Supplemental Digital Content 2 List of Down-Regulated Transcripts In

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Digital Content 2 List of Down-Regulated Transcripts In Supplemental Digital Content 2 List of down-regulated transcripts in colonic mucosal UC-associated dysplasia and pancolitis compared to left-sided colitis Probe Set ID Gene Title Gene Symbol 225655_at ubiquitin-like, containing PHD and RING finger domains, 1 UHRF1 216640_s_at protein disulfide isomerase family A, member 6 PDIA6 1555358_a_at ectonucleoside triphosphate diphosphohydrolase 4 ENTPD4 201340_s_at ectodermal-neural cortex (with BTB-like domain) ENC1 203843_at ribosomal protein S6 kinase, 90kDa, polypeptide 3 RPS6KA3 206668_s_at secretory carrier membrane protein 1 SCAMP1 207791_s_at RAB1A, member RAS oncogene family RAB1A 228996_at roquin KIAA2025 Transcribed locus, weakly similar to XP_517454.1 PREDICTED: 228623_at similar to hypothetical protein MGC45438 [Pan troglodytes] --- 202817_s_at synovial sarcoma translocation, chromosome 18 SS18 235234_at hypothetical protein FLJ36874 FLJ36874 201514_s_at Ras-GTPase-activating protein SH3-domain-binding protein G3BP 218238_at GTP binding protein 4 GTPBP4 241343_at Ribonuclease H1 RNASEH1 1553033_at synaptotagmin-like 5 SYTL5 203210_s_at replication factor C (activator 1) 5, 36.5kDa RFC5 213875_x_at chromosome 6 open reading frame 62 C6orf62 1553108_at hypothetical protein FLJ37562 FLJ37562 215820_x_at sorting nexin 13 SNX13 230130_at Slit homolog 2 (Drosophila) SLIT2 200607_s_at RAD21 homolog (S. pombe) RAD21 235296_at eukaryotic translation initiation factor 5A2 EIF5A2 1552656_s_at U2AF homology motif (UHM) kinase 1 UHMK1 214155_s_at La ribonucleoprotein domain family, member 4 LARP4 203328_x_at insulin-degrading enzyme IDE 214962_s_at nucleoporin 160kDa NUP160 236327_at Hypothetical protein FLJ22457 FLJ22457 1564064_a_at ATPase, Class VI, type 11B ATP11B 223785_at hypothetical protein FLJ10719 FLJ10719 212392_s_at phosphodiesterase 4D interacting protein (myomegalin) PDE4DIP LOC163131 /// 215570_s_at hypothetical BC331191_1 /// hypothetical protein LOC284323 LOC284323 210188_at GA binding protein transcription factor, alpha subunit 60kDa GABPA 1552921_a_at fidgetin-like 1 FIGNL1 211536_x_at mitogen-activated protein kinase kinase kinase 7 MAP3K7 222977_at surfeit 4 SURF4 1553565_s_at dimethylarginine dimethylaminohydrolase 1 DDAH1 1554145_a_at smooth muscle myosin heavy chain 11 isoform SM1-like LOC129285 217230_at villin 2 (ezrin) VIL2 219911_s_at solute carrier organic anion transporter family, member 4A1 SLCO4A1 229553_at phosphoglucomutase 2-like 1 PGM2L1 208097_s_at thioredoxin domain containing /// thioredoxin domain containing TXNDC 218156_s_at hypothetical protein FLJ10534 FLJ10534 238644_at --- --- 241938_at Quaking homolog, KH domain RNA binding (mouse) QKI 209941_at receptor (TNFRSF)-interacting serine-threonine kinase 1 RIPK1 216205_s_at mitofusin 2 MFN2 213742_at splicing factor, arginine/serine-rich 11 SFRS11 1565717_s_at fusion (involved in t(12;16) in malignant liposarcoma) FUS 235088_at hypothetical protein LOC201725 LOC201725 203619_s_at Fas apoptotic inhibitory molecule 2 FAIM2 207379_at EGF-like repeats and discoidin I-like domains 3 EDIL3 224657_at mitogen-inducible gene 6 MIG-6 201295_s_at WD repeat and SOCS box-containing 1 WSB1 222583_s_at nucleoporin 50kDa NUP50 240983_s_at cysteinyl-tRNA synthetase CARS 211537_x_at mitogen-activated protein kinase kinase kinase 7 MAP3K7 223220_s_at poly (ADP-ribose) polymerase family, member 9 PARP9 201695_s_at nucleoside phosphorylase NP 226085_at Chromobox homolog 5 (HP1 alpha homolog, Drosophila) CBX5 transforming growth factor, beta receptor I (activin A receptor type II- 206943_at like kinase, 53kDa) TGFBR1 220202_s_at membrane associated DNA binding protein MNAB 207686_s_at caspase 8, apoptosis-related cysteine protease CASP8 Eukaryotic translation elongation factor 1 delta (guanine nucleotide 213087_s_at exchange protein) EEF1D 1554433_a_at zinc finger protein 146 ZNF146 202647_s_at neuroblastoma RAS viral (v-ras) oncogene homolog NRAS 231819_at CCAAT/enhancer binding protein zeta CEBPZ 217356_s_at phosphoglycerate kinase 1 PGK1 1554249_a_at zinc finger protein 638 ZNF638 211015_s_at heat shock 70kDa protein 4 HSPA4 236223_s_at Transcribed locus --- 216202_s_at serine palmitoyltransferase, long chain base subunit 2 SPTLC2 1558034_s_at ceruloplasmin (ferroxidase) CP 201768_s_at enthoprotin ENTH 209052_s_at Wolf-Hirschhorn syndrome candidate 1 WHSC1 217138_x_at Immunoglobulin lambda variable 3-21 IGLC2 242727_at ADP-ribosylation factor-like 8 ARL8 202058_s_at karyopherin alpha 1 (importin alpha 5) KPNA1 204603_at exonuclease 1 EXO1 202613_at CTP synthase CTPS 1552627_a_at Rho GTPase activating protein 5 ARHGAP5 1554696_s_at thymidylate synthetase TYMS 215936_s_at KIAA1033 KIAA1033 1555337_a_at zinc finger protein 317 ZNF317 213022_s_at --- --- 232296_s_at G elongation factor, mitochondrial 1 GFM1 203769_s_at steroid sulfatase (microsomal), arylsulfatase C, isozyme S STS 219868_s_at ankyrin repeat and FYVE domain containing 1 ANKFY1 220238_s_at kelch-like 7 (Drosophila) KLHL7 ADP-ribosylation factor guanine nucleotide-exchange factor 2 215931_s_at (brefeldin A-inhibited) ARFGEF2 211676_s_at interferon gamma receptor 1 /// interferon gamma receptor 1 IFNGR1 1555618_s_at SUMO-1 activating enzyme subunit 1 SAE1 231258_at --- --- 210458_s_at TRAF family member-associated NFKB activator TANK 209753_s_at thymopoietin TMPO 1559232_a_at Solute carrier family 33 (acetyl-CoA transporter), member 1 SLC33A1 238816_at Presenilin 1 (Alzheimer disease 3) PSEN1 205701_at importin 8 IPO8 phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole 212379_at synthetase GART 219927_at chromosome 14 open reading frame 111 C14orf111 208852_s_at calnexin CANX 212806_at KIAA0367 KIAA0367 Solute carrier family 28 (sodium-coupled nucleoside transporter), 232277_at member 3 SLC28A3 219691_at sterile alpha motif domain containing 9 SAMD9 1555972_s_at F-box protein 28 FBXO28 200664_s_at DnaJ (Hsp40) homolog, subfamily B, member 1 DNAJB1 205401_at alkylglycerone phosphate synthase AGPS 235744_at T-cell activation protein phosphatase 2C TA-PP2C 1555274_a_at selenoprotein I SELI 210405_x_at tumor necrosis factor receptor superfamily, member 10b TNFRSF10B 235476_at tripartite motif-containing 59 TRIM59 223834_at CD274 antigen CD274 225931_s_at chromosome 17 open reading frame 27 C17orf27 229846_s_at mitogen-activated protein kinase associated protein 1 MAPKAP1 242458_at Ral GEF with PH domain and SH3 binding motif 2 RALGPS2 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 1553530_a_at includes MDF2, MSK12) ITGB1 1553055_a_at hypothetical protein MGC19764 MGC19764 226825_s_at TPA regulated locus TPARL 212797_at sortilin 1 SORT1 low density lipoprotein receptor-related protein 8, apolipoprotein e 205282_at receptor LRP8 214505_s_at four and a half LIM domains 1 FHL1 217309_s_at Down syndrome critical region gene 3 DSCR3 238689_at G protein-coupled receptor 110 GPR110 212093_s_at mitochondrial tumor suppressor 1 MTUS1 227384_s_at Similar to KIAA0454 protein --- ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu 201727_s_at antigen R) ELAVL1 1558249_s_at syntaxin 16 STX16 227314_at Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) ITGA2 238563_at Trans-prenyltransferase TPRT 1552613_s_at CDC42 small effector 2 CDC42SE2 208459_s_at exportin 7 XPO7 1558647_at SH3 domain protein D19 SH3D19 223098_s_at peroxisomal lon protease LONP DKFZp434N2 228378_at hypothetical protein DKFZp434N2030 030 signal transducer and activator of transcription 3 (acute-phase 208992_s_at response factor) STAT3 207029_at KIT ligand KITLG 201171_at ATPase, H+ transporting, lysosomal 9kDa, V0 subunit e ATP6V0E 1558959_at CDNA FLJ37917 fis, clone CTONG1000137 --- 210567_s_at S-phase kinase-associated protein 2 (p45) SKP2 218663_at chromosome condensation protein G HCAP-G 215708_s_at primase, polypeptide 2A, 58kDa PRIM2A 1554327_a_at calcium activated nucleotidase 1 CANT1 209162_s_at PRP4 pre-mRNA processing factor 4 homolog (yeast) PRPF4 200671_s_at spectrin, beta, non-erythrocytic 1 SPTBN1 223730_at glypican 6 GPC6 228459_at family with sequence similarity 84, member A FAM84A 217097_s_at putative homeodomain transcription factor 2 PHTF2 222679_s_at RP42 homolog RP42 transglutaminase 2 (C polypeptide, protein-glutamine-gamma- 211573_x_at glutamyltransferase) TGM2 201196_s_at adenosylmethionine decarboxylase 1 AMD1 1555334_s_at solute carrier family 30 (zinc transporter), member 5 SLC30A5 200790_at ornithine decarboxylase 1 ODC1 222611_s_at paraspeckle component 1 PSPC1 211968_s_at heat shock 90kDa protein 1, alpha HSPCA 228490_at abhydrolase domain containing 2 ABHD2 217014_s_at alpha-2-glycoprotein 1, zinc AZGP1 209023_s_at stromal antigen 2 STAG2 1554679_a_at lysosomal associated protein transmembrane 4 beta LAPTM4B 226094_at Phosphoinositide-3-kinase, class 2, alpha polypeptide PIK3C2A 241705_at ATP-binding cassette, sub-family A (ABC1), member 5 ABCA5 235643_at sterile alpha motif domain containing 9-like SAMD9L 224046_s_at phosphodiesterase 7A PDE7A 1554029_a_at KIAA0372 KIAA0372 1559038_at septin 2 SEPT2 1554441_a_at KIAA0261 KIAA0261 1555772_a_at cell division cycle 25A CDC25A 204716_at coiled-coil domain containing 6 CCDC6 phosphoribosylaminoimidazole carboxylase, 201014_s_at phosphoribosylaminoimidazole succinocarboxamide synthetase PAICS 202267_at laminin, gamma 2 LAMC2 protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65), 202884_s_at beta isoform PPP2R1B 244563_at hypothetical protein FLJ21924 FLJ21924 203015_s_at synovial sarcoma, X breakpoint 2
Recommended publications
  • Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications
    cells Review Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications Rachel Shi, Chengheng Liao and Qing Zhang * Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; [email protected] (R.S.); [email protected] (C.L.) * Correspondence: [email protected]; Tel.: +1-214-645-4671 Abstract: Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferat- ing and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these intercon- nected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochon- drial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed. Keywords: hypoxia; metastasis; hypoxia-inducible factors; chemoresistance Citation: Shi, R.; Liao, C.; Zhang, Q. Hypoxia-Driven Effects in Cancer: 1. Introduction Characterization, Mechanisms, and Understanding the mechanisms by which cells sense oxygen and maintain oxygen Therapeutic Implications. Cells 2021, homeostasis is of pivotal importance for science and medicine. Only in recent decades have 10, 678. https://doi.org/10.3390/ breakthrough discoveries of mechanisms for eukaryotic oxygen sensing been made.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Mutant IDH, (R)-2-Hydroxyglutarate, and Cancer
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer Julie-Aurore Losman1 and William G. Kaelin Jr.1,2,3 1Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA Mutations in metabolic enzymes, including isocitrate whether altered cellular metabolism is a cause of cancer dehydrogenase 1 (IDH1) and IDH2, in cancer strongly or merely an adaptive response of cancer cells in the face implicate altered metabolism in tumorigenesis. IDH1 of accelerated cell proliferation is still a topic of some and IDH2 catalyze the interconversion of isocitrate and debate. 2-oxoglutarate (2OG). 2OG is a TCA cycle intermediate The recent identification of cancer-associated muta- and an essential cofactor for many enzymes, including tions in three metabolic enzymes suggests that altered JmjC domain-containing histone demethylases, TET cellular metabolism can indeed be a cause of some 5-methylcytosine hydroxylases, and EglN prolyl-4-hydrox- cancers (Pollard et al. 2003; King et al. 2006; Raimundo ylases. Cancer-associated IDH mutations alter the enzymes et al. 2011). Two of these enzymes, fumarate hydratase such that they reduce 2OG to the structurally similar (FH) and succinate dehydrogenase (SDH), are bone fide metabolite (R)-2-hydroxyglutarate [(R)-2HG]. Here we tumor suppressors, and loss-of-function mutations in FH review what is known about the molecular mechanisms and SDH have been identified in various cancers, in- of transformation by mutant IDH and discuss their im- cluding renal cell carcinomas and paragangliomas.
    [Show full text]
  • An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Netwo
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis Sriram Devanathan Washington University School of Medicine in St. Louis Timothy Whitehead Washington University School of Medicine in St. Louis George G. Schweitzer Washington University School of Medicine in St. Louis Nicole Fettig Washington University School of Medicine in St. Louis Attila Kovacs Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Devanathan, Sriram; Whitehead, Timothy; Schweitzer, George G.; Fettig, Nicole; Kovacs, Attila; Korach, Kenneth S.; Finck, Brian N.; and Shoghi, Kooresh I., ,"An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis." PLoS One.9,7. e101900. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3326 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Sriram Devanathan, Timothy Whitehead, George G. Schweitzer, Nicole Fettig, Attila Kovacs, Kenneth S. Korach, Brian N. Finck, and Kooresh I. Shoghi This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3326 An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis Sriram Devanathan1, Timothy Whitehead1, George G. Schweitzer2, Nicole Fettig1, Attila Kovacs3, Kenneth S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • ARTICLE Doi:10.1038/Nature10523
    ARTICLE doi:10.1038/nature10523 Spatio-temporal transcriptome of the human brain Hyo Jung Kang1*, Yuka Imamura Kawasawa1*, Feng Cheng1*, Ying Zhu1*, Xuming Xu1*, Mingfeng Li1*, Andre´ M. M. Sousa1,2, Mihovil Pletikos1,3, Kyle A. Meyer1, Goran Sedmak1,3, Tobias Guennel4, Yurae Shin1, Matthew B. Johnson1,Zˇeljka Krsnik1, Simone Mayer1,5, Sofia Fertuzinhos1, Sheila Umlauf6, Steven N. Lisgo7, Alexander Vortmeyer8, Daniel R. Weinberger9, Shrikant Mane6, Thomas M. Hyde9,10, Anita Huttner8, Mark Reimers4, Joel E. Kleinman9 & Nenad Sˇestan1 Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.
    [Show full text]
  • Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
    Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Gamma Adaptin (AP1G1) Rabbit Polyclonal Antibody Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA323388 gamma Adaptin (AP1G1) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: IHC Recommended Dilution: ELISA: 1:1000-5000, IHC: 1:50-200 Reactivity: Human, Mouse, Rat Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: Synthetic peptide corresponding to a region derived from 802-814 amino acids of Human Adapter-related protein complex 1 subunit gamma-1 Formulation: PBS pH7.3, 0.05% NaN3, 50% glycerol Concentration: lot specific Purification: Antigen affinity purification Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Gene Name: adaptor related protein complex 1 gamma 1 subunit Database Link: NP_001119 Entrez Gene 11765 MouseEntrez Gene 171494 RatEntrez Gene 164 Human O43747 Background: Adaptins are important components of clathrin-coated vesicles transporting ligand-receptor complexes from the plasma membrane or from the trans-Golgi network to lysosomes. The adaptin family of proteins is composed of four classes of molecules named alpha; beta-; beta prime- and gamma- adaptins. Adaptins; together with medium and small subunits; form a heterotetrameric complex called an adaptor; whose role is to promote the formation of clathrin-coated pits and vesicles. The protein encoded by this gene is a gamma-adaptin protein and it belongs to the adaptor complexes large subunits family. Two transcript variants encoding different isoforms have been found for this gene. Synonyms: ADTG; CLAPG1 This product is to be used for laboratory only.
    [Show full text]
  • Epigenetic Regulation of Endothelial-Cell-Mediated Vascular Repair Sylvain Fraineau1,2,3, Carmen G
    REVIEW ARTICLE Epigenetic regulation of endothelial-cell-mediated vascular repair Sylvain Fraineau1,2,3, Carmen G. Palii1,3, David S. Allan1 and Marjorie Brand1,2,3 1 Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada 2 Department of Cellular and Molecular Medicine, University of Ottawa, Canada 3 Ottawa Institute of Systems Biology, Canada Keywords Maintenance of vascular integrity is essential for the prevention of vascular DNA methylation; endothelial progenitors; disease and for recovery following cardiovascular, cerebrovascular and epigenetics; epigenetic drugs; histone peripheral vascular events including limb ischemia, heart attack and stroke. acetylation; histone methylation; non-coding Endothelial stem/progenitor cells have recently gained considerable interest RNAs; stem cell therapy; transcription factors; vascular ischemic disease due to their potential use in stem cell therapies to mediate revascularization after ischemic injury. Therefore, there is an urgent need to understand fun- Correspondence damental mechanisms regulating vascular repair in specific cell types to M. Brand, Sprott Center for Stem Cell develop new beneficial therapeutic interventions. In this review, we high- Research, Regenerative Medicine Program, light recent studies demonstrating that epigenetic mechanisms (including Ottawa Hospital Research Institute, Ottawa post-translational modifications of DNA and histones as well as non-cod- ON K1H8L6, Canada ing RNA-mediated processes) play essential roles in the regulation of endo- Fax: +1 613 739 6294 Tel: +1 613 737 7700 ext. 70336 thelial stem/progenitor cell functions through modifying chromatin E-mail: [email protected] structure. Furthermore, we discuss the potential of using small molecules that modulate the activities of epigenetic enzymes to enhance the vascular (Received 21 October 2014, revised 17 repair function of endothelial cells and offer insight on potential strategies December 2014, accepted 19 December that may accelerate clinical applications.
    [Show full text]
  • UTX Inhibition As Selective Epigenetic Therapy Against TAL1-Driven T-Cell Acute Lymphoblastic Leukemia
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia Aissa Benyoucef,1,2,3 Carmen G. Palii,1,3 Chaochen Wang,4 Christopher J. Porter,5 Alphonse Chu,1 Fengtao Dai,1 Véronique Tremblay,3,6 Patricia Rakopoulos,1 Kulwant Singh,1,3 Suming Huang,7 Francoise Pflumio,8,9,10 Josée Hébert,11,12 Jean-Francois Couture,3,6 Theodore J. Perkins,1,5,6 Kai Ge,4 F. Jeffrey Dilworth,1,2,3 and Marjorie Brand1,2,3 1The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; 2Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; 3Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada; 4National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA; 5Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; 6Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; 7Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA; 8Commissariat á l’Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant (DSV)-Institut de Recherche en Radiobiologie Cellulaire et Moléculaire
    [Show full text]