Duplications in Addition to Terminal Deletions Are Present in a Proportion of Ring Chromosomes: Clues to the Mechanisms of Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cellular and Synaptic Network Defects in Autism
Cellular and synaptic network defects in autism The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Peca, Joao, and Guoping Feng. “Cellular and Synaptic Network Defects in Autism.” Current Opinion in Neurobiology 22, no. 5 (October 2012): 866–872. As Published http://dx.doi.org/10.1016/j.conb.2012.02.015 Publisher Elsevier Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/102179 Terms of Use Creative Commons Attribution-Noncommercial-NoDerivatives Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ NIH Public Access Author Manuscript Curr Opin Neurobiol. Author manuscript; available in PMC 2013 October 01. Published in final edited form as: Curr Opin Neurobiol. 2012 October ; 22(5): 866–872. doi:10.1016/j.conb.2012.02.015. Cellular and synaptic network defects in autism João Peça1 and Guoping Feng1,2 $watermark-text1McGovern $watermark-text Institute $watermark-text for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA Abstract Many candidate genes are now thought to confer susceptibility to autism spectrum disorder (ASD). Here we review four interrelated complexes, each composed of multiple families of genes that functionally coalesce on common cellular pathways. We illustrate a common thread in the organization of glutamatergic synapses and suggest a link between genes involved in Tuberous Sclerosis Complex, Fragile X syndrome, Angelman syndrome and several synaptic ASD candidate genes. When viewed in this context, progress in deciphering the molecular architecture of cellular protein-protein interactions together with the unraveling of synaptic dysfunction in neural networks may prove pivotal to advancing our understanding of ASDs. -
Chromosome 18
Chromosome 18 Description Humans normally have 46 chromosomes in each cell, divided into 23 pairs. Two copies of chromosome 18, one copy inherited from each parent, form one of the pairs. Chromosome 18 spans about 78 million DNA building blocks (base pairs) and represents approximately 2.5 percent of the total DNA in cells. Identifying genes on each chromosome is an active area of genetic research. Because researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. Chromosome 18 likely contains 200 to 300 genes that provide instructions for making proteins. These proteins perform a variety of different roles in the body. Health Conditions Related to Chromosomal Changes The following chromosomal conditions are associated with changes in the structure or number of copies of chromosome 18. Distal 18q deletion syndrome Distal 18q deletion syndrome occurs when a piece of the long (q) arm of chromosome 18 is missing. The term "distal" means that the missing piece (deletion) occurs near one end of the chromosome arm. The signs and symptoms of distal 18q deletion syndrome include delayed development and learning disabilities, short stature, weak muscle tone ( hypotonia), foot abnormalities, and a wide variety of other features. The deletion that causes distal 18q deletion syndrome can occur anywhere between a region called 18q21 and the end of the chromosome. The size of the deletion varies among affected individuals. The signs and symptoms of distal 18q deletion syndrome are thought to be related to the loss of multiple genes from this part of the long arm of chromosome 18. -
22Q13.3 Deletion Syndrome
22q13.3 deletion syndrome Description 22q13.3 deletion syndrome, which is also known as Phelan-McDermid syndrome, is a disorder caused by the loss of a small piece of chromosome 22. The deletion occurs near the end of the chromosome at a location designated q13.3. The features of 22q13.3 deletion syndrome vary widely and involve many parts of the body. Characteristic signs and symptoms include developmental delay, moderate to profound intellectual disability, decreased muscle tone (hypotonia), and absent or delayed speech. Some people with this condition have autism or autistic-like behavior that affects communication and social interaction, such as poor eye contact, sensitivity to touch, and aggressive behaviors. They may also chew on non-food items such as clothing. Less frequently, people with this condition have seizures or lose skills they had already acquired (developmental regression). Individuals with 22q13.3 deletion syndrome tend to have a decreased sensitivity to pain. Many also have a reduced ability to sweat, which can lead to a greater risk of overheating and dehydration. Some people with this condition have episodes of frequent vomiting and nausea (cyclic vomiting) and backflow of stomach acids into the esophagus (gastroesophageal reflux). People with 22q13.3 deletion syndrome typically have distinctive facial features, including a long, narrow head; prominent ears; a pointed chin; droopy eyelids (ptosis); and deep-set eyes. Other physical features seen with this condition include large and fleshy hands and/or feet, a fusion of the second and third toes (syndactyly), and small or abnormal toenails. Some affected individuals have rapid (accelerated) growth. -
Ring Chromosome 18 in a Patient with Multiple Anomalies* CATHERINE G
J Med Genet: first published as 10.1136/jmg.4.2.117 on 1 June 1967. Downloaded from 7. med. Genet. (1967). 4, 117. Ring Chromosome 18 in a Patient with Multiple Anomalies* CATHERINE G. PALMER, NUZHAT FAREED, and A. DONALD MERRITT From the Department of Medical Genetics, Indiana University School of Medicine, Indianapolis, Indiana, U.S.A. Ring chromosomes, long of interest in cytogene- At the time of evaluation, the patient (Fig. 1) was 10 tics, have been intensively studied in corn and years old, mentally retarded, and hyperactive. He was Drosophila (McClintock, 1932, 1938; Morgan, 1933; co-operative and able to speak with a three-word syntax. Battacharya, 1950) and also described in Crepis, He had a kyphotic posture and broad-based, balanced gait. The height was 126 cm., weight 212 kg. (both Tulipa, Tradescantia, and other species. In the below the third centile). past few years, a number of reports of ring chromo- His occipital-frontal circumference was 49 cm. (two somes in man have appeared (Table I). We recently standard deviations below the normal). There was encountered a mentally retarded patient with bony roughness over the posterior occipital region. multiple congenital anomalies, in a high proportion The neck had a slight extra fold of skin over the trape- of whose cells we found a ring chromosome 18. zius muscles suggesting webbing, and there was a low The clinical expression of patients with 18 long hairline posteriorly. Ocular findings included an anti- (Lejeune, Berger, Lafourcade, and Rethore, 1966) mongoloid slant, hypertelorism, exotropia, nystagmus, and short arm deletions (Grouchy, Bonnette, and and a normal fundoscopic appearance. -
Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y. -
Abstracts from the 51St European Society of Human Genetics Conference: Electronic Posters
European Journal of Human Genetics (2019) 27:870–1041 https://doi.org/10.1038/s41431-019-0408-3 MEETING ABSTRACTS Abstracts from the 51st European Society of Human Genetics Conference: Electronic Posters © European Society of Human Genetics 2019 June 16–19, 2018, Fiera Milano Congressi, Milan Italy Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered "Modest". Contributions above EUR 10 000.- per year are considered "Significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal Genetics then compared this data to de novo cases where research based PO studies were completed (N=57) in NY. E-P01.01 Results: MFSIQ (66.4) for familial deletions was Parent of origin in familial 22q11.2 deletions impacts full statistically lower (p = .01) than for de novo deletions scale intelligence quotient scores (N=399, MFSIQ=76.2). MFSIQ for children with mater- nally inherited deletions (63.7) was statistically lower D. E. McGinn1,2, M. Unolt3,4, T. B. Crowley1, B. S. Emanuel1,5, (p = .03) than for paternally inherited deletions (72.0). As E. H. Zackai1,5, E. Moss1, B. Morrow6, B. Nowakowska7,J. compared with the NY cohort where the MFSIQ for Vermeesch8, A. -
Double-Strand Breaks Are Not the Main Cause of Spontaneous Sister
bioRxiv preprint doi: https://doi.org/10.1101/164756; this version posted July 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Double-strand breaks are not the main cause of spontaneous sister chromatid exchange in wild-type yeast cells Clémence Claussin1, David Porubský1, Diana C.J. Spierings1, Nancy Halsema1, Stefan Rentas2, Victor Guryev1, Peter M. Lansdorp1,2,3,*, and Michael Chang1,* 1European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands 2Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada 3Department of Medical Genetics, University of British Columbia, Vancouver, Canada *Correspondence: [email protected] (P.M.L.); [email protected] (M.C.) 1 bioRxiv preprint doi: https://doi.org/10.1101/164756; this version posted July 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. -
The Role of Molecular Testing in the Diagnosis of Cutaneous Soft Tissue Tumors Alison L
The Role of Molecular Testing in the Diagnosis of Cutaneous Soft Tissue Tumors Alison L. Cheah, MBBS, and Steven D. Billings, MD A number of soft tissue tumors are characterized by recurring genetic abnormalities. The identification of these abnormalities has advanced our understanding of the biology of these tumors and has led to the development of molecular tests that are helpful diagnos- tically. This review will focus on the application of molecular diagnostic testing in select mesenchymal tumors of the dermis and subcutis. Semin Cutan Med Surg 31:221-233 © 2012 Frontline Medical Communications KEYWORDS dermatofibrosarcoma protuberans, angiomatoid fibrous histiocytoma, clear cell sarcoma, low-grade fibromyxoid sarcoma, epithelioid hemangioendothelioma, postradia- tion angiosarcoma, Ewing sarcoma, FISH, cytogenetics here have been great advances in recent years in the neck. The typical presentation is of a nodule with slow but Tgenetic characterization of cutaneous mesenchymal tu- persistent growth, often over several years. DFSP has a pro- mors. A growing number of mesenchymal neoplasms are pensity for local recurrence, but only rarely metastasizes. being defined by recurring genetic events that make up a Management requires adequate margin control either by so-called genetic signature, most often in the form of chro- wide-local excision or Mohs surgery, the choice of which mosomal translocations that result in specific oncogenic fu- depends on individual tumor and patient characteristics as sion genes. Knowledge and identification of these recurrent well as institutional experience.1,2 molecular aberrations allow for more accurate diagnosis of Histologically, DFSP is characterized by a tight storiform mesenchymal tumors and are advancing our understanding or cartwheel growth pattern of uniform and relatively bland of their underlying biology. -
Review and Hypothesis: Syndromes with Severe Intrauterine Growth
RESEARCH REVIEW Review and Hypothesis: Syndromes With Severe Intrauterine Growth Restriction and Very Short Stature—Are They Related to the Epigenetic Mechanism(s) of Fetal Survival Involved in the Developmental Origins of Adult Health and Disease? Judith G. Hall* Departments of Medical Genetics and Pediatrics, UBC and Children’s and Women’s Health Centre of British Columbia Vancouver, British Columbia, Canada Received 4 June 2009; Accepted 29 August 2009 Diagnosing the specific type of severe intrauterine growth restriction (IUGR) that also has post-birth growth restriction How to Cite this Article: is often difficult. Eight relatively common syndromes are dis- Hall JG. 2010. Review and hypothesis: cussed identifying their unique distinguishing features, over- Syndromes with severe intrauterine growth lapping features, and those features common to all eight restriction and very short stature—are they syndromes. Many of these signs take a few years to develop and related to the epigenetic mechanism(s) of fetal the lifetime natural history of the disorders has not yet been survival involved in the developmental completely clarified. The theory behind developmental origins of origins of adult health and disease? adult health and disease suggests that there are mammalian Am J Med Genet Part A 152A:512–527. epigenetic fetal survival mechanisms that downregulate fetal growth, both in order for the fetus to survive until birth and to prepare it for a restricted extra-uterine environment, and that these mechanisms have long lasting effects on the adult health of for a restricted extra-uterine environment [Gluckman and Hanson, the individual. Silver–Russell syndrome phenotype has recently 2005; Gluckman et al., 2008]. -
Early ACCESS Diagnosed Conditions List
Iowa Early ACCESS Diagnosed Conditions Eligibility List List adapted with permission from Early Intervention Colorado To search for a specific word type "Ctrl F" to use the "Find" function. Is this diagnosis automatically eligible for Early Medical Diagnosis Name Other Names for the Diagnosis and Additional Diagnosis Information ACCESS? 6q terminal deletion syndrome Yes Achondrogenesis I Parenti-Fraccaro Yes Achondrogenesis II Langer-Saldino Yes Schinzel Acrocallosal syndrome; ACLS; ACS; Hallux duplication, postaxial polydactyly, and absence of the corpus Acrocallosal syndrome, Schinzel Type callosum Yes Acrodysplasia; Arkless-Graham syndrome; Maroteaux-Malamut syndrome; Nasal hypoplasia-peripheral dysostosis-intellectual disability syndrome; Peripheral dysostosis-nasal hypoplasia-intellectual disability (PNM) Acrodysostosis syndrome Yes ALD; AMN; X-ALD; Addison disease and cerebral sclerosis; Adrenomyeloneuropathy; Siemerling-creutzfeldt disease; Bronze schilder disease; Schilder disease; Melanodermic Leukodystrophy; sudanophilic leukodystrophy; Adrenoleukodystrophy Pelizaeus-Merzbacher disease Yes Agenesis of Corpus Callosum Absence of the corpus callosum; Hypogenesis of the corpus callosum; Dysplastic corpus callosum Yes Agenesis of Corpus Callosum and Chorioretinal Abnormality; Agenesis of Corpus Callosum With Chorioretinitis Abnormality; Agenesis of Corpus Callosum With Infantile Spasms And Ocular Anomalies; Chorioretinal Anomalies Aicardi syndrome with Agenesis Yes Alexander Disease Yes Allan Herndon syndrome Allan-Herndon-Dudley -
Multiple Forms of Atypical Rearrangements Generating Supernumerary Derivative Chromosome 15
Thomas Jefferson University Jefferson Digital Commons Department of Pathology, Anatomy, and Cell Department of Pathology, Anatomy, and Cell Biology Faculty Papers Biology 1-1-2008 Multiple forms of atypical rearrangements generating supernumerary derivative chromosome 15. Nicholas J Wang Alexander S Parokonny Karen N Thatcher Jennette Driscoll Barbara M Malone See next page for additional authors Follow this and additional works at: https://jdc.jefferson.edu/pacbfp Part of the Medical Cell Biology Commons, Medical Genetics Commons, and the Pediatrics Commons Let us know how access to this document benefits ouy Recommended Citation Wang, Nicholas J; Parokonny, Alexander S; Thatcher, Karen N; Driscoll, Jennette; Malone, Barbara M; Dorrani, Naghmeh; Sigman, Marian; LaSalle, Janine M; and Schanen, N Carolyn, "Multiple forms of atypical rearrangements generating supernumerary derivative chromosome 15." (2008). Department of Pathology, Anatomy, and Cell Biology Faculty Papers. Paper 36. https://jdc.jefferson.edu/pacbfp/36 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Pathology, Anatomy, and Cell Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. -
Compound Phenotype in a Girl with R(22), Concomitant Microdeletion 22Q13.32- Q13.33 and Mosaic Monosomy 22 Anna A
Kashevarova et al. Molecular Cytogenetics (2018) 11:26 https://doi.org/10.1186/s13039-018-0375-3 RESEARCH Open Access Compound phenotype in a girl with r(22), concomitant microdeletion 22q13.32- q13.33 and mosaic monosomy 22 Anna A. Kashevarova1* , Elena O. Belyaeva1, Aleksandr M. Nikonov2, Olga V. Plotnikova2, Nikolay A. Skryabin1, Tatyana V. Nikitina1, Stanislav A. Vasilyev1, Yulia S. Yakovleva1,3, Nadezda P. Babushkina1, Ekaterina N. Tolmacheva1, Mariya E. Lopatkina1, Renata R. Savchenko1, Lyudmila P. Nazarenko1,3 and Igor N. Lebedev1,3 Abstract Background: Ring chromosome instability may influence a patient’s phenotype and challenge its interpretation. Results: Here, we report a 4-year-old girl with a compound phenotype. Cytogenetic analysis revealed her karyotype to be 46,XX,r(22). aCGH identified a 180 kb 22q13.32 duplication, a de novo 2.024 Mb subtelomeric 22q13.32-q13.33 deletion, which is associated with Phelan-McDermid syndrome, and a maternal single gene 382-kb TUSC7 deletion of uncertain clinical significance located in the region of the 3q13.31 deletion syndrome. All chromosomal aberrations were confirmed by real-time PCR in lymphocytes and detected in skin fibroblasts. The deletions were also found in the buccal epithelium. According to FISH analysis, 8% and 24% of the patient’s lymphocytes and skin fibroblasts, respectively, had monosomy 22. Conclusions: We believe that a combination of 22q13.32-q13.33 deletion and monosomy 22 in a portion of cells can better define the clinical phenotype of the patient. Importantly, the in vivo presence of monosomic cells indicates ring chromosome instability, which may favor karyotype correction that is significant for the development of chromosomal therapy protocols.