Playing with Delay: an Interactive VR Demonstration

Total Page:16

File Type:pdf, Size:1020Kb

Playing with Delay: an Interactive VR Demonstration Playing with delay: An interactive VR demonstration Kjetil Raaen Ragnhild Eg Ivar Kjellmo [email protected] [email protected] [email protected] Kristiania Universiy College Kristiania Universiy College Kristiania Universiy College Oslo, Norway Oslo, Norway Oslo, Norway Figure 1: This demo invites participants to play squash in Virtual Reality, and to explore the feel and eect of delay. ABSTRACT ACM Reference Format: Virtual reality is now used across a range of applications, from Kjetil Raaen, Ragnhild Eg, and Ivar Kjellmo. 2019. Playing with delay: An interactive VR demonstration. In entertainment to clinical purposes. Although the rendered visu- 11th International Workshop on Immer- sive Mixed and Virtual Environment Systems (MMVE ’19), June 21, 2019, alisations have better temporal and spatial resolutions than ever, Amherst, MA, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10. several technological constraints remain – and people still suer 1145/3304113.3326114 side-eects. With this demonstration, we address the temporal con- straints of virtual reality. We invite participants to play a game where they are in charge of the presented delay, facilitating their 1 INTRODUCTION AND BACKGROUND rst-hand experience of the consequences of delay. Furthermore, Virtual Reality (from now on VR) often refers to the use of stereo- the demonstration serves as a platform for future explorations into scopic head mounted displays (HMD) that cover the entire eld of short- and long-term eects of virtual reality constraints. view, where the view tracks the user’s head motion. This creates an extremely immersive experience. However, to achieve high quality CCS CONCEPTS of experience, the technical requirements are high. The experience also needs to be well designed to avoid discomfort. One important • → ; Human-centered computing Virtual reality Empirical contributor to discomfort is delay. If you turn your head, and the . studies in HCI world follows later, the world will feel unstable [1]. There is lim- ited research on exactly what is considered fast enough tracking, KEYWORDS but one study points to a limit somewhere between 180 ms and virtual reality, perception, cyber sickness, delay, game 220 ms [1]. (Note that this number is often cited as 50-90 ms. Such a reading ignores the reported inherent latency in the tested system of 122 ms [1].) This contrasts sharply with best practices in the commercial industry, where recommendations are a maximum of Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed 20 ms latency [13], though without citations or apparent empirical for prot or commercial advantage and that copies bear this notice and the full citation data. Resolving this discrepancy will require systematic qualitative on the rst page. Copyrights for components of this work owned by others than the and quantitative studies using modern equipment. author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specic permission This demonstration is the rst step towards mapping out the and/or a fee. Request permissions from [email protected]. constraints of VR technology, and the subjective consequences MMVE ’19, June 21, 2019, Amherst, MA, USA of delayed VR interactions. In a game environment that can be © 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-1-4503-6299-3/19/06...$15.00 used as a test platform for future experiments on VR interactions, https://doi.org/10.1145/3304113.3326114 we allow participants to experience the perceptual, and possibly MMVE ’19, June 21, 2019, Amherst, MA, USA K. Raaen, R. Eg, I. Kjellmo physical, consequences of delays in virtual reality. The purpose of correspondence between displays, controllers and audio devices. this demonstration is to gather feedback on the experience and the Moreover, sensorimotor adaptation follows interactions between methodology, laying the ground for future studies on the eects of physical movements, typically head and hand movements, and delay and possibly other technical factors that may inuence the corresponding virtual actions. This type of sensory adaptation is quality of VR experiences. vulnerable to spatial and temporal artefacts, particularly when it comes to inertial cues [19]. 1.1 Challenges The industry has come a long way in rening spatial and temporal 1.3 Individual dierences parameters in VR. Earlier works show that the Oculus Rift allows Motion sickness and simulator sickness have more than symptoms minimum latencies below 10 ms [15], and the upper bound for HTC in common. They both vary in occurrence and severity across indi- Vive is estimated at 22 ms [12]. According to specications from viduals. It seems some tolerate virtual sensations better than others, the manufacturers1 [13], both the HTC Vive and the Oculus Rift just like some can go from one ride to the next in an amusement sport 110° eld-of-view, 90 Hz refresh rate, and a binocular total of park. These individual dierences have also been noted for other VR 2160x1200 pixel resolution. Although the industry has come a long experiences, such as navigation, task performance, and information way, many solutions are established without transparency. That is, organisation [17]. Others have touched upon the background of par- manufacturers have insight about the limitations and requirements ticipants and stressed the importance of understanding individual of their technology, but this insight is not necessarily available to characteristics, ranging from spatial understanding and memory to researchers. Furthermore, some challenges are only moderated, and motor and verbal skills, even gender and personality [4, 11, 17]. Yet new ones are discovered along the way. VR set-ups like Oculus Rift we still lack a comprehensive understanding of the characteristics and HTC Vive come with high temporal resolutions and minimal that aect both simulator sickness and usability factors, and how delays in motion tracking, which has alleviated associated conse- experience and adaptation can serve as mediators [3]. quences, but certainly not removed them. The applications that run in VR require additional processing capacities, and the demands 2 DEMONSTRATION SETUP increase as applications become more advanced. Furthermore, new This demonstration introduces a VR environment with direct con- interaction modes introduce new challenges, such as tracking limi- trol over the motion tracking delay. The environment itself is a tations in VR controllers, uncovered by a team at Valve software. simple VR game running on state-of-the-art VR equipment. Par- Apparently, some players exhibit preterhuman-like capabilities in ticipants play single player squash, shown in gure 1, attempting icking their wrists [14]. to keep the ball in play. With direct control over delays in the VR Other past challenges that remain unsolved include spatial reso- scene, participants can experience rst-hand the consequences of lution, ickering, mis-matches between physical and visual motion a fully immersive virtual environment that gradually moves away (vection/optical ow), and mis-representations of depth cues or from a familiar physical law. elds of view [4, 5, 10, 13]. Along with temporal resolution and delays, these are well-studied causes for simulator sickness. 2.1 Equipment 2 1.2 Side eects and usability The game is developed in the Unity game engine using the Open VR framework3. In terms of content, we present players with a So-called simulator sickness, or cyber sickness, bears many simi- realistic rendering of a squash court. The hand-held controller is larities to motion sickness. They are both attributed to the discor- displayed in the game as a racket, tracking the user’s hand. Using dance between visual and vestibular signals, and they share symp- the option for room-scale VR, participants are free to move around toms [7], including nausea, disorientation, sweating and oculomotor the court to hit the ball. Movement of the ball is simulated using symptoms such as dizziness, vertigo and visual disturbances [9, 16]. approximations of real physics. Among these, nausea-related symptoms are typically the ones re- For VR display and interactions we use Vive Pro4. The system ported by participants who need to abandon an experiment [2]. used for running the game has yet to be decided, but we will make Sickness is not the only side eect that follows the technical sure to use hardware that introduces as little delay as possible. With limitations that still aect VR technology. The virtual experience the tested setup5, this VR game has a an average delay of 38 ms itself is shaped by restrictions posed by the technology that pro- before we add any experimental delay, as measured using the setup duces, conveys and renders the VR environment, from graphics, described in Raaen and Kjellmo[15]. design and layout to sounds and tactile feedback. The somewhat undened notion of immersion is dependent on the visual world 2.2 Demonstration that unfolds in VR [8], but also on other sensory experiences. For The demonstration invites participants to rst explore the virtual en- instance, real locomotion is a usability issue that researchers are vironment, and the game itself. When they have become acquainted addressing, aiming to tip the immersion scale [18]. Captivating with the
Recommended publications
  • Jason T. Jaslow 201-679-0733 • [email protected] • Emergereality.Com • Linkedin.Com/In/Jasonjaslow • Github.Com/Jjaslow
    Jason T. Jaslow 201-679-0733 • [email protected] • emergereality.com • linkedin.com/in/jasonjaslow • github.com/jjaslow Qualifications Profile Versatile professional with a wide range of expertise spanning more than 20 years including multiple startup experiences with successful exits, business management, marketing, data analytics, and software development. • Skilled in planning, constructing, and launching pioneering business application tools through a strong comprehension of assorted complex Augmented Reality (AR) and Virtual Reality (VR) technologies. • Adept in all components of product development, customer relationship management, operations analysis, and continuous process improvement. • Exceptionally analytical with a dedication to excellence at all organizational levels. • Talent for assessing and swiftly resolving complicated technical discrepancies. Core Technologies Software: Unity, Mixed Reality Toolkit, ARCore, AR Foundation, Vuforia, Photon PUN, AWS, Git, Blender, Adobe Creative Suite (PS, IL, IN), Microsoft Office (Word, Excel, PowerPoint), Google Suite Languages / C#, HTML, CSS, JavaScript, SQL, Methodologies: Search Engine Optimization (SEO), Search Engine Marketing (SEM) Experience Highlights Kairos XR, Remote Unity Developer Virtual Reality Software Engineer, 2021 – Present One of 4 developers on a remote-only team creating Virtual Reality training simulations in Unity. • A Virtual Reality training simulation for a major Middle-Eastern gas exploration company. My focus was on coding the training procedures for using
    [Show full text]
  • An Educational Physics Laboratory in Mobile Versus Room Scale Virtual Reality - a Comparative Study
    An Educational Physics Laboratory in Mobile Versus Room Scale Virtual Reality - A Comparative Study Johanna Pirker1, Isabel Lesjak1, Mathias Parger1, and Christian G¨utl1;2 1 Graz University of Technology, Austria [email protected], [email protected], [email protected], [email protected] 2 Curtin University, Western Australia [email protected] Abstract. Despite year-long efforts in education, studying and under- standing physical phenomena still proves to be a challenge to both learn- ers and educators. However, with the current rise of Virtual Reality expe- riences, interactive immersive simulations in 3D are becoming a promis- ing tool with great potential to enhance and support traditional class- room setups and experiences in an engaging and immersive way. The paper describes the evaluation of the physics laboratory Maroon pre- sented on two distinct VR setups: first, a mobile and cost-efficient but simpler VR experience with the Samsung GEAR and second, a more interactive room scale experience with the HTC VIVE. First results of both preliminary empirical studies indicate that the VIVE environment increases user interactivity and engagement whereas the GEAR setup benefits from portability and better flexibility. In this paper we discuss device-specific design aspects and provide a comparison focusing on as- pects such as immersion, engagement, presence and motivation. Keywords: virtual reality, immersion, physics education 1 Introduction The improvement of science education is still a topic under frequent discussion in the world today. In physics education in particular in, the situation is two- fold: many teachers are challenged in teaching concepts to an increasing number of students, who in turn often face issues themselves in trying to understand the concepts taught while linking theoretical formulas to natural phenomena.
    [Show full text]
  • Guidelines on Successfully Porting Non-Immersive Games to Virtual
    Guidelines on Successfully Porting Non-Immersive Games to Virtual Reality: A Case Study in Minecraft John Porter III Matthew Boyer Andrew Robb Clemson University Clemson University Clemson University Clemson, SC, USA Clemson, SC, USA Clemson, SC, USA [email protected] [email protected] [email protected] ABSTRACT top 10 best seller list on the Steam marketplace after it was Virtual reality games have grown rapidly in popularity since released for pre-ordering. the first consumer VR head-mounted displays were released When porting a game to VR, one of the major challenges faced in 2016, however comparatively little research has explored by developers is adapting the controls of the non-immersive how this new medium impacts the experience of players. In game to work in the new immersive context. Several options this paper, we present a study exploring how user experience are open to developers. At the most basic level, developers can changes when playing Minecraft on the desktop and in im- change nothing and continue to allow users to play the game mersive virtual reality. Fourteen players completed six 45 using a keyboard or a gamepad. This method relies purely on minute sessions, three played on the desktop and three in VR. indirect input, as no aspect of the player’s bodily motion is The Gaming Experience Questionnaire, the i-Group presence used to interact with the game (expect for head motion). At the questionnaire, and the Simulator Sickness Questionnaire were most advanced level, developers can completely recreate the administered after each session, and players were interviewed controls to take full advantage of the motion controls afforded at the end of the experiment.
    [Show full text]
  • Designing a Shared VR Experience for Remotely Located Users
    Your Place and Mine: Designing a Shared VR Experience for Remotely Located Users Misha Sra Aske Mottelson Pattie Maes MIT Media Lab University of Copenhagen MIT Media Lab Cambridge, MA USA Copenhagen, Denmark Cambridge, MA USA [email protected] [email protected] [email protected] ABSTRACT Virtual reality can help realize mediated social experiences where distance disappears and we interact as richly with those around the world as we do with those in the same room. The design of social virtual experiences presents a challenge for remotely located users with room-scale setups like those af- forded by recent commodity virtual reality devices. Since users inhabit different physical spaces that may not be the same size, a mapping to a shared virtual space is needed for creating experiences that allow everyone to use real walking for locomotion. We designed three mapping techniques that enable users from diverse room-scale setups to interact to- gether in virtual reality. Results from our user study (N = 26) show that our mapping techniques positively influence the per- ceived degree of togetherness and copresence while the size Figure 1: Participant 1 (top, male) in their physical and virtual space re- of each user’s tracked space influences individual presence. spectively, waving at participant 2 (bottom, female) in a different phys- ical space, who waves back. To support shared virtual spaces for ge- ACM Classification Keywords ographically distributed participants in room-scale setups of different H.5.1. Information Interfaces and Presentation (e.g. HCI): sizes, we created three physical-to-virtual space mapping techniques.
    [Show full text]
  • Security and Privacy Approaches in Mixed Reality:A Literature Survey
    0 Security and Privacy Approaches in Mixed Reality: A Literature Survey JAYBIE A. DE GUZMAN, University of New South Wales and Data 61, CSIRO KANCHANA THILAKARATHNA, University of Sydney and Data 61, CSIRO ARUNA SENEVIRATNE, University of New South Wales and Data 61, CSIRO Mixed reality (MR) technology development is now gaining momentum due to advances in computer vision, sensor fusion, and realistic display technologies. With most of the research and development focused on delivering the promise of MR, there is only barely a few working on the privacy and security implications of this technology. is survey paper aims to put in to light these risks, and to look into the latest security and privacy work on MR. Specically, we list and review the dierent protection approaches that have been proposed to ensure user and data security and privacy in MR. We extend the scope to include work on related technologies such as augmented reality (AR), virtual reality (VR), and human-computer interaction (HCI) as crucial components, if not the origins, of MR, as well as numerous related work from the larger area of mobile devices, wearables, and Internet-of-ings (IoT). We highlight the lack of investigation, implementation, and evaluation of data protection approaches in MR. Further challenges and directions on MR security and privacy are also discussed. CCS Concepts: •Human-centered computing ! Mixed / augmented reality; •Security and privacy ! Privacy protections; Usability in security and privacy; •General and reference ! Surveys and overviews; Additional Key Words and Phrases: Mixed Reality, Augmented Reality, Privacy, Security 1 INTRODUCTION Mixed reality (MR) was used to pertain to the various devices – specically, displays – that encompass the reality-virtuality continuum as seen in Figure1(Milgram et al .
    [Show full text]
  • Comparing the Accuracy and Precision of Steamvr Tracking 2.0 and Oculus Quest 2 in a Room Scale Setup
    Comparing the Accuracy and Precision of SteamVR Tracking 2.0 and Oculus Quest 2 in a Room Scale Setup Valentin Holzwarth∗ Joy Gisler∗ [email protected] ETH Zurich University of Liechtenstein Switzerland Liechtenstein Christian Hirt Andreas Kunz ETH Zurich ETH Zurich Switzerland Switzerland ABSTRACT KEYWORDS Real walking is the most intuitive navigation means to explore large Tracking system, Inside-out tracking, Motion capture, Head-mounted virtual environments. For such a free walking Virtual Reality (VR) display experience, large tracking spaces are required as well as dedicated motion tracking systems covering them. In the past, the coverage ACM Reference Format: of large tracking spaces could only be achieved by professional- Valentin Holzwarth, Joy Gisler, Christian Hirt, and Andreas Kunz. 2021. grade motion tracking systems. Recently, low-cost, consumer-grade Comparing the Accuracy and Precision of SteamVR Tracking 2.0 and Oculus Quest 2 in a Room Scale Setup. In 2021 the 5th International Conference motion tracking systems, such as SteamVR Tracking and Oculus on Virtual and Augmented Reality Simulations (ICVARS 2021), March 20– Insight, have arisen, which also allow for room scale setups. How- 22, 2021, Melbourne, VIC, Australia. ACM, New York, NY, USA, 5 pages. ever, the capability, limitation, and reliability of consumer-grade https://doi.org/10.1145/3463914.3463921 VR motion tracking systems is not fully understood yet. In this paper, we aim to fill the gap by comparing SteamVR Tracking and Oculus Insight in a 5m × 5m room scale setup, using state of the art 1 INTRODUCTION hardware (i.e. the Oculus Quest 2, SteamVR base stations 2.0 and The naturalistic exploration of Virtual Environments through real High Tech Computer Corporation (HTC) Vive Trackers Version walking requires large tracking spaces, wherein users can freely 2018).
    [Show full text]
  • Vric 2019 Virtual Reality International Conference
    ConVRgence 3 Days Scientific Conference 2019 VRIC 2019 VIRTUAL REALITY INTERNATIONAL CONFERENCE PROCEEDINGS Editor: Simon RICHIR Publisher: Laval Virtual 2019, April 20-22 www.laval-virtual.com ISBN EAN 978-2-9566251-2-4 9782956625124 VIRTUAL REALITY INTERNATIONAL CONFERENCE VRIC 2019 PROCEEDINGS TABLE OF CONTENTS Paper Authors Title Page Sanaa Sharaf, Ebtehal Alsaggaf, Salwa 3 Environmental adaptation for Autistic children 3 Almalki, Amany Alattas, Amna Omar and using Virtual reality Mawadh Sait Juan Sebastian Munoz-Arango, Dirk Maximizing lenticular lens performance for Multi 7 5 Reiners and Carolina Cruz-Neira User VR displays Using VR technology to improve BIM: maintenance 17 6 Alcinia Zita Sampaio and construction New collaborative game experiences, the example 21 12 Rémy Sohier of "Game Jockey" Martin Viktor, Anders Hansen, Kirstine 23 Effects of Physical Props on Torso Movement in a 15 Bundgaard Larsen, Helene Høgh Nielsen Virtual Reality Shooter and Martin Kraus MITMI Man In The Middle Interaction. The human 30 16 Cedric Plessiet and Jean François Jego back in the loop Ifigeneia Mavridou, Maya Perry, Ellen 35 Emerging Affect Detection Methodologies in VR 17 Seiss, Theodoros Kostoulas and Emili and future directions Balaguer-Ballester Windtherm: A Wearable VR Device That Provides 39 18 Masatoshi Suzuki and Akihiro Matsuura Temperature-Controlled Wind VR Conferencing: communicating and 45 Simon Gunkel, Hans Stokking, Rick 20 collaborating in photo-realistic social immersive Hindriks and Tom de Koninck environments Virtuality of Virtual Reality: Indiscernibility or 47 21 Suzanne Beer Ontological Model? François Garnier, Fabienne TsaÏ, Dionysis TAMED CLOUD: sensible interaction with a swarm 51 24 Zamplaras, Florent Levillain, David Bihanic of data.
    [Show full text]
  • DANCE and NEW TECHNOLOGIES Exploring the Artistic Potential of Technologies
    THESIS - BACHELOR'S DEGREE PROGRAMME CULTURE DANCE AND NEW TECHNOLOGIES Exploring the artistic potential of technologies A u t h o r / s : Margarita Susi SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS Abstract Field of Study Culture Degree Programme Degree Programme in Dance Pedagogy Author(s) Margarita Susi Title of Thesis Dance and New Technologies. Exploring the artistic potential of technologies. Date 25.09.2018 Pages/Appendices 69/0 Supervisor(s) Paula Salosaari Client Organisation /Partners Loikka Dance Film Festival (Loikka Kontakti Ry) Abstract The purpose of this study is to investigate new tools for the artistic expression, which allow artists to achieve more vibrant and fuller results in their creative process. The author will talk about new art forms in which technologies and art merge and create new dimensions of an artistic process. The author will discover if technologies can help to expand the accessibility aspect of the art, increase audience participation in art productions as well as will talk about what role technologies play in art documentation and preservation. The study is based on authors professional education and experience as a dancer and dance teacher, experience from attending media art museums, exhibitions, dance festivals and live performances, course of Dance and New Technologies (professor Anouscka Brodacz) in Accademia Nazionale di Danza in Rome during authors Erasmus Exchange Programme in 2017, literature such as “Digital Performance. A History of New Media in Theater, Dance, Performance Art, and Installation.” By S. Dixon (Leonardo Book Series) and “Performance and Technology. Practices of Virtual Embodiment and Interactivity” (edited by Broadhurst and J. Machon) as well as different articles and productions explored in Internet and other media sources.
    [Show full text]
  • Supernatural and Comfortable User Interfaces for Basic 3D Interaction Tasks
    Dissertation Supernatural and Comfortable User Interfaces for Basic 3D Interaction Tasks Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics Universität Hamburg Paul Boguslaw Lubos 2018 Supervisor & Reviewer: Prof. Dr. Frank Steinicke Reviewer: Prof. Dr. Bernd Fröhlich Head of examination commission: Prof. Dr. Peter Kling Deputy Head of examination commission: Prof. Dr. Eva Bittner Date of thesis defense: 18.09.2018 3 Abstract The renewed interest in virtual reality (VR) in the last 5-10 years led to a necessity of the develop- ment of new 3D user interfaces (3DUIs) to interact with three-dimensional content. Mainly due to the vastly superior, affordable hardware, VR is on the way to become a common sight in our daily lives. 3DUIs still pose many challenges, such as distance misperception and the lack of guidelines on the placement or use of UI elements since many guidelines for 2DUIs are not necessarily valid in 3D. Technological advances allowed the reliable tracking of the user, compared to traditional discrete button input. These advances evoked the development of natural user interfaces (NUIs), which enable users to interact with computers using simple gestures, voice and other means previ- ously reserved for inter-human communication. NUIs offer the advantage of being easier to learn for novice users, but a direct mapping of physical movements to VR can be physically tiring after short use. Supernatural user interfaces (SNUIs) are interfaces which are still inspired by the ways humans interact with one another or with their environment, but not limited by it.
    [Show full text]
  • Outstanding: a Multi-Perspective Travel Approach for Virtual Reality Games
    Outstanding: A Multi-Perspective Travel Approach for Virtual Reality Games Sebastian Cmentowski, Andrey Krekhov, Jens Krüger High Performance Computing Group University of Duisburg-Essen, Germany {sebastian.cmentowski, andrey.krekhov, jens.krueger}@uni-due.de Figure 1. Our proposed navigation technique allows players to switch to a scaled third-person perspective on demand and control a virtual avatar to cover large distances in open world VR scenarios. ABSTRACT demand. From above, players can command their avatar and In virtual reality games, players dive into fictional environ- initiate travels over large distance. Our evaluation reveals a ments and can experience a compelling and immersive world. significant increase in spatial orientation while avoiding cyber- State-of-the-art VR systems allow for natural and intuitive nav- sickness and preserving presence, enjoyment, and competence. igation through physical walking. However, the tracking space We summarize our findings in a set of comprehensive design is still limited, and viable alternatives are required to reach fur- guidelines to help developers integrate our technique. ther virtual destinations. Our work focuses on the exploration arXiv:1908.00379v1 [cs.HC] 1 Aug 2019 of vast open worlds – an area where existing local naviga- Author Keywords tion approaches such as the arc-based teleport are not ideally Virtual reality games; navigation; perspectives; virtual avatar; suited and world-in-miniature techniques potentially reduce orientation; virtual body size; world-in-miniature presence.
    [Show full text]
  • AR/VR Tools + Applications Skills and Job Opportunities What's Happening on Other Campuses AR/VR at CUNY A
    12/06/2019 CUNYCUNY ● AR/VR Tools + Applications ● Skills and Job Opportunities ● What’s happening on other campuses AR/VRAR/VR ● AR/VR at CUNY ● AR/VR at Newmark Journalism Matt MacVey School Academic Program Specialist, ● Announcements/Opportunities AR/VR Journalism Lab Newmark Graduate School of Journalism CUNY Immersive Stories: 360 Video Rohingya Exodus, Associated Press 3D Asset Creation Use Photogrammetry to create 3D models from photos TOOL: Photogrammetry or Immersive Stories: Volumetric Video 3D Video Capture Create Volumetric Video with a depth camera or camera arrays Azure Kinect Depthkit Standalone VR Oculus Go Oculus Quest $200 $400 Room scale VR HTC Vive Playstation VR Oculus Rift HTC VIVE Smartphone Augmented Reality Augmented Reality Data Visualization Facebook Spark AR Studio Software Development Environments: Unity, Unreal ARCore AR SDK for Android Apple ARKit Motion tracking Apple Point detection and pinning Light estimation + Face Tracking on iPhone X WebXR Amnesty International, Junior Web AR Augmented Reality in the web AR.js browser WebARonARKit WebARonARCore three.ar.js aframe.io aframe.io Other Schools NYU Future Reality Lab Other Schools New School XReality Center Other Schools Columbia University Computer Graphics and User Interfaces Lab Harvard Augmented Reality/Virtual Reality Studio https://news.harvard.edu/gazette/ story/2019/02/at-studio-harvard-co llege-senior-celebrates-potential-of- ar-vr-technology/ AR/VR JOURNALISM LAB Newmark Graduate School of Journalism at CUNY Newmark AR / VR Journalism Lab Local Stories in 360° Videos bitly.com/newmarkj360 Intro to 360 for Small News Organizations bitly.com/ intro360newsrooms bitly.com/ introvideo360 Hands-On Intro Workshops Connecting the Theta to your phone Connect to the camera you’re holding, not your neighbors.
    [Show full text]
  • ITA3D.Com Preview Version. Not for Redistribution
    ITA3D.com Preview version. Not for redistribution Virtual Reality Analytics A Skilltower Institute Dossier Edited and Published by Joerg Osarek With articles by Carsten Frisch, Chuck Ian Gordon, Krzysztof Izdebski, Petr Legkov, Maximilian C. Maschmann, Joerg Osarek, Alexander Scholz, Frank Sommerer, Kevin Williams Imprint Virtual Reality Analytics Copyright © 2016 Joerg Osarek, Skilltower Institute All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review. Referred names, words, symbols, and graphics may be brand names, trademarks or registered trademarks which belong to their respective owners. Order information: http://vr.skilltower.com/ ISBN: 978-3-944218-08-3 eBook Version ISBN: 978-3-944218-09-0 Print Version Publisher: Gordon’s Arcade™ business unit: Business Publishing Triftstr. 30, D-61350 Bad Homburg, Germany CEO: Chuck Ian Gordon http://business.GordonsArca.de/ Editor: Skilltower Institute™ Joerg Osarek, CEO Triftstr. 30, D-61350 Bad Homburg, Germany http://www.skilltower.com/ English Translation of Frank Sommerer's article by Jan Wassermann-Fry English Proofreading by Oliver Fry Cover image: Frog #84027132 © julien tromeur – fotolia.com - extended license tramsformed into VR Frog by Joerg Osarek Figure 1: Immerse into data: © Andreus, #31970330 – 123rf.com Figure 9: Stereoscopy Ladies, Public Domain from commons.wikimedia.org Figure 11: compiled from Presskit of Fairy Lights Figure 20: VR Treadmill: © rastudio, #52770276 – 123rf.com photographs of authors provided and © by the authors themselves All other figures: Own work of Chuck Ian Gordon and Joerg Osarek or downloaded from the great pool of public domain images from pixabay.com DEDICATION to all who boldly explore virtual reality, mixed reality and real reality using chivalry and wisdom.
    [Show full text]