10 Tips for Moon Watchers Moon’S Brightness Are to Use High Magni- Fication Or to Add an Aperture Mask

Total Page:16

File Type:pdf, Size:1020Kb

10 Tips for Moon Watchers Moon’S Brightness Are to Use High Magni- Fication Or to Add an Aperture Mask Beginning observing You’ll find six labeled maps to help you observe the Moon at www.Astronomy.com/toc. Two other methods to reduce the 10 tips for Moon watchers Moon’s brightness are to use high magni- fication or to add an aperture mask. Mountain ranges, vast volcanic plains, and more than 1,500 named craters make the High powers restrict the field of view, Moon a target you’ll return to again and again. by Michael E. Bakich thereby reducing light throughput. An aperture mask causes your telescope to act like a much smaller instrument, but The Moon offers something for every amateur astronomer. It’s The terminator will help you at the same focal length. visible somewhere in the sky most nights, its changing face During the two favorable periods described in #3, presents features one night not seen the previous night, and it point your telescope anywhere along the line that Turn on your best vision doesn’t take an expensive setup to enjoy it. To help you get the divides the Moon’s light and dark portions. Astrono- Some years ago, my late observ- most out of viewing the Moon, I’ve developed these 10 simple 4mers call this line the terminator. Before Full Moon, the termi- ing buddy Jeff Medkeff intro- tips. Follow them, and you’ll be on your way to a lifetime of sat- nator marks where sunrise is occurring. After Full Moon, duced me to a better way of isfying lunar observing. sunset happens along the terminator. 7observing the Moon: Turn on a white Here you can catch the tops of mountains protruding just light behind you when you observe high enough to catch the Sun’s light while surrounded by lower between Quarter and Full phases. The Perform a “no optics” survey terrain that remains in shadow. Features along the terminator light should be moderately bright (I sug- The best way to begin your journey as a lunar observer is change in real time, and, during a night’s observing, the differ- gest something in the 60-watt range), but to learn the Moon’s major features. Head out with a sim- ences you’ll see through your telescope are striking. neither your eyes nor the eyepiece ple Moon map, and use just your eyes to identify our only should be in direct view of the fixture. 1natural satellite’s top attributes. The best scope for viewing the Moon The addition of white light suppresses As luck would have it, Stephen James O’Meara’s “Secret Sky” Nearly any telescope will do to observe lunar details. the eyes’ tendency to dark adapt at night. column in the January 2010 issue deals with this very point. He You’ll get great views of the Moon through a 2.4-inch Not dark adapting causes the eye to use gives a detailed description of naked-eye lunar features. Sub- refractor, an 8-inch reflector, or an 11-inch Schmidt- normal daytime vision, which is of much scribers to Astronomy can visit www.Astronomy.com/OMeara 5Cassegrain telescope. Observers with several options (but not a higher quality than dark-adapted night to view this column (and all of O’Meara’s columns) online. permanent observatory) usually pick a scope they can set up vision. In essence, you’ll see more detail many nights in a row. Observing on successive nights makes it because you’re viewing with a better part The Full Moon is for romance easier to follow the terminator’s progress. of your eye. Contrary to what you might think, Full Moon is not the best time to observe our natural satellite, although that’s Cut down the moonlight Work from a list the time when it’s at its brightest. When the Moon is Many observers employ either neutral density filters or One of the best ways to learn the 2full, the Sun lies behind Earth (as we face the Moon) shining variable polarizing filters to reduce the Moon’s light. I Moon is to undertake an observ- directly down on the lunar surface. Shadows are at their mini- prefer the latter because an observer can change how ing project. In the United States, mum lengths, and you can’t see much detail. You can still 6much light the filter transmits. 8the Astronomical League offers one such observe the Moon when it’s full, but the contrast between its project, the Lunar Observing Club. You’ll light and dark sections will be better at other times. learn a lot about our satellite as you work The Moon’s terminator is the line that divides the lit region from the dark part. Because it’s the line through a list of 100 lunar features. marking sunrise (before Full Moon) or sunset (after Full Moon), point your telescope toward it to see When should you observe the Moon? the best shadow details. North is up in this image, so you’ll see it like this with your eyes. Jamie Cooper View the Moon at “prime time” To receive a certificate, you must be a Two intervals during the lunar “month” (from one New During the next year, you’ll get your best views of the Moon by member of the league, either individually selecting dates in the following table. The greatest details will Moon to the next) are best for observers. The first or through an astronomy club. For details about the club, see lie on the sunlit portion of the Moon closest to the terminator. Shoot the Moon begins shortly after New Moon and continues until 2 Point your telescope there for the best views. www.astroleague.org/al/obsclubs/lunar/lunar1.html. How can a celestial object that’s so easy to photo- 3days past First Quarter. Amateur astronomers tend to favor this In Britain, the British Astronomical Association coordinates graph be so difficult to photograph well? The span because the Moon lies in the evening sky. In the evening sky In the morning sky lunar observing. Visit www.baalunarsection.org.uk. Moon is large and bright (only the Sun outshines An equally good observing period starts about 2 days before February 16–24 February 3–12 10it), and you can use any camera connected to any size telescope Last Quarter and goes until the Moon lies so close to the Sun March 17–25 March 5–13 Dig for the details to image it. That’s the easy part. April 16–23 April 4–12 that it’s lost in morning twilight. At these times, shadows are Of the 1,940 named lunar features, 1,545 are craters. But the Moon also contains vast areas of low contrast that May 16–22 May 4–12 longer and features stand out in sharp relief. Another benefit Challenge yourself to see either how small a crater you have little color differential. Recording those regions so they June 14–21 June 2–10 you’ll get when you observe the Last Quarter Moon is that the can detect or how many craterlets in a given area you look like what your eyes see is the hard part. July 13–20 July 2–9 atmosphere before dawn usually appears steadier than it does 9can observe. You’ll need a detailed Moon map for this project. Luckily, we live in the digital age. Unlike when astrophotog- August 12–18 August 30–September 6 after sunset. After sunset, a lot of heat remains in the atmo- September 10–17 September 29–October 5 For the second challenge, you can choose a lunar sea, but raphers used film, it costs nothing extra to take 200 images sphere. As hot air rises and cooler air falls, the resulting turbu- October 9–16 October 28–November 4 usually a large, flat-bottomed crater works best. For example, if instead of just one. Examine them, throw away what you don’t lence leads to unstable air — what observers call bad seeing. November 8–15 November 26–December 3 you search the large crater Plato, you’ll find four craterlets on its like, change one or more parameters (including the techniques December 7–15 December 26–January 2, 2011 floor, each about 1.2 miles (2 kilometers) across. Lunar observ- you used to process the images) each time, and shoot some Michael E. Bakich is a senior editor of Astronomy. ers consider seeing these craters a test for a 6-inch telescope. more as you continue to perfect your techniques. © 2011 Kalmbach Publishing Co. This material may not be reproduced in any form • 52 Astronomywithout February permission 2010 from the publisher. www.Astronomy.com www.Astronomy.com 53.
Recommended publications
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • TAKE-HOME EXP. # 1 Naked-Eye Observations of Stars and Planets
    TAKE-HOME EXP. # 1 Naked-Eye Observations of Stars and Planets Naked-eye observations of some of the brightest stars, constellations, and planets can help us locate our place in the universe. Such observations—plus our imaginations—allow us to actively participate in the movements of the universe. During the last few thousand years, what humans have said about the universe based on naked-eye observations of the night and day skies reveals the tentativeness of physical models based solely on sensory perception. Create, in your mind's eye, the fixed celestial sphere. See yourself standing on the Earth at Observer's the center of this sphere. As you make the zenith + star-pattern drawings of this experiment, your perception may argue that the entire sphere of fixed star patterns is moving around the Earth and you. To break that illusion, you probably have to consciously shift your frame of º reference—your mental viewpoint, in this 50 up from the horizon case— to a point far above the Earth. From South there you can watch the globe of Earth slowly Observer on local horizon plane rotate you , while the universe remains essentially stationary during your viewing It is you that turns slowly underneath a fixed and unchanging pattern of lights. Naked eye observations and imagination has led to constellation names like "Big Bear" or "Big Dipper". These names don't change anything physically —except, and very importantly, they aid humans' memory and use of star patterns. A. Overview This experiment involves going outside to a location where you can observe a simple pattern of stars, including at least 2, but preferably 3 or 4 stars.
    [Show full text]
  • Science in Nasa's Vision for Space Exploration
    SCIENCE IN NASA’S VISION FOR SPACE EXPLORATION SCIENCE IN NASA’S VISION FOR SPACE EXPLORATION Committee on the Scientific Context for Space Exploration Space Studies Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by Contract NASW 01001 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors. International Standard Book Number 0-309-09593-X (Book) International Standard Book Number 0-309-54880-2 (PDF) Copies of this report are available free of charge from Space Studies Board National Research Council The Keck Center of the National Academies 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2005 by the National Academy of Sciences.
    [Show full text]
  • An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
    2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D.
    [Show full text]
  • Rev 06/2018 ASTRONOMY EXAM CONTENT OUTLINE the Following
    ASTRONOMY EXAM INFORMATION CREDIT RECOMMENDATIONS This exam was developed to enable schools to award The American Council on Education’s College credit to students for knowledge equivalent to that learned Credit Recommendation Service (ACE CREDIT) by students taking the course. This examination includes has evaluated the DSST test development history of the Science of Astronomy, Astrophysics, process and content of this exam. It has made the Celestial Systems, the Science of Light, Planetary following recommendations: Systems, Nature and Evolution of the Sun and Stars, Galaxies and the Universe. Area or Course Equivalent: Astronomy Level: 3 Lower Level Baccalaureate The exam contains 100 questions to be answered in 2 Amount of Credit: 3 Semester Hours hours. Some of these are pretest questions that will not Minimum Score: 400 be scored. Source: www.acenet.edu Form Codes: SQ500, SR500 EXAM CONTENT OUTLINE The following is an outline of the content areas covered in the examination. The approximate percentage of the examination devoted to each content area is also noted. I. Introduction to the Science of Astronomy – 5% a. Nature and methods of science b. Applications of scientific thinking c. History of early astronomy II. Astrophysics - 15% a. Kepler’s laws and orbits b. Newtonian physics and gravity c. Relativity III. Celestial Systems – 10% a. Celestial motions b. Earth and the Moon c. Seasons, calendar and time keeping IV. The Science of Light – 15% a. The electromagnetic spectrum b. Telescopes and the measurement of light c. Spectroscopy d. Blackbody radiation V. Planetary Systems: Our Solar System and Others– 20% a. Contents of our solar system b.
    [Show full text]
  • The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 a Good Way to Start – Find North
    The expression "dog days" refers to the period from July 3 through Aug. 11 when our brightest night star, SIRIUS (aka the dog star), rises in conjunction* with the sun. Conjunction, in astronomy, is defined as the apparent meeting or passing of two celestial bodies. TAAS Fabulous Fifty A program for those new to astronomy Friday Evening, July 20, 2018, 8:00 pm All TAAS and other new and not so new astronomers are welcome. What is the TAAS Fabulous 50 Program? It is a set of 4 meetings spread across a calendar year in which a beginner to astronomy learns to locate 50 of the most prominent night sky objects visible to the naked eye. These include stars, constellations, asterisms, and Messier objects. Methodology 1. Meeting dates for each season in year 2018 Winter Jan 19 Spring Apr 20 Summer Jul 20 Fall Oct 19 2. Locate the brightest and easiest to observe stars and associated constellations 3. Add new prominent constellations for each season Tonight’s Schedule 8:00 pm – We meet inside for a slide presentation overview of the Summer sky. 8:40 pm – View night sky outside The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 A Good Way to Start – Find North Polaris North Star Polaris is about the 50th brightest star. It appears isolated making it easy to identify. Circumpolar Stars Polaris Horizon Line Albuquerque -- 35° N Circumpolar Stars Capella the Goat Star AS THE WORLD TURNS The Circle of Perpetual Apparition for Albuquerque Deneb 1 URSA MINOR 2 3 2 URSA MAJOR & Vega BIG DIPPER 1 3 Draco 4 Camelopardalis 6 4 Deneb 5 CASSIOPEIA 5 6 Cepheus Capella the Goat Star 2 3 1 Draco Ursa Minor Ursa Major 6 Camelopardalis 4 Cassiopeia 5 Cepheus Clock and Calendar A single map of the stars can show the places of the stars at different hours and months of the year in consequence of the earth’s two primary movements: Daily Clock The rotation of the earth on it's own axis amounts to 360 degrees in 24 hours, or 15 degrees per hour (360/24).
    [Show full text]
  • Polar Winds from VIIRS
    Polar Winds from VIIRS Jeff Key*, Richard Dworak+, Dave Santek+, Wayne Bresky@, Steve Wanzong+ ! Jaime Daniels#, Andrew Bailey@, Chris Velden+, Hongming Qi^, Pete Keehn#, Walter Wolf#! ! *NOAA/National Environmental Satellite, Data, and Information Service, Madison, WI! + Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison! #NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, MD! ^NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, MD! @I.M. Systems Group (IMSG), Rockville, MD USA! 11th International Winds Workshop, Auckland, 20-24 February 2012 The Polar Wind Product Suite MODIS Polar Winds LEO-GEO Polar Winds •" Aqua and Terra separately, bent pipe •" Combination of may geostationary data source Operational and polar-orbiting imagers •" Aqua and Terra combined, bent pipe •" Fills the 60-70 degree latitude gap •" Direct broadcast (DB) at EW –" McMurdo, Antarctica (Terra, Aqua) VIIRS Polar Winds –" Tromsø, Norway (Terra only) •" (Details on following slides) –" Sodankylä, Finland (Terra only) –" Fairbanks, Alaska (Terra, from UAF) EW AVHRR Polar Winds •" Global Area Coverage (GAC) for NOAA-15, -16, -17, -18, -19 Operational •" Metop Operational •" HRPT (High Resolution Picture Transmission = direct readout) at –" Barrow, Alaska, NOAA-16, -17, -18, -19 –" Rothera, Antarctica, NOAA-17, -18, -19 •" Historical GAC winds, 1982-2009. Two satellites throughout most of the time series. Polar Wind Product History Operational NWP Users of Polar Winds! 13 NWP centers in 9 countries: •" European Centre for Medium-Range Weather Forecasts (ECMWF) - since Jan 2003.! •" NASA Global Modeling and Assimilation Office (GMAO) - since early 2003.! •" Deutscher Wetterdienst (DWD) – MODIS since Nov 2003. DB and AVHRR.! •" Japan Meteorological Agency (JMA), Arctic only - since May 2004.! •" Canadian Meteorological Centre (CMC) – since Sep 2004.
    [Show full text]
  • Elements of Astronomy and Cosmology Outline 1
    ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the
    [Show full text]
  • The Solar System Cause Impact Craters
    ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal.
    [Show full text]
  • NATURE [Nov. 22, R877 Addressed to Dr
    66 NATURE [Nov. 22, r877 addressed to Dr. J annetaz, Secretaire-general, rue des the accuracy to which observers had attained. by the old Grands Augustins, 7, Paris, France; and all moneys sent method; but in the rude nature of the telescope itself in to Dr. Bioche, at the same address. the early times, before the introductio.n of the micrometer ; the modern accuracy has been arnved at step by step. THE MODERN TELESCOPE HE gain to astronomy from the discovery of the T telescope has been twofold. We. first, the. gain to physical astronomy from the magmficauon of obJects; and secondly, the gain to astronomy of position from the magnification, so to speak, of space, which enables minute ·portions of it to be most accurately quantified. FtG. 1.-A portion of the constellation Gemini seen with the naked eye. Looking back, nothing is more curious in the history of astronomy than the rooted objection which Revel and Let us see what the telescope does for us in the others showed to apply the telescope to the pointers and domain of that grand physical astronomy which deals pinnules of the instruments used in their day ; but doubt- with the number and appearances of the various bodies less we must look for the explanation of this not only in 1 which people space . FJG. 2.-The same region, as seeu through a large telescope. Let us, to begin with, try to see how the telescope helps the moon with a telescope of that magnifying power pretty us in the matter of observations of the sun.
    [Show full text]
  • Libration of Venus and Mercury. Projections on the Terminator Of
    Projections on the Terminator of Mars and Martian Meteorology Item Type Article Authors Douglass, A.E. Download date 24/09/2021 13:15:20 Link to Item http://hdl.handle.net/10150/200042 3406 Lastly : the relative visibility of some of the markings the limb. As of two markings occupying the same part of changes with their position with regard to the observer. the disk, Hermione regio and Somnus regio for example, For instance Somnus regio, which was almost invisible when the one will change in one way, the other in an opposite in the centre of the disk, has grown more conspicuous as manner, the changes cannot be a matter of obscuration. it has approached the limb. Anteros regio and Adonis Secondly as the position of the markings has not shifted regio have similarly become less salient on nearing the with regard to the Sun, the change cannot be intrinsic. It central meridian. Other markings under like conditions of is due probably to a difference in the character of the rock position and illumination have not done so, but have re­ or soil, greater or less roughness for example, in one region mained as evident in the one aspect as in the other or, than in toe other. That in these markings we are looking down m Hermione regio, have been less conspicuous on nearing on a bare desert-like surface is what the observations imply. Lowell Observatory, I896 Oct. 21. Percival Lowell. Zusatz. Die von Herrn P. Lowell eingesandten Zeich­ to 2h2m, Oct.8 2hi9m-25m, Oct.8 4h42m, Oct.9 1h59m nungen, zu we\chen nachtraglich noch einige spatere, bis to 2h28"', Oct.9 2h48m-56m, Oct.9 4h5om-57m, Oct.9 zum 9· November reichende hinzugetreten sind, sind zum 5h3m-8m, Oct.I6 OhiSm-20m, Oct.16 sh-5hsm, Oct.q grosseren Theil auf den beiliegenden Tafeln wiedergegeben.
    [Show full text]