Brewing Chamira Dilanka Fernando1,2 and Preethi Soysa1*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation of Tea and Spent Tea Leaves As Additives for Their Use in Ruminant Diets School of Agriculture, Food, and Rural Deve
Evaluation of tea and spent tea leaves as additives for their use in ruminant diets The thesis submitted for the degree of Doctor of Philosophy by Diky Ramdani Bachelor of Animal Husbandry, Universitas Padjadjaran, Indonesia Master of Animal Studies, University of Queensland, Australia School of Agriculture, Food, and Rural Development Newcastle University Newcastle upon Tyne, United Kingdom October, 2014 Declaration I confirm that the work undertaken and written in this thesis is my own work that it has not been submitted in any previous degree application. All quoted materials are clearly distinguished by citation marks and source of references are acknowledged. The articles published in a peer review journal and conference proceedings from the thesis are listed below: Journal Ramdani, D., Chaudhry, A.S. and Seal, C.J. (2013) 'Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants', Journal of Agricultural and Food Chemistry, 61(20): 4961-4967. Proceedings Ramdani, D., Seal, C.J. and Chaudhry, A.S., (2012a) ‘Simultaneous HPLC analysis of alkaloid and phenolic compounds in green and black teas (Camellia sinensis var. Assamica)’, Advances in Animal Biosciences, Proceeding of the British Society of Animal Science Annual Conference, Nottingham University, UK, April 2012, p. 60. Ramdani, D., Seal, C.J. and Chaudhry, A.S., (2012b) ‘Effect of different tea-to-water ratios on proximate, fibre, and secondary metabolite compositions of spent tea leaves as a potential ruminant feed additive’, Advances in Animal Biosciences, Proceeding of the British Society of Animal Science Annual Conference, Nottingham University, UK, April 2012, p. -
Tea Drinking Culture in Russia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hosei University Repository Tea Drinking Culture in Russia 著者 Morinaga Takako 出版者 Institute of Comparative Economic Studies, Hosei University journal or Journal of International Economic Studies publication title volume 32 page range 57-74 year 2018-03 URL http://hdl.handle.net/10114/13901 Journal of International Economic Studies (2018), No.32, 57‒74 ©2018 The Institute of Comparative Economic Studies, Hosei University Tea Drinking Culture in Russia Takako Morinaga Ritsumeikan University Abstract This paper clarifies the multi-faceted adoption process of tea in Russia from the seventeenth till nineteenth century. Socio-cultural history of tea had not been well-studied field in the Soviet historiography, but in the recent years, some of historians work on this theme because of the diversification of subjects in the Russian historiography. The paper provides an overview of early encounters of tea in Russia in the sixteenth and seventeenth century, comparing with other beverages that were drunk at that time. The paper sheds light on the two supply routes of tea to Russia, one from Mongolia and China, and the other from Europe. Drinking of brick tea did not become a custom in the 18th century, but tea consumption had bloomed since 19th century, rapidly increasing the import of tea. The main part of the paper clarifies how Russian- Chines trade at Khakhta had been interrelated to the consumption of tea in Russia. Finally, the paper shows how the Russian tea culture formation followed a different path from that of the tea culture of Europe. -
Wikipedia, the Free Encyclopedia 03-11-09 12:04
Tea - Wikipedia, the free encyclopedia 03-11-09 12:04 Tea From Wikipedia, the free encyclopedia Tea is the agricultural product of the leaves, leaf buds, and internodes of the Camellia sinensis plant, prepared and cured by various methods. "Tea" also refers to the aromatic beverage prepared from the cured leaves by combination with hot or boiling water,[1] and is the common name for the Camellia sinensis plant itself. After water, tea is the most widely-consumed beverage in the world.[2] It has a cooling, slightly bitter, astringent flavour which many enjoy.[3] The four types of tea most commonly found on the market are black tea, oolong tea, green tea and white tea,[4] all of which can be made from the same bushes, processed differently, and in the case of fine white tea grown differently. Pu-erh tea, a post-fermented tea, is also often classified as amongst the most popular types of tea.[5] Green Tea leaves in a Chinese The term "herbal tea" usually refers to an infusion or tisane of gaiwan. leaves, flowers, fruit, herbs or other plant material that contains no Camellia sinensis.[6] The term "red tea" either refers to an infusion made from the South African rooibos plant, also containing no Camellia sinensis, or, in Chinese, Korean, Japanese and other East Asian languages, refers to black tea. Contents 1 Traditional Chinese Tea Cultivation and Technologies 2 Processing and classification A tea bush. 3 Blending and additives 4 Content 5 Origin and history 5.1 Origin myths 5.2 China 5.3 Japan 5.4 Korea 5.5 Taiwan 5.6 Thailand 5.7 Vietnam 5.8 Tea spreads to the world 5.9 United Kingdom Plantation workers picking tea in 5.10 United States of America Tanzania. -
Final Report
Detail Study of Self-Reliant Industrial Goods in Nepal Final Report Submitted To: Government of Nepal Ministry of Industry, Commerce and Supplies Department of Industry Tripureswor, Kathmandu, Nepal Submitted By: Quality & Environmental Management Service Pvt. Ltd. Kathmandu, Nepal Telephone-01-5705455, E-mail- [email protected] June, 2021 ACKNOWLEDGEMENT Quality and Environmental Management Service Pvt. Ltd. takes an opportunity to express its’ gratitude to those Experts/stakeholders who contributed their valuable time and added precious value in this study. Particularly it extends sincere appreciation to Mr. Jiblal Bhusal, Director General, Mr. Krishna Prasad Kharel, Director; Mr. Pushpa Raj Shiwakoti, Statistical Officer, Mr. Santosh Koirala Mechanical Engineer and others staff of the Department of Industry for their kind inputs and guidance to bring this report to the final stage. We would also like to appreciate for the time and inputs of Mr. Jiblal Kharel Board member of Nepal Tea and Coffee Development Board (NTCDB), Mr. Naresh Katwal Chairperson of Federation of Nepalese Business Association, Mr. Dilli Baskota Member Sectary of HOTPA, Mr. Asish Sigdel Chairperson of NEEMA, Mr. Chandra khadgi member Sectary of NPMA, Mr Suresh Mittal Chairperson NTPA Jhapa and Mr. Rudra Prasad Neupane Board Member of FMAN. We would also like to thank for valuable input from Mr. Bikash Keyal Director of Narayani Strips Pvt. Ltd, Mr. A.K Jha GM of Hulas Steel Pvt. Ltd, Mr. Dibya Sapkota GM of Aarati Strip Pvt. Ltd., Mr Devendra Sahoo GM of Panchakanya Steel Pvt. Ltd, Mr. Laxman Aryal Chairperson of Jasmin Paints Pvt. Ltd. Mr.Buddhi Bahadur K.C chairperson of Applo Paints Pvt. -
Empire of Tea
Empire of Tea Empire of Tea The Asian Leaf that Conquered the Wor ld Markman Ellis, Richard Coulton, Matthew Mauger reaktion books For Ceri, Bey, Chelle Published by Reaktion Books Ltd 33 Great Sutton Street London ec1v 0dx, uk www.reaktionbooks.co.uk First published 2015 Copyright © Markman Ellis, Richard Coulton, Matthew Mauger 2015 All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers Printed and bound in China by 1010 Printing International Ltd A catalogue record for this book is available from the British Library isbn 978 1 78023 440 3 Contents Introduction 7 one: Early European Encounters with Tea 14 two: Establishing the Taste for Tea in Britain 31 three: The Tea Trade with China 53 four: The Elevation of Tea 73 five: The Natural Philosophy of Tea 93 six: The Market for Tea in Britain 115 seven: The British Way of Tea 139 eight: Smuggling and Taxation 161 nine: The Democratization of Tea Drinking 179 ten: Tea in the Politics of Empire 202 eleven: The National Drink of Victorian Britain 221 twelve: Twentieth-century Tea 247 Epilogue: Global Tea 267 References 277 Bibliography 307 Acknowledgements 315 Photo Acknowledgements 317 Index 319 ‘A Sort of Tea from China’, c. 1700, a material survival of Britain’s encounter with tea in the late seventeenth century. e specimen was acquired by James Cuninghame, a physician and ship’s surgeon who visited Amoy (Xiamen) in 1698–9 and Chusan (Zhoushan) in 1700–1703. -
Small-Scale Tea Growing and Processing in Hawaii
Small-scale Tea Growing and Processing in Hawaii Francis Zee, Dwight Sato, Lisa Keith, Peter Follett, and Randall T. Hamasaki New Plants for Hawaii Sept. 2003, NPH-9 Small-scale Tea Growing and Processing in Hawaii Francis Zee1, Dwight Sato2, Lisa Keith1, Peter Follett1, and Randall T. Hamasaki2 1USDA/ARS Pacific Basin Agricultural Research Center, Hilo 2CTAHR Department of Plant and Environmental Protection Sciences ea (Camellia sinensis L.) is one of the oldest and tea, and the uniqueness of high quality specialty teas. A Tmost popular beverages in the world. It has refresh tremendous variety of value-added components are re ing and revitalizing herbal qualities and ceremonial aes lated to tea culture and commerce, including ceramic thetics that together embody the essence of simplicity, teapots, cups, and bowls; serving trays and utensils; cer calmness, and tranquility. By legend, the origin of tea is emonial customs, clothing, and fashion; furniture and attributed to a Chinese scholar and herbalist, Emperor architecture; personal hygiene products; confectionery Shen Nung, who lived around 2737 BC. It is said that products; and ready-to-drink beverages. Tea is sold in one day Shen Nung was boiling water for an the world commodity markets and also has evening meal while resting under a wild tea an expanding role in niche markets for spe tree. A slight breeze came and a few of the cialty and organically grown products. leaves gently fell into his simmering water. Tea was first introduced to Hawaii in Upon tasting it, he found this brew refreshing about 1887. Since then, unsuccessful attempts and exhilarating. -
Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: in Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary
nutrients Article Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: In Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary Flavonoids 1,2, 2, , 1 1 1 Hiroki Saito y, Yu Toyoda * y , Hiroshi Hirata , Ami Ota-Kontani , Youichi Tsuchiya , Tappei Takada 2 and Hiroshi Suzuki 2 1 Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; [email protected] (H.S.); [email protected] (H.H.); [email protected] (A.O.-K.); [email protected] (Y.T.) 2 Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; [email protected] (T.T.); [email protected] (H.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 2 July 2020; Accepted: 12 August 2020; Published: 14 August 2020 Abstract: Axillary osmidrosis (AO) is a common chronic skin condition characterized by unpleasant body odors emanating from the armpits, and its aetiology is not fully understood. AO can seriously impair the psychosocial well-being of the affected individuals; however, no causal therapy has been established for it other than surgical treatment. Recent studies have revealed that human ATP-binding cassette transporter C11 (ABCC11) is an AO risk factor when it is expressed in the axillary apocrine glands—the sources of the offensive odors. Hence, identifying safe ways to inhibit ABCC11 may offer a breakthrough in treating AO. We herein screened for ABCC11-inhibitory activities in 34 natural products derived from plants cultivated for human consumption using an in vitro assay system to measure the ABCC11-mediated transport of radiolabeled dehydroepiandrosterone sulfate (DHEA-S—an ABCC11 substrate). -
Different Approaches to Evaluate Tannin Content and Structure of Selected Plant Extracts – Review and New Aspects M
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by JKI Open Journal Systems (Julius Kühn-Institut) Journal of Applied Botany and Food Quality 86, 154 - 166 (2013), DOI:10.5073/JABFQ.2013.086.021 1University of Kiel, Institute of Crop Science and Plant Breeding – Grass and Forage Science / Organic Agriculture, Kiel, Germany 2Institute of Ecological Chemistry, Plant Analysis and Stored Product Protection; Julius Kühn-Institute, Quedlinburg, Germany Different approaches to evaluate tannin content and structure of selected plant extracts – review and new aspects M. Kardel1*, F. Taube1, H. Schulz2, W. Schütze2, M. Gierus1 (Received July 2, 2013) Summary extracts, tannins, salts and derivates was imported to the EU in the year 2011, mainly from Argentina, with a trade value of nearly Tannins occur in many field herbs and legumes, providing an im- 63.5 mio. US Dollar (UN-COMTRADE, 2013). These extracts are pro- mense variability in structure and molecular weight. This leads to duced industrially on a large scale. They could therefore maintain complications when measuring tannin content; comparability of a relatively constant quality and thus provide an advantage in rumi- different methods is problematic. The present investigations aimed at nant feeding. characterizing four different tannin extracts: quebracho (Schinopsis Tannins from different sources can react very diverse regarding lorentzii), mimosa (Acacia mearnsii), tara (Caesalpinia spinosa), protein affinity (MCNABB et al., 1998; BUENO et al., 2008). Diffe- and gambier (Uncaria gambir) and impact of storage conditions. rences in tannin structure can occur even between similar plant Using photometrical methods as well as HPLC-ESI-MS, fundamen- species (OSBORNE and MCNEILL, 2001; HATTAS et al., 2011) and a tal differences could be determined. -
Epigallocatechin Gallate: a Review
Veterinarni Medicina, 63, 2018 (10): 443–467 Review Article https://doi.org/10.17221/31/2018-VETMED Epigallocatechin gallate: a review L. Bartosikova*, J. Necas Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic *Corresponding author: [email protected] ABSTRACT: Epigallocatechin gallate is the major component of the polyphenolic fraction of green tea and is responsible for most of the therapeutic benefits of green tea consumption. A number of preclinical in vivo and in vitro experiments as well as clinical trials have shown a wide range of biological and pharmacological properties of polyphenolic compounds such as anti-oxidative, antimicrobial, anti-allergic, anti-diabetic, anti-inflammatory, anti-cancer, chemoprotective, neuroprotective and immunomodulatory effects. Epigallocatechin gallate controls high blood pressure, decreases blood cholesterol and body fat and decreases the risk of osteoporotic fractures. Further research should be performed to monitor the pharmacological and clinical effects of green tea and to more clearly elucidate its mechanisms of action and the potential for its use in medicine. Keywords: epigallocatechin-3-O-gallate; pharmacokinetics; toxicity; biological activity List of abbreviations ADME = absorption, distribution, metabolism, excretion; AMP = activated protein kinase (AMPK); AUC (0–∞) = area under the concentration-time curve from 0 h to infinity; BAX = apoptosis regulator (pro-apoptotic regulator, known as bcl-2-like protein 4); Bcl-2 = B-cell lymphoma 2; BCL-XL = B-cell -
Influence of COMT Genotype Polymorphism on Plasma and Urine
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Minnesota Digital Conservancy Influence of COMT Genotype Polymorphism on Plasma and Urine Green Tea Catechin Levels in Postmenopausal Women A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Alyssa Heather Perry IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Dr. Mindy Kurzer September 2014 © Alyssa Heather Perry 2014 Abstract Catechins are the major polyphenolic compound in green tea that have been investigated extensively over the past few decades in relation to the treatment of various chronic diseases including diabetes, cardiovascular disease, and cancer. O-methylation is a major Phase II metabolic pathway of green tea catechins (GTCs) via the enzyme catechol-O- methyltransferase (COMT). A single nucleotide polymorphism in the gene coding for COMT leads to individuals with a high-, intermediate-, or low-activity COMT enzyme. An epidemiological case-control study suggests that green tea consumption is associated with reduced risk of breast cancer in women with an intermediate- or low-activity COMT genotype. A cross-sectional analysis discovered that men homozygous for the low- activity COMT genotype showed a reduction in total tea polyphenols in spot urine samples compared to the intermediate- and high-activity genotypes. Several human intervention trials have assessed green tea intake, metabolism, and COMT genotype with conflicting results. The aim of the present study was to determine if the COMT polymorphism would modify the excretion and plasma levels of GTCs in 180 postmenopausal women at high risk for breast cancer consuming a green tea extract supplement containing 1222 mg total catechins daily for 12 months. -
Docking Characterization and in Vitro Inhibitory Activity of Flavan-3-Ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2
ORIGINAL RESEARCH published: 30 November 2020 doi: 10.3389/fpls.2020.601316 Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2 Yue Zhu and De-Yu Xie* Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States We report to use the main protease (Mpro) of SARS-Cov-2 to screen plant flavan-3-ols and proanthocyanidins. Twelve compounds, (–)-afzelechin (AF), (–)-epiafzelechin (EAF), (+)-catechin (CA), (–)-epicatechin (EC), (+)-gallocatechin (GC), (–)-epigallocatechin Edited by: (EGC), (+)-catechin-3-O-gallate (CAG), (–)-epicatechin-3-O-gallate (ECG), Guodong Wang, Chinese Academy of Sciences, China (–)-gallocatechin-3-O-gallate (GCG), (–)-epigallocatechin-3-O-gallate (EGCG), Reviewed by: procyanidin A2 (PA2), and procyanidin B2 (PB2), were selected for docking simulation. pro Hiroshi Noguchi, The resulting data predicted that all 12 metabolites could bind to M . The affinity Nihon Pharmaceutical scores of PA2 and PB2 were predicted to be −9.2, followed by ECG, GCG, EGCG, University, Japan Ericsson Coy-Barrera, and CAG, −8.3 to −8.7, and then six flavan-3-ol aglycones, −7.0 to −7.7. Docking Universidad Militar Nueva characterization predicted that these compounds bound to three or four subsites (S1, Granada, Colombia S1′, S2, and S4) in the binding pocket of Mpro via different spatial ways and various *Correspondence: De-Yu Xie formation of one to four hydrogen bonds. In vitro analysis with 10 available compounds pro [email protected] showed that CAG, ECG, GCG, EGCG, and PB2 inhibited the M activity with an IC50 value, 2.98 ± 0.21, 5.21 ± 0.5, 6.38 ± 0.5, 7.51 ± 0.21, and 75.3 ± 1.29 µM, Specialty section: respectively, while CA, EC, EGC, GC, and PA2 did not have inhibitory activities. -
WO 2011/086458 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... _ 21 July 2011 (21.07.2011) WO 2011/086458 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61L 27/20 (2006.01) A61L 27/54 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/IB20 11/000052 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 13 January 201 1 (13.01 .201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 12/687,048 13 January 2010 (13.01 .2010) US (84) Designated States (unless otherwise indicated, for every 12/714,377 26 February 2010 (26.02.2010) US kind of regional protection available): ARIPO (BW, GH, 12/956,542 30 November 2010 (30.1 1.2010) us GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): AL- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, LERGAN INDUSTRIE, SAS [FR/FR]; Route de EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Promery, Zone Artisanale de Pre-Mairy, F-74370 Pringy LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (FR).