text]
  • Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • Supernova Remnant N103B, Radio Pulsar B1951+32, and the Rabbit
    On Understanding the Lives of Dead Stars: Supernova Remnant N103B, Radio Pulsar B1951+32, and the Rabbit by Joshua Marc Migliazzo Bachelor of Science, Physics (2001) University of Texas at Austin Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Master of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2003 c Joshua Marc Migliazzo, MMIII. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author.............................................................. Department of Physics January 17, 2003 Certifiedby.......................................................... Claude R. Canizares Associate Provost and Bruno Rossi Professor of Physics Thesis Supervisor Accepted by . ..................................................... Thomas J. Greytak Chairman, Department Committee on Graduate Students 2 On Understanding the Lives of Dead Stars: Supernova Remnant N103B, Radio Pulsar B1951+32, and the Rabbit by Joshua Marc Migliazzo Submitted to the Department of Physics on January 17, 2003, in partial fulfillment of the requirements for the degree of Master of Science in Physics Abstract Using the Chandra High Energy Transmission Grating Spectrometer, we observed the young Supernova Remnant N103B in the Large Magellanic Cloud as part of the Guaranteed Time Observation program. N103B has a small overall extent and shows substructure on arcsecond spatial scales. The spectrum, based on 116 ks of data, reveals unambiguous Mg, Ne, and O emission lines. Due to the elemental abundances, we are able to tentatively reject suggestions that N103B arose from a Type Ia supernova, in favor of the massive progenitor, core-collapse hypothesis indicated by earlier radio and optical studies, and by some recent X-ray results.
    [Show full text]
  • A History of Star Catalogues
    A History of Star Catalogues © Rick Thurmond 2003 Abstract Throughout the history of astronomy there have been a large number of catalogues of stars. The different catalogues reflect different interests in the sky throughout history, as well as changes in technology. A star catalogue is a major undertaking, and likely needs strong justification as well as the latest instrumentation. In this paper I will describe a representative sample of star catalogues through history and try to explain the reasons for conducting them and the technology used. Along the way I explain some relevent terms in italicized sections. While the story of any one catalogue can be the subject of a whole book (and several are) it is interesting to survey the history and note the trends in star catalogues. 1 Contents Abstract 1 1. Origin of Star Names 4 2. Hipparchus 4 • Precession 4 3. Almagest 5 4. Ulugh Beg 6 5. Brahe and Kepler 8 6. Bayer 9 7. Hevelius 9 • Coordinate Systems 14 8. Flamsteed 15 • Mural Arc 17 9. Lacaille 18 10. Piazzi 18 11. Baily 19 12. Fundamental Catalogues 19 12.1. FK3-FK5 20 13. Berliner Durchmusterung 20 • Meridian Telescopes 21 13.1. Sudlich Durchmusterung 21 13.2. Cordoba Durchmusterung 22 13.3. Cape Photographic Durchmusterung 22 14. Carte du Ciel 23 2 15. Greenwich Catalogues 24 16. AGK 25 16.1. AGK3 26 17. Yale Bright Star Catalog 27 18. Preliminary General Catalogue 28 18.1. Albany Zone Catalogues 30 18.2. San Luis Catalogue 31 18.3. Albany Catalogue 33 19. Henry Draper Catalogue 33 19.1.
    [Show full text]
  • Aerodynamic Phenomena in Stellar Atmospheres, a Bibliography
    - PB 151389 knical rlote 91c. 30 Moulder laboratories AERODYNAMIC PHENOMENA STELLAR ATMOSPHERES -A BIBLIOGRAPHY U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS ^M THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers.
    [Show full text]