The Lunar Terminator

Total Page:16

File Type:pdf, Size:1020Kb

The Lunar Terminator The Moving Terminator What It Is The terminator is the line separating the unlighted When To See It and lighted sides of the moon. When the phases are waxing it is the sunrise line on the moon, and The terminator is visible whenever the moon is up. when the phases are waning it is the sunset line. It’s hard to spot with the unaided eye for a few Notice that this means that all parts of the moon days before and after full moon and new moon, but get sunlight during the course of a lunation—while even in those times it can be spotted by telescope there is a near side of the moon always facing (being careful near new moon to stay away from Earth and a far side always facing away, there is the sun of course!) no such thing as a “dark side of the moon” where it is always dark. Where It Is The terminator can be seen from the moon’s north pole running across the apparent disk of the moon to the moon’s south pole. It’s pretty hard to miss! Why It’s Cool Since the terminator is the place where the shadows on the moon are longest, craters, peaks, and many other details stand out best there. As the moon goes around Earth the position of the terminator changes every night, giving telescope observers a new batch of features to see. In fact, sometimes careful observers may be able to see changes along the terminator in just a few hours as the terminator creeps across the lunar surface! Look also for peaks that seem detached from the moon—they are in sunlight while their lower surroundings are not, and are another place where changes can often be seen in hours. Because of the orbital motions of both the moon and Earth, the exact position of the terminator on a given day after new moon varies a little each month and certain features may be better seen in some months than in others. In other words, along the terminator you get a different show every night! Lafayette Science Museum, 433 Jefferson Street, Lafayette, LA 70501, 337-291-5544, www.lafayettesciencemuseum.org .
Recommended publications
  • New Candidate Pits and Caves at High Latitudes on the Near Side of the Moon
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2733.pdf NEW CANDIDATE PITS AND CAVES AT HIGH LATITUDES ON THE NEAR SIDE OF THE MOON. 1,2 1,3,4 1 2 Wynnie Avent II and Pascal Lee ,​ S​ ETI Institute, Mountain View, VA, USA, V​ irginia Polytechnic Institute ​ ​ ​ 3 4 ​ and State University Blacksburg, VA, USA. M​ ars Institute, N​ ASA Ames Research Center. ​ ​ Summary: 35 new candidate pits are identified ​ in Anaxagoras and Philolaus, two high-latitude impact structures on the near side of the Moon. Introduction: Since the discovery in 2009 of the Marius Hills Pit (Haruyama et al. 2009), a.k.a. the “Haruyama Cavern”, over 300 hundred pits have been identified on the Moon (Wagner & Robinson 2014, Robinson & Wagner 2018). Lunar pits are small (10 to 150 m across), steep-walled, negative relief features (topographic depressions), surrounded by funnel-shaped outer slopes and, unlike impact craters, no raised rim. They are interpreted as collapse features resulting from the fall of the roof of shallow (a few Figure 1: Location of studied craters (Polar meters deep) subsurface voids, generally lava cavities. projection). Although pits on the Moon are found in mare basalt, impact melt deposits, and highland terrain of the >300 Methods: Like previous studies searching for pits pits known, all but 16 are in impact melts (Robinson & (Wagner & Robinson 2014, Robinson & Wagner 2018, Wagner 2018). Many pits are likely lava tube skylights, Lee 2018a,b,c), we used imaging data collected by the providing access to underground networks of NASA Lunar Reconnaissance Orbiter (LRO) Narrow tunnel-shaped caves, including possibly complex Angle Camera (NAC).
    [Show full text]
  • Lab # 12: Surface of the Moon
    Name: Date: 12 Surface of the Moon 12.1 Introduction One can learn a lot about the Moon by looking at the lunar surface. Even before astronauts landed on the Moon, scientists had enough data to formulate theories about the formation and evolution of the Earth’s only natural satellite. However, since the Moon rotates once for every time it orbits around the Earth, we can only see one side of the Moon from the surface of the Earth. Until spacecraft were sent to orbit the Moon, we only knew half the story. The type of orbit our Moon makes around the Earth is called a synchronous orbit. This phenomenon is shown graphically in Figure 12.1 below. If we imagine that there is one large mountain on the hemisphere facing the Earth (denoted by the small triangle on the Moon), then this mountain is always visible to us no matter where the Moon is in its orbit. As the Moon orbits around the Earth, it turns slightly so we always see the same hemisphere. Figure 12.1: The Moon’s synchronous orbit. (Not drawn to scale.) On the Moon, there are extensive lava flows, rugged highlands and many impact craters of all sizes. The overlapping of these features implies relative ages. Because of the lack of ongoing mountain building processes, or weathering by wind and water, the accumulation of volcanic processes and impact cratering is readily visible. Thus by looking at the images of the Moon, one can trace the history of the lunar surface. 129 Lab Goals: to discuss the Moon’s terrain, craters, and the theory of relative ages; to • use pictures of the Moon to deduce relative ages and formation processes of surface features Materials: Moon pictures, ruler, calculator • 12.2 Craters and Maria A crater is formed when a meteor from space strikes the lunar surface.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • James Cameronâ•Žs Avatar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Nebraska, Omaha Journal of Religion & Film Volume 14 Article 16 Issue 1 April 2010 6-17-2016 A View from the Inside: James Cameron’s Avatar Michael W. McGowan Claremont Graduate University, [email protected] Recommended Citation McGowan, Michael W. (2016) "A View from the Inside: James Cameron’s Avatar," Journal of Religion & Film: Vol. 14 : Iss. 1 , Article 16. Available at: https://digitalcommons.unomaha.edu/jrf/vol14/iss1/16 This Film Review is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Journal of Religion & Film by an authorized editor of DigitalCommons@UNO. For more information, please contact [email protected]. A View from the Inside: James Cameron’s Avatar Abstract This is a review of Avatar (2009). This film review is available in Journal of Religion & Film: https://digitalcommons.unomaha.edu/jrf/vol14/iss1/16 McGowan: A View from the Inside One of the most surprising aspects of the success of James Cameron’s Avatar is how surprised Cameron appears to be at its success. At the time of my writing, Avatar has made the same sort of exponential box office leaps as Titanic,1 and yet Cameron, possibly seeking to overcome the impressions of egotism left after the success of Titanic, feigns disbelief. My guess, and it’s only a guess, is that Cameron knew prior to his efforts that he had a winner, as his finger is tuned to the pulse of the concerns many viewers share.
    [Show full text]
  • Lunariceprospecting V1.0.Pdf
    WHITE PAPER Ice Prospecting: Your Guide to Getting Rich on the Moon Version 1.0 // May 2019 // This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License. Kevin M. Cannon ([email protected]) Introduction Water ice has been detected indirectly and directly within permanently shadowed regions (PSRs) at both poles of the Moon. This ice is stable against sublimation on billion-year timescales, and represents an attractive target for mining to produce oxygen and hydrogen for propellant, and water and oxygen for human life support. However, the mere presence of ice at the poles does not provide much information: Where is it exactly? How much is there? Is it thick layers of pure ice, or small amounts mixed in the soil? How hard is it to excavate? This white paper attempts to offer answers to these questions based on interpretations of the best data currently available. New prospecting missions in the future–particularly landers and Figure 1. Ice accumulation mechanisms. rovers–will continue to change and improve our understanding of ice on the Moon. This guide will be updated on an ongoing expected to be old. (2) Solar wind. The solar wind is a stream of basis to incorporate new findings. electrons, protons and other particles that are constantly colliding with the unprotected surface of the Moon. This Why is there ice on the Moon? process can create individual OH and H2O molecules that are Two factors create conditions that allow ice to accumulate able to ballistically hop across the surface, eventually migrating and persist at the lunar poles: (1) the Moon has a very small axial to the PSRs.
    [Show full text]
  • Polar Winds from VIIRS
    Polar Winds from VIIRS Jeff Key*, Richard Dworak+, Dave Santek+, Wayne Bresky@, Steve Wanzong+ ! Jaime Daniels#, Andrew Bailey@, Chris Velden+, Hongming Qi^, Pete Keehn#, Walter Wolf#! ! *NOAA/National Environmental Satellite, Data, and Information Service, Madison, WI! + Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison! #NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, MD! ^NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, MD! @I.M. Systems Group (IMSG), Rockville, MD USA! 11th International Winds Workshop, Auckland, 20-24 February 2012 The Polar Wind Product Suite MODIS Polar Winds LEO-GEO Polar Winds •" Aqua and Terra separately, bent pipe •" Combination of may geostationary data source Operational and polar-orbiting imagers •" Aqua and Terra combined, bent pipe •" Fills the 60-70 degree latitude gap •" Direct broadcast (DB) at EW –" McMurdo, Antarctica (Terra, Aqua) VIIRS Polar Winds –" Tromsø, Norway (Terra only) •" (Details on following slides) –" Sodankylä, Finland (Terra only) –" Fairbanks, Alaska (Terra, from UAF) EW AVHRR Polar Winds •" Global Area Coverage (GAC) for NOAA-15, -16, -17, -18, -19 Operational •" Metop Operational •" HRPT (High Resolution Picture Transmission = direct readout) at –" Barrow, Alaska, NOAA-16, -17, -18, -19 –" Rothera, Antarctica, NOAA-17, -18, -19 •" Historical GAC winds, 1982-2009. Two satellites throughout most of the time series. Polar Wind Product History Operational NWP Users of Polar Winds! 13 NWP centers in 9 countries: •" European Centre for Medium-Range Weather Forecasts (ECMWF) - since Jan 2003.! •" NASA Global Modeling and Assimilation Office (GMAO) - since early 2003.! •" Deutscher Wetterdienst (DWD) – MODIS since Nov 2003. DB and AVHRR.! •" Japan Meteorological Agency (JMA), Arctic only - since May 2004.! •" Canadian Meteorological Centre (CMC) – since Sep 2004.
    [Show full text]
  • Rare Astronomical Sights and Sounds
    Jonathan Powell Rare Astronomical Sights and Sounds The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 Rare Astronomical Sights and Sounds Jonathan Powell Jonathan Powell Ebbw Vale, United Kingdom ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-97700-3 ISBN 978-3-319-97701-0 (eBook) https://doi.org/10.1007/978-3-319-97701-0 Library of Congress Control Number: 2018953700 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Terminator Dark Fate Sequel
    Terminator Dark Fate Sequel Telesthetic Walsh withing: he wags his subzones loosely and nope. Moth-eaten Felice snarl choicely while Dell always lapidify his gregariousness magic inertly, he honours so inertly. Sometimes unsentenced Pate valuate her sacristan fussily, but draconian Oral demodulating tunelessly or lay-offs athletically. Want to keep up with breaking news? Schwarzenegger against a female Terminator, lacked the visceral urgency of the first two films. The Very Excellent Mr. TV and web series. Soundtrack Will Have You Floating Ho. Remember how he could run like the wind, and transform his hands into blades? When the characters talk about how the future is what you make, they are speaking against the logic of the plot rather than organically from it. 'Dark Fate' is our best 'Terminator' sequel in over 20 years. Record in GA event if ads are blocked. Interviews, commentary, and recommendations old and new. Make a donation to support our coverage. Schwarzenegger appears as the titular character but does not receive top billing. Gebru has been treated completely inappropriately, with intense disrespect, and she deserves an apology. Or did the discovery of future Skynet technology start a branching timeline where the apocalypse came via Cyberdyne instead of Skynet? Need help contacting your corporate administrator regarding your Rolling Stone Digital access? We know that dark fate sequel. Judgment Day could be a necessary event that is ultimately the only way to ensure the future of the human race. Beloved Brendan Fraser Movie Has Been Blowing Up On Stream. Underscore may be freely distributed under the MIT license.
    [Show full text]
  • The Terminator by John Wills
    The Terminator By John Wills “The Terminator” is a cult time-travel story pitting hu- mans against machines. Authored and directed by James Cameron, the movie features Arnold Schwarzenegger, Linda Hamilton and Michael Biehn in leading roles. It launched Cameron as a major film di- rector, and, along with “Conan the Barbarian” (1982), established Schwarzenegger as a box office star. James Cameron directed his first movie “Xenogenesis” in 1978. A 12-minute long, $20,000 picture, “Xenogenesis” depicted a young man and woman trapped in a spaceship dominated by power- ful and hostile robots. It introduced what would be- come enduring Cameron themes: space exploration, machine sentience and epic scale. In the early 1980s, Cameron worked with Roger Corman on a number of film projects, assisting with special effects and the design of sets, before directing “Piranha II” (1981) as his debut feature. Cameron then turned to writing a science fiction movie script based around a cyborg from 2029AD travelling through time to con- Artwork from the cover of the film’s DVD release by MGM temporary Los Angeles to kill a waitress whose as Home Entertainment. The Library of Congress Collection. yet unborn son is destined to lead a resistance movement against a future cyborg army. With the input of friend Bill Wisher along with producer Gale weeks. However, critical reception hinted at longer- Anne Hurd (Hurd and Cameron had both worked for lasting appeal. “Variety” enthused over the picture: Roger Corman), Cameron finished a draft script in “a blazing, cinematic comic book, full of virtuoso May 1982. After some trouble finding industry back- moviemaking, terrific momentum, solid performances ers, Orion agreed to distribute the picture with and a compelling story.” Janet Maslin for the “New Hemdale Pictures financing it.
    [Show full text]
  • Traverse Planning for Human and Robotic Missions to Hadley Rille
    NASA/TM-2008-215367 Traverse Planning for Human and Robotic Missions to Hadley Rille Michael Broxton, Matthew C. Deans, Terrence Fong, Trey Smith, NASA Ames Research Center Mark Helper, University of Texas / Austin Kip V. Hodges, Arizona State University, Gerald G. Schaber, USGS (retired) Harrison H. Schmitt IHMC National Aeronautics and Space Administration Ames Research Center Moffett Field, California, 94035-1000 January 2009 NASA/TM-2008-215367 Traverse Planning for Human and Robotic Missions to Hadley Rille Michael Broxton, Matthew C. Deans, Terrence Fong, Trey Smith, NASA Ames Research Center Mark Helper, University of Texas / Austin Kip V. Hodges, Arizona State University, Gerald G. Schaber, USGS (retired) Harrison H. Schmitt IHMC National Aeronautics and Space Administration Ames Research Center Moffett Field, California, 94035-1000 January 2009 Traverse Planning for Human and Robotic Missions to Hadley Rille (report) Michael Broxton1, Matthew C. Deans1, Terrence Fong1, Mark Helper2, Kip V. Hodges3, Gerald G. Schaber4, Harrison H. Schmitt5, and Trey Smith1 1NASA Ames Research Center, 2University of Texas / Austin, 3Arizona State University, 4USGS (retired), 5IHMC Summary On November 6, 2008, we conducted a short lunar traverse planning exercise at the NASA Ames Research Center. The objective was to establish an initial EVA traverse plan for a hypothetical, manned mission to the Apollo 15 region and then to identify where ground-level data (e.g., collected by robotic recon) would help refine the plan. The planning for this mission, which we named “Apollo 15B”, focused on Hadley Rille near Hadley C, and the ejecta blanket from Hadley C that is deposited on to Hadley Rille.
    [Show full text]
  • Entrance Pupil Irradiance Estimating Model for a Moon-Based Earth Radiation Observatory Instrument
    remote sensing Article Entrance Pupil Irradiance Estimating Model for a Moon-Based Earth Radiation Observatory Instrument Wentao Duan 1, Shaopeng Huang 2,3,* and Chenwei Nie 4 1 School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710054, China; [email protected] 2 Institute of Deep Earth Science and Green Energy, Shenzhen University, Shenzhen 518060, China 3 Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA 4 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; [email protected] * Correspondence: [email protected] Received: 26 January 2019; Accepted: 6 March 2019; Published: 10 March 2019 Abstract: A Moon-based Earth radiation observatory (MERO) could provide a longer-term continuous measurement of radiation exiting the Earth system compared to current satellite-based observatories. In order to parameterize the detector for such a newly-proposed MERO, the evaluation of the instrument’s entrance pupil irradiance (EPI) is of great importance. The motivation of this work is to build an EPI estimating model for a simplified single-pixel MERO instrument. The rationale of this model is to sum the contributions of every location in the MERO-viewed region on the Earth’s top of atmosphere (TOA) to the MERO sensor’s EPI, taking into account the anisotropy in the longwave radiance at the Earth TOA. Such anisotropy could be characterized by the TOA anisotropic factors, which can be derived from the Clouds and the Earth’s Radiant Energy System (CERES) angular distribution models (ADMs).
    [Show full text]
  • Libration of Venus and Mercury. Projections on the Terminator Of
    Projections on the Terminator of Mars and Martian Meteorology Item Type Article Authors Douglass, A.E. Download date 24/09/2021 13:15:20 Link to Item http://hdl.handle.net/10150/200042 3406 Lastly : the relative visibility of some of the markings the limb. As of two markings occupying the same part of changes with their position with regard to the observer. the disk, Hermione regio and Somnus regio for example, For instance Somnus regio, which was almost invisible when the one will change in one way, the other in an opposite in the centre of the disk, has grown more conspicuous as manner, the changes cannot be a matter of obscuration. it has approached the limb. Anteros regio and Adonis Secondly as the position of the markings has not shifted regio have similarly become less salient on nearing the with regard to the Sun, the change cannot be intrinsic. It central meridian. Other markings under like conditions of is due probably to a difference in the character of the rock position and illumination have not done so, but have re­ or soil, greater or less roughness for example, in one region mained as evident in the one aspect as in the other or, than in toe other. That in these markings we are looking down m Hermione regio, have been less conspicuous on nearing on a bare desert-like surface is what the observations imply. Lowell Observatory, I896 Oct. 21. Percival Lowell. Zusatz. Die von Herrn P. Lowell eingesandten Zeich­ to 2h2m, Oct.8 2hi9m-25m, Oct.8 4h42m, Oct.9 1h59m nungen, zu we\chen nachtraglich noch einige spatere, bis to 2h28"', Oct.9 2h48m-56m, Oct.9 4h5om-57m, Oct.9 zum 9· November reichende hinzugetreten sind, sind zum 5h3m-8m, Oct.I6 OhiSm-20m, Oct.16 sh-5hsm, Oct.q grosseren Theil auf den beiliegenden Tafeln wiedergegeben.
    [Show full text]