Outstanding: a Multi-Perspective Travel Approach for Virtual Reality Games

Total Page:16

File Type:pdf, Size:1020Kb

Outstanding: a Multi-Perspective Travel Approach for Virtual Reality Games Outstanding: A Multi-Perspective Travel Approach for Virtual Reality Games Sebastian Cmentowski, Andrey Krekhov, Jens Krüger High Performance Computing Group University of Duisburg-Essen, Germany {sebastian.cmentowski, andrey.krekhov, jens.krueger}@uni-due.de Figure 1. Our proposed navigation technique allows players to switch to a scaled third-person perspective on demand and control a virtual avatar to cover large distances in open world VR scenarios. ABSTRACT demand. From above, players can command their avatar and In virtual reality games, players dive into fictional environ- initiate travels over large distance. Our evaluation reveals a ments and can experience a compelling and immersive world. significant increase in spatial orientation while avoiding cyber- State-of-the-art VR systems allow for natural and intuitive nav- sickness and preserving presence, enjoyment, and competence. igation through physical walking. However, the tracking space We summarize our findings in a set of comprehensive design is still limited, and viable alternatives are required to reach fur- guidelines to help developers integrate our technique. ther virtual destinations. Our work focuses on the exploration arXiv:1908.00379v1 [cs.HC] 1 Aug 2019 of vast open worlds – an area where existing local naviga- Author Keywords tion approaches such as the arc-based teleport are not ideally Virtual reality games; navigation; perspectives; virtual avatar; suited and world-in-miniature techniques potentially reduce orientation; virtual body size; world-in-miniature presence. We present a novel alternative for open environ- ments: Our idea is to equip players with the ability to switch CCS Concepts from first-person to a third-person bird’s eye perspective on •Human-centered computing ! Virtual reality; •Software and its engineering ! Interactive games; Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed INTRODUCTION for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the Virtual reality allows players to explore fictional environments author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or in an immersive and natural manner, to experience a feeling of republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. being there, and almost to forget the real surrounding. Contin- CHI PLAY ’19, October 22–25, 2019, Barcelona, Spain uous technical improvements and faster rendering approaches © 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. make it possible to push the boundaries of VR even further and ISBN 978-1-4503-6688-5/19/10. $15.00 develop vast open environments that could be explored freely DOI: https://doi.org/10.1145/3311350.3347183 and immersively. However, large and detailed VR worlds Two concepts seem to be of utmost importance when dealing require proper techniques to travel these landscapes. with VR applications: immersion [8] and presence [18]. To stay in line with the majority of recent research, we use the Physical walking using room-scale tracking offers an intuitive term immersion to describe the technical quality of a VR and natural kind of navigation [40]. However, the available setup [6, 45]. Immersive setups can induce a feeling of being walking space is usually confined to the size of a living room. there, which is commonly called presence. This distinction is Game developers overcome this limitation by adding virtual further formalized by Slater et al. [46], Lombard et al. [33] and locomotion techniques such as the prominent teleport (see IJsselsteijn et al. [21]. For a particular focus on locomotion- Figure5). Most of these approaches were designed for local related presence, we point to the work by Slater et al. [47]. navigation and are not ideally suited for exploring large and open worlds. Only a few exceptions exist, such as the world- in-miniature (WIM) [49], where players use a miniature model Cybersickness of the virtual scenario to teleport themselves to distant places. A typical problem most VR applications have to tackle is Nevertheless, this approach relies on an artificial user interface the occurrence of cybersickness [29]. Even though often and does not provide an opportunity to explore an environment being used synonymously with the effect of simulator sick- freely and continuously which potentially reduces the players’ ness [25], both are different strains of the motion sickness phe- possibility to immerse themselves in the virtual world. nomenon [35, 20, 36]. Typical symptoms such as headaches, Our research closes the gap between local teleportation and eye strain, sweating, nausea or vomiting arise due to a mis- WIM relocation by introducing a novel approach for con- match of our vestibular-ocular system. tinuous long-distance traveling. Our main idea is to switch Humans sense acceleration using their vestibular system which dynamically between a first-person and a third-person bird’s usually matches the sensory input gathered from the visual eye perspective on demand. The first-person mode offers a system [29]. In the case of a mismatch between these signals, familiar experience and is used to explore the local surround- the resulting symptoms differ in strength and form [39]. The ing and interact with the environment. In the third-person reason for this body reaction remains unsolved, but so far mode, players see and command their avatar from a bird’s eye three major prominent theories have been established: sensory perspective, as depicted in Figure1. conflict theory (most accepted), poison theory, and postural Using the correct perspective for every situation offers impor- instability theory [29]. The difference between both specific tant benefits [15]: first-person is suited best for interaction- strains of motion sickness was extensively explored by Stan- intensive tasks while third-person provides a better overview. ney et al. [48]: Simulator sickness usually occurs when a We combine both perspectives to achieve an intuitive navi- simulator, typically used for pilot or astronaut training, is not gation approach. Moreover, we extend this basic concept by correctly configured [24]. This technical problem can lead additional features to enhance the experience further: Virtual to rather mild oculomotor and nausea symptoms. In contrast, scaling of the player in third-person mode is used to improve cybersickness is caused by a broad set of reasons ranging from the spatial orientation and deliver a feeling of moving through technological issues such as flickering and lags to a wrong a miniature world while commanding an avatar. Addition- visual image being caused by mismatches in movement, eye ally, we use a smooth and fast transformation between both distance or vergence. The results are mainly severe symptoms perspectives to prevent cybersickness and to emphasize the such as disorientation and nausea [48]. impression of leaving and re-embodying the virtual avatar. Additionally, Hettinger et al. [19] introduced the phenomenon Our main contribution is the proposed navigation technique us- of vection as a possible source for cybersickness. Vection is a ing dynamic perspective switching. We validate this approach feeling of moving that is solely induced by the visual system by comparing it against the arc-based teleport using a 3D ad- and usually experienced when sitting on a standing train and venture game. Our experiments reveal significant benefits to watching the adjacent train accelerating. This effect is sup- spatial orientation and overview while preserving equal levels ported by different factors listed by La Viola Jr [29]: the field of presence, enjoyment, and competence. Additionally, our im- of view (FOV) of the HMD, the optical flow rate, the degree provements prevent adverse effects through cybersickness. As of movement and proximity of objects. In short, close and the final step, we discuss the unique strengths and weaknesses fast-moving objects filling the player’s view combined with of our proposed approach and condense these into a set of a big field of view tend to amplify the amount of perceived design implications that can help developers and practitioners. vection and potential cybersickness. Consequently, Fernandes et al. [13] propose limiting the FOV to reduce cybersickness. A broader discussion about the influence of the FOV on cyber- RELATED WORK sickness can be found in the work of Lin et al. [32]. Our work belongs to the virtual reality research with a partic- ular focus on VR games and locomotion techniques. Conse- Additionally, recent studies have shown that the accumu- quently, we first introduce basic concepts and issues behind lated flow over time, perceived via central and peripheral VR games such as immersion, presence, and cybersickness. vision, forms a critical factor in the occurrence of motion Subsequently, we outline the current state of the art in VR sickness [31]. Instead of avoiding cybersickness at all costs, locomotion research. Since our technique centers around the von Mammen et al. [53] showed that games with artificially concept of perspective-switching and dynamic virtual rescal- induced cybersickness can still be enjoyable. This leads to ing, we also provide the necessary background to these topics. the conclusion
Recommended publications
  • Jason T. Jaslow 201-679-0733 • [email protected] • Emergereality.Com • Linkedin.Com/In/Jasonjaslow • Github.Com/Jjaslow
    Jason T. Jaslow 201-679-0733 • [email protected] • emergereality.com • linkedin.com/in/jasonjaslow • github.com/jjaslow Qualifications Profile Versatile professional with a wide range of expertise spanning more than 20 years including multiple startup experiences with successful exits, business management, marketing, data analytics, and software development. • Skilled in planning, constructing, and launching pioneering business application tools through a strong comprehension of assorted complex Augmented Reality (AR) and Virtual Reality (VR) technologies. • Adept in all components of product development, customer relationship management, operations analysis, and continuous process improvement. • Exceptionally analytical with a dedication to excellence at all organizational levels. • Talent for assessing and swiftly resolving complicated technical discrepancies. Core Technologies Software: Unity, Mixed Reality Toolkit, ARCore, AR Foundation, Vuforia, Photon PUN, AWS, Git, Blender, Adobe Creative Suite (PS, IL, IN), Microsoft Office (Word, Excel, PowerPoint), Google Suite Languages / C#, HTML, CSS, JavaScript, SQL, Methodologies: Search Engine Optimization (SEO), Search Engine Marketing (SEM) Experience Highlights Kairos XR, Remote Unity Developer Virtual Reality Software Engineer, 2021 – Present One of 4 developers on a remote-only team creating Virtual Reality training simulations in Unity. • A Virtual Reality training simulation for a major Middle-Eastern gas exploration company. My focus was on coding the training procedures for using
    [Show full text]
  • An Educational Physics Laboratory in Mobile Versus Room Scale Virtual Reality - a Comparative Study
    An Educational Physics Laboratory in Mobile Versus Room Scale Virtual Reality - A Comparative Study Johanna Pirker1, Isabel Lesjak1, Mathias Parger1, and Christian G¨utl1;2 1 Graz University of Technology, Austria [email protected], [email protected], [email protected], [email protected] 2 Curtin University, Western Australia [email protected] Abstract. Despite year-long efforts in education, studying and under- standing physical phenomena still proves to be a challenge to both learn- ers and educators. However, with the current rise of Virtual Reality expe- riences, interactive immersive simulations in 3D are becoming a promis- ing tool with great potential to enhance and support traditional class- room setups and experiences in an engaging and immersive way. The paper describes the evaluation of the physics laboratory Maroon pre- sented on two distinct VR setups: first, a mobile and cost-efficient but simpler VR experience with the Samsung GEAR and second, a more interactive room scale experience with the HTC VIVE. First results of both preliminary empirical studies indicate that the VIVE environment increases user interactivity and engagement whereas the GEAR setup benefits from portability and better flexibility. In this paper we discuss device-specific design aspects and provide a comparison focusing on as- pects such as immersion, engagement, presence and motivation. Keywords: virtual reality, immersion, physics education 1 Introduction The improvement of science education is still a topic under frequent discussion in the world today. In physics education in particular in, the situation is two- fold: many teachers are challenged in teaching concepts to an increasing number of students, who in turn often face issues themselves in trying to understand the concepts taught while linking theoretical formulas to natural phenomena.
    [Show full text]
  • Guidelines on Successfully Porting Non-Immersive Games to Virtual
    Guidelines on Successfully Porting Non-Immersive Games to Virtual Reality: A Case Study in Minecraft John Porter III Matthew Boyer Andrew Robb Clemson University Clemson University Clemson University Clemson, SC, USA Clemson, SC, USA Clemson, SC, USA [email protected] [email protected] [email protected] ABSTRACT top 10 best seller list on the Steam marketplace after it was Virtual reality games have grown rapidly in popularity since released for pre-ordering. the first consumer VR head-mounted displays were released When porting a game to VR, one of the major challenges faced in 2016, however comparatively little research has explored by developers is adapting the controls of the non-immersive how this new medium impacts the experience of players. In game to work in the new immersive context. Several options this paper, we present a study exploring how user experience are open to developers. At the most basic level, developers can changes when playing Minecraft on the desktop and in im- change nothing and continue to allow users to play the game mersive virtual reality. Fourteen players completed six 45 using a keyboard or a gamepad. This method relies purely on minute sessions, three played on the desktop and three in VR. indirect input, as no aspect of the player’s bodily motion is The Gaming Experience Questionnaire, the i-Group presence used to interact with the game (expect for head motion). At the questionnaire, and the Simulator Sickness Questionnaire were most advanced level, developers can completely recreate the administered after each session, and players were interviewed controls to take full advantage of the motion controls afforded at the end of the experiment.
    [Show full text]
  • Designing a Shared VR Experience for Remotely Located Users
    Your Place and Mine: Designing a Shared VR Experience for Remotely Located Users Misha Sra Aske Mottelson Pattie Maes MIT Media Lab University of Copenhagen MIT Media Lab Cambridge, MA USA Copenhagen, Denmark Cambridge, MA USA [email protected] [email protected] [email protected] ABSTRACT Virtual reality can help realize mediated social experiences where distance disappears and we interact as richly with those around the world as we do with those in the same room. The design of social virtual experiences presents a challenge for remotely located users with room-scale setups like those af- forded by recent commodity virtual reality devices. Since users inhabit different physical spaces that may not be the same size, a mapping to a shared virtual space is needed for creating experiences that allow everyone to use real walking for locomotion. We designed three mapping techniques that enable users from diverse room-scale setups to interact to- gether in virtual reality. Results from our user study (N = 26) show that our mapping techniques positively influence the per- ceived degree of togetherness and copresence while the size Figure 1: Participant 1 (top, male) in their physical and virtual space re- of each user’s tracked space influences individual presence. spectively, waving at participant 2 (bottom, female) in a different phys- ical space, who waves back. To support shared virtual spaces for ge- ACM Classification Keywords ographically distributed participants in room-scale setups of different H.5.1. Information Interfaces and Presentation (e.g. HCI): sizes, we created three physical-to-virtual space mapping techniques.
    [Show full text]
  • Security and Privacy Approaches in Mixed Reality:A Literature Survey
    0 Security and Privacy Approaches in Mixed Reality: A Literature Survey JAYBIE A. DE GUZMAN, University of New South Wales and Data 61, CSIRO KANCHANA THILAKARATHNA, University of Sydney and Data 61, CSIRO ARUNA SENEVIRATNE, University of New South Wales and Data 61, CSIRO Mixed reality (MR) technology development is now gaining momentum due to advances in computer vision, sensor fusion, and realistic display technologies. With most of the research and development focused on delivering the promise of MR, there is only barely a few working on the privacy and security implications of this technology. is survey paper aims to put in to light these risks, and to look into the latest security and privacy work on MR. Specically, we list and review the dierent protection approaches that have been proposed to ensure user and data security and privacy in MR. We extend the scope to include work on related technologies such as augmented reality (AR), virtual reality (VR), and human-computer interaction (HCI) as crucial components, if not the origins, of MR, as well as numerous related work from the larger area of mobile devices, wearables, and Internet-of-ings (IoT). We highlight the lack of investigation, implementation, and evaluation of data protection approaches in MR. Further challenges and directions on MR security and privacy are also discussed. CCS Concepts: •Human-centered computing ! Mixed / augmented reality; •Security and privacy ! Privacy protections; Usability in security and privacy; •General and reference ! Surveys and overviews; Additional Key Words and Phrases: Mixed Reality, Augmented Reality, Privacy, Security 1 INTRODUCTION Mixed reality (MR) was used to pertain to the various devices – specically, displays – that encompass the reality-virtuality continuum as seen in Figure1(Milgram et al .
    [Show full text]
  • Comparing the Accuracy and Precision of Steamvr Tracking 2.0 and Oculus Quest 2 in a Room Scale Setup
    Comparing the Accuracy and Precision of SteamVR Tracking 2.0 and Oculus Quest 2 in a Room Scale Setup Valentin Holzwarth∗ Joy Gisler∗ [email protected] ETH Zurich University of Liechtenstein Switzerland Liechtenstein Christian Hirt Andreas Kunz ETH Zurich ETH Zurich Switzerland Switzerland ABSTRACT KEYWORDS Real walking is the most intuitive navigation means to explore large Tracking system, Inside-out tracking, Motion capture, Head-mounted virtual environments. For such a free walking Virtual Reality (VR) display experience, large tracking spaces are required as well as dedicated motion tracking systems covering them. In the past, the coverage ACM Reference Format: of large tracking spaces could only be achieved by professional- Valentin Holzwarth, Joy Gisler, Christian Hirt, and Andreas Kunz. 2021. grade motion tracking systems. Recently, low-cost, consumer-grade Comparing the Accuracy and Precision of SteamVR Tracking 2.0 and Oculus Quest 2 in a Room Scale Setup. In 2021 the 5th International Conference motion tracking systems, such as SteamVR Tracking and Oculus on Virtual and Augmented Reality Simulations (ICVARS 2021), March 20– Insight, have arisen, which also allow for room scale setups. How- 22, 2021, Melbourne, VIC, Australia. ACM, New York, NY, USA, 5 pages. ever, the capability, limitation, and reliability of consumer-grade https://doi.org/10.1145/3463914.3463921 VR motion tracking systems is not fully understood yet. In this paper, we aim to fill the gap by comparing SteamVR Tracking and Oculus Insight in a 5m × 5m room scale setup, using state of the art 1 INTRODUCTION hardware (i.e. the Oculus Quest 2, SteamVR base stations 2.0 and The naturalistic exploration of Virtual Environments through real High Tech Computer Corporation (HTC) Vive Trackers Version walking requires large tracking spaces, wherein users can freely 2018).
    [Show full text]
  • Vric 2019 Virtual Reality International Conference
    ConVRgence 3 Days Scientific Conference 2019 VRIC 2019 VIRTUAL REALITY INTERNATIONAL CONFERENCE PROCEEDINGS Editor: Simon RICHIR Publisher: Laval Virtual 2019, April 20-22 www.laval-virtual.com ISBN EAN 978-2-9566251-2-4 9782956625124 VIRTUAL REALITY INTERNATIONAL CONFERENCE VRIC 2019 PROCEEDINGS TABLE OF CONTENTS Paper Authors Title Page Sanaa Sharaf, Ebtehal Alsaggaf, Salwa 3 Environmental adaptation for Autistic children 3 Almalki, Amany Alattas, Amna Omar and using Virtual reality Mawadh Sait Juan Sebastian Munoz-Arango, Dirk Maximizing lenticular lens performance for Multi 7 5 Reiners and Carolina Cruz-Neira User VR displays Using VR technology to improve BIM: maintenance 17 6 Alcinia Zita Sampaio and construction New collaborative game experiences, the example 21 12 Rémy Sohier of "Game Jockey" Martin Viktor, Anders Hansen, Kirstine 23 Effects of Physical Props on Torso Movement in a 15 Bundgaard Larsen, Helene Høgh Nielsen Virtual Reality Shooter and Martin Kraus MITMI Man In The Middle Interaction. The human 30 16 Cedric Plessiet and Jean François Jego back in the loop Ifigeneia Mavridou, Maya Perry, Ellen 35 Emerging Affect Detection Methodologies in VR 17 Seiss, Theodoros Kostoulas and Emili and future directions Balaguer-Ballester Windtherm: A Wearable VR Device That Provides 39 18 Masatoshi Suzuki and Akihiro Matsuura Temperature-Controlled Wind VR Conferencing: communicating and 45 Simon Gunkel, Hans Stokking, Rick 20 collaborating in photo-realistic social immersive Hindriks and Tom de Koninck environments Virtuality of Virtual Reality: Indiscernibility or 47 21 Suzanne Beer Ontological Model? François Garnier, Fabienne TsaÏ, Dionysis TAMED CLOUD: sensible interaction with a swarm 51 24 Zamplaras, Florent Levillain, David Bihanic of data.
    [Show full text]
  • Playing with Delay: an Interactive VR Demonstration
    Playing with delay: An interactive VR demonstration Kjetil Raaen Ragnhild Eg Ivar Kjellmo [email protected] [email protected] [email protected] Kristiania Universiy College Kristiania Universiy College Kristiania Universiy College Oslo, Norway Oslo, Norway Oslo, Norway Figure 1: This demo invites participants to play squash in Virtual Reality, and to explore the feel and eect of delay. ABSTRACT ACM Reference Format: Virtual reality is now used across a range of applications, from Kjetil Raaen, Ragnhild Eg, and Ivar Kjellmo. 2019. Playing with delay: An interactive VR demonstration. In entertainment to clinical purposes. Although the rendered visu- 11th International Workshop on Immer- sive Mixed and Virtual Environment Systems (MMVE ’19), June 21, 2019, alisations have better temporal and spatial resolutions than ever, Amherst, MA, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10. several technological constraints remain – and people still suer 1145/3304113.3326114 side-eects. With this demonstration, we address the temporal con- straints of virtual reality. We invite participants to play a game where they are in charge of the presented delay, facilitating their 1 INTRODUCTION AND BACKGROUND rst-hand experience of the consequences of delay. Furthermore, Virtual Reality (from now on VR) often refers to the use of stereo- the demonstration serves as a platform for future explorations into scopic head mounted displays (HMD) that cover the entire eld of short- and long-term eects of virtual reality constraints. view, where the view tracks the user’s head motion. This creates an extremely immersive experience. However, to achieve high quality CCS CONCEPTS of experience, the technical requirements are high.
    [Show full text]
  • DANCE and NEW TECHNOLOGIES Exploring the Artistic Potential of Technologies
    THESIS - BACHELOR'S DEGREE PROGRAMME CULTURE DANCE AND NEW TECHNOLOGIES Exploring the artistic potential of technologies A u t h o r / s : Margarita Susi SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS Abstract Field of Study Culture Degree Programme Degree Programme in Dance Pedagogy Author(s) Margarita Susi Title of Thesis Dance and New Technologies. Exploring the artistic potential of technologies. Date 25.09.2018 Pages/Appendices 69/0 Supervisor(s) Paula Salosaari Client Organisation /Partners Loikka Dance Film Festival (Loikka Kontakti Ry) Abstract The purpose of this study is to investigate new tools for the artistic expression, which allow artists to achieve more vibrant and fuller results in their creative process. The author will talk about new art forms in which technologies and art merge and create new dimensions of an artistic process. The author will discover if technologies can help to expand the accessibility aspect of the art, increase audience participation in art productions as well as will talk about what role technologies play in art documentation and preservation. The study is based on authors professional education and experience as a dancer and dance teacher, experience from attending media art museums, exhibitions, dance festivals and live performances, course of Dance and New Technologies (professor Anouscka Brodacz) in Accademia Nazionale di Danza in Rome during authors Erasmus Exchange Programme in 2017, literature such as “Digital Performance. A History of New Media in Theater, Dance, Performance Art, and Installation.” By S. Dixon (Leonardo Book Series) and “Performance and Technology. Practices of Virtual Embodiment and Interactivity” (edited by Broadhurst and J. Machon) as well as different articles and productions explored in Internet and other media sources.
    [Show full text]
  • Supernatural and Comfortable User Interfaces for Basic 3D Interaction Tasks
    Dissertation Supernatural and Comfortable User Interfaces for Basic 3D Interaction Tasks Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics Universität Hamburg Paul Boguslaw Lubos 2018 Supervisor & Reviewer: Prof. Dr. Frank Steinicke Reviewer: Prof. Dr. Bernd Fröhlich Head of examination commission: Prof. Dr. Peter Kling Deputy Head of examination commission: Prof. Dr. Eva Bittner Date of thesis defense: 18.09.2018 3 Abstract The renewed interest in virtual reality (VR) in the last 5-10 years led to a necessity of the develop- ment of new 3D user interfaces (3DUIs) to interact with three-dimensional content. Mainly due to the vastly superior, affordable hardware, VR is on the way to become a common sight in our daily lives. 3DUIs still pose many challenges, such as distance misperception and the lack of guidelines on the placement or use of UI elements since many guidelines for 2DUIs are not necessarily valid in 3D. Technological advances allowed the reliable tracking of the user, compared to traditional discrete button input. These advances evoked the development of natural user interfaces (NUIs), which enable users to interact with computers using simple gestures, voice and other means previ- ously reserved for inter-human communication. NUIs offer the advantage of being easier to learn for novice users, but a direct mapping of physical movements to VR can be physically tiring after short use. Supernatural user interfaces (SNUIs) are interfaces which are still inspired by the ways humans interact with one another or with their environment, but not limited by it.
    [Show full text]
  • AR/VR Tools + Applications Skills and Job Opportunities What's Happening on Other Campuses AR/VR at CUNY A
    12/06/2019 CUNYCUNY ● AR/VR Tools + Applications ● Skills and Job Opportunities ● What’s happening on other campuses AR/VRAR/VR ● AR/VR at CUNY ● AR/VR at Newmark Journalism Matt MacVey School Academic Program Specialist, ● Announcements/Opportunities AR/VR Journalism Lab Newmark Graduate School of Journalism CUNY Immersive Stories: 360 Video Rohingya Exodus, Associated Press 3D Asset Creation Use Photogrammetry to create 3D models from photos TOOL: Photogrammetry or Immersive Stories: Volumetric Video 3D Video Capture Create Volumetric Video with a depth camera or camera arrays Azure Kinect Depthkit Standalone VR Oculus Go Oculus Quest $200 $400 Room scale VR HTC Vive Playstation VR Oculus Rift HTC VIVE Smartphone Augmented Reality Augmented Reality Data Visualization Facebook Spark AR Studio Software Development Environments: Unity, Unreal ARCore AR SDK for Android Apple ARKit Motion tracking Apple Point detection and pinning Light estimation + Face Tracking on iPhone X WebXR Amnesty International, Junior Web AR Augmented Reality in the web AR.js browser WebARonARKit WebARonARCore three.ar.js aframe.io aframe.io Other Schools NYU Future Reality Lab Other Schools New School XReality Center Other Schools Columbia University Computer Graphics and User Interfaces Lab Harvard Augmented Reality/Virtual Reality Studio https://news.harvard.edu/gazette/ story/2019/02/at-studio-harvard-co llege-senior-celebrates-potential-of- ar-vr-technology/ AR/VR JOURNALISM LAB Newmark Graduate School of Journalism at CUNY Newmark AR / VR Journalism Lab Local Stories in 360° Videos bitly.com/newmarkj360 Intro to 360 for Small News Organizations bitly.com/ intro360newsrooms bitly.com/ introvideo360 Hands-On Intro Workshops Connecting the Theta to your phone Connect to the camera you’re holding, not your neighbors.
    [Show full text]
  • ITA3D.Com Preview Version. Not for Redistribution
    ITA3D.com Preview version. Not for redistribution Virtual Reality Analytics A Skilltower Institute Dossier Edited and Published by Joerg Osarek With articles by Carsten Frisch, Chuck Ian Gordon, Krzysztof Izdebski, Petr Legkov, Maximilian C. Maschmann, Joerg Osarek, Alexander Scholz, Frank Sommerer, Kevin Williams Imprint Virtual Reality Analytics Copyright © 2016 Joerg Osarek, Skilltower Institute All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review. Referred names, words, symbols, and graphics may be brand names, trademarks or registered trademarks which belong to their respective owners. Order information: http://vr.skilltower.com/ ISBN: 978-3-944218-08-3 eBook Version ISBN: 978-3-944218-09-0 Print Version Publisher: Gordon’s Arcade™ business unit: Business Publishing Triftstr. 30, D-61350 Bad Homburg, Germany CEO: Chuck Ian Gordon http://business.GordonsArca.de/ Editor: Skilltower Institute™ Joerg Osarek, CEO Triftstr. 30, D-61350 Bad Homburg, Germany http://www.skilltower.com/ English Translation of Frank Sommerer's article by Jan Wassermann-Fry English Proofreading by Oliver Fry Cover image: Frog #84027132 © julien tromeur – fotolia.com - extended license tramsformed into VR Frog by Joerg Osarek Figure 1: Immerse into data: © Andreus, #31970330 – 123rf.com Figure 9: Stereoscopy Ladies, Public Domain from commons.wikimedia.org Figure 11: compiled from Presskit of Fairy Lights Figure 20: VR Treadmill: © rastudio, #52770276 – 123rf.com photographs of authors provided and © by the authors themselves All other figures: Own work of Chuck Ian Gordon and Joerg Osarek or downloaded from the great pool of public domain images from pixabay.com DEDICATION to all who boldly explore virtual reality, mixed reality and real reality using chivalry and wisdom.
    [Show full text]