Inside Managing the Bad Day Why Wikis at Nasa? Rendezvous with an Asteroid Photo Credit: NASA

Total Page:16

File Type:pdf, Size:1020Kb

Inside Managing the Bad Day Why Wikis at Nasa? Rendezvous with an Asteroid Photo Credit: NASA National Aeronautics and Space Administration Academy Sharing Knowledge The NASA Source for Project Management and Engineering Excellence | APPEL FALL | 2011 Inside MANAGING THE BAD DAY WHY WIKIS AT NASA? RENDEZVOUS WITH AN ASTEROID Photo Credit: NASA ON THE COVER On July 31, 2011, Expedition 28 astronaut Ron Garan looked out his window aboard the International Space Station and saw the moon. In fact, he saw it sixteen times. “We had simultaneous sunsets and moonsets,” said Garan. For him and the rest of the station crew, this extraordinary event is a daily occurrence. Since the station orbits Earth every ninety minutes, each day the crew experiences sunrise, sunset, moonrise, and moonset about sixteen times a day. ASK MAGAZINE | 1 Contents 5 46 50 DEPARTMENTS INSIGHTS STORIES 3 19 5 In This Issue Interview with Jeffrey Hoffman Managing the Bad Day BY DON COHEN BY DON COHEN The scientist-astronaut BY DANIEL ANDREWS Faced with a possibly talks about the value and challenges of mission-ending problem, a project manager 4 doing science in space. helps his team focus on a solution. From the Academy Director Action at the Boundaries 29 11 BY ED HOFFMAN Fluids Management for Affordable From the Soviet Union to NASA: Spaceflight An Intern’s Journey 58 BY RUSSEL RHODES To reduce spaceflight BY ALINA ZATER Her family’s passionate The Knowledge Notebook costs, designers should simplify fluid involvement in the Soviet space program Indicators requirements. leads a young woman to NASA. BY LAURENCE PRUSAK 33 15 60 Government and Academia Study International Life Support ASK Interactive Systems-Thinking Development BY KERRY ELLIS NASA and the Russian BY DANIELLE WOOD, HEIDI DAVIDZ, DONNA space agency work together to reduce a RHODES, AND MARIA SO A NASA–MIT space station risk. collaboration investigates the making of good systems engineers. 24 The Dream Chaser: Back to the Future 43 BY JIM HODGES Building on decades of Viewpoint: Putting the Science Back research by NASA and the Soviets, a private in Rocket Science company is designing a new crew vehicle. BY GLEN A. ROBERTSON The author calls for new research to advance space propulsion. 38 Weathering Ike 46 BY HALEY STEPHENSON Maintaining space Why Wikis at NASA? station operations during Hurricane Ike BY JON VERVILLE, PATRICIA JONES, AND MARK required both planning and flexibility. ROBER Wikis support collaboration at many NASA centers. 50 Rendezvous with an Asteroid 54 BY ANDREW CHENG The NEAR mission: Managing Stakeholder Styles science on a budget. to Optimize Decision Making BY VANIA NEVES Understanding how people decide leads to better project decisions. Issue No. 44 Staff ACADEMY DIRECTOR AND PUBLISHER Dr. Edward Hoffman [email protected] EDITOR-IN-CHIEF Laurence Prusak [email protected] MANAGING EDITOR The Academy of Program/Project and Engineering Leadership (APPEL) and ASK Don Cohen Magazine help NASA managers and project teams accomplish today’s missions and [email protected] meet tomorrow’s challenges by sponsoring knowledge-sharing events and publications, providing performance enhancement services and tools, supporting career development EDITOR programs, and creating opportunities for project management and engineering Kerry Ellis collaboration with universities, professional associations, industry partners, and other [email protected] government agencies. CONTRIBUTING EDITORS ASK Magazine grew out of the Academy and its Knowledge Sharing Initiative, designed Matt Kohut for program/project managers and engineers to share expertise and lessons learned [email protected] with fellow practitioners across the Agency. Reflecting the Academy’s responsibility for Haley Stephenson project management and engineering development and the challenges of NASA’s new [email protected] mission, ASK includes articles about meeting the technical and managerial demands of complex projects, as well as insights into organizational knowledge, learning, SENIOR KNOWLEDGE SHARING collaboration, performance measurement and evaluation, and scheduling. We at CONSULTANT APPEL Knowledge Sharing believe that stories recounting the real-life experiences Jon Boyle of practitioners communicate important practical wisdom and best practices that [email protected] readers can apply to their own projects and environments. By telling their stories, NASA managers, scientists, and engineers share valuable experience-based knowledge KNOWLEDGE SHARING ANALYSTS and foster a community of reflective practitioners. The stories that appear in ASK Ben Bruneau are written by the “best of the best” project managers and engineers, primarily from [email protected] NASA, but also from other government agencies, academia, and industry. Who better Ramien Pierre than a project manager or engineer to help a colleague address a critical issue on a [email protected] project? Big projects, small projects—they’re all here in ASK. ACADEMY PROGRAM MANAGER You can help ASK provide the stories you need and want by letting our editors know Yvonne Massaquoi what you think about what you read here and by sharing your own stories. To submit [email protected] stories or ask questions about editorial policy, contact Don Cohen, Managing Editor, [email protected], 781-860-5270. DESIGN Hirshorn Zuckerman Design Group, Inc. For inquiries about Academy Knowledge Sharing programs and products, please contact www.hzdg.com Yvonne Massaquoi, InuTeq LLC, 6303 Ivy Lane, Suite 130, Greenbelt, MD 20770; [email protected]; 301-837-9127. PRINTING SPECIALIST Hanta Ralay To subscribe to ASK, please send your full name and preferred mailing address [email protected] (including mail stop, if applicable) to [email protected]. ASK MAGAZINE | 3 In This Issue One of NASA’s stated goals is to “expand scientific on a relatively tight budget when the team is dedicated, understanding of the earth and the universe in which we ingenious, and united. live.” Advancing science has been a primary aim of the In “Putting the Science Back in Rocket Science,” Glen agency’s from the beginning; its contributions to science Robertson argues for a refocusing on science—devising are too numerous and varied even to begin to list. This and testing new ideas—in the field of rocket propulsion, issue of ASK includes several articles that focus not on which he believes has been dominated in recent years the science itself, but on how much NASA’s scientific by an engineering emphasis on reliably putting old ideas accomplishments depend on close cooperation among into practice. the scientists, engineers, and managers who share Some of the articles here are not explicitly about responsibility for its missions. science, but they touch on the essential elements of In his “From the Academy Director” reflections, Ed cooperation that have made and will continue to make Hoffman describes the conflicts among those groups NASA science possible. Jim Hodges’s report on the Dream in the first project team he worked with as a new hire at Chaser and Haley Stephenson’s story about keeping space Goddard—how hard they found it to function as a team. station operations going during Hurricane Ike—as well as Recognizing that essential work happens when these pieces about wiki use at NASA, decision-making styles, communities interact, he quickly saw the importance of and encouraging systems thinking—illustrate, in different bringing them together around the one goal they shared: a ways, the importance of communication and the sharing successful mission. of expertise. Most of all, they show the importance of a Jeffrey Hoffman, the subject of this issue’s interview, shared passionate commitment to mission success. is a Massachusetts Institute of Technology scientist and a veteran astronaut who has helped explain some of the benefits and limitations of research in space to scientists Don Cohen and clarify science needs to astronauts and operations Managing Editor staff. He talks about the change in focus and operational flexibility needed to realize the International Space Station’s great potential for scientific discovery. It is hard to imagine a more vivid demonstration of scientific discovery hinging on excellence in engineering and management than Daniel Andrews’s story of LCROSS’s “bad day,” when an unanticipated expenditure of propellant almost ended the spacecraft’s mission to measure water ice in a crater at the moon’s south pole. And the NEAR story (“Rendezvous with an Asteroid,” by Andrew Cheng) takes us back to the scientific and engineering challenges and accomplishments of NASA’s first Discovery Program mission—a demonstration of how much can be done 4 | ASK MAGAZINE From the Academy Director Action at the Boundaries BY ED HOFFMAN Many years ago, I was hired to design and The scientists informed me that the whole implement strategies that supported teams at notion of “team” was suspect. Science, I was told, Goddard. Because performance happened at the happened at the edge of rebellion; conformity to team level, the idea was to complement traditional team norms and roles was the enemy of scientific individual-development activities with team support. discovery. The only communities scientists NASA’s grand science challenges depend on recognized were other scientists. One scientist engineering expertise to design and build the needed asked, “What do you notice in my dress?” I looked instruments and sound project management to at his shorts, sneakers, and T-shirt. Before I could ensure overall value and execution. I have always been answer, he told me, “My clothes represent my fascinated by what happens when these communities difference. I am deliberately unlike anyone else come together. It is at these organizational boundaries around here.” In other words, get the engineers and interfaces that projects are tested for strength, and project managers to work as a team, but leave teamwork, and resilience. us alone. My first project team was responsible for a I wondered what planet I had landed on. My large science program led out of Goddard. The retreat sponsor was increasingly worried about project manager asked me to design a retreat with taking time away from the project.
Recommended publications
  • 12.3 the Moon: Phases, Eclipses, and the Tides
    12.3 The Moon: Phases, Eclipses, and the Tides 1. The Motions of the Moon a. Rotation i. Period of Moon’s rotation = 27.3 days b. Revolution (orbit) i. Period of the Moon’s orbit around the Earth = 27.3 days ii. Lunar cycle = 29.5 days (time that the calendar month is based on) 1. Time needed for the moon to return to the same place in the sky 2. Since the Earth is orbiting as well as the Moon, the Moon needs the extra 2 days to “catch up to the Earth” in its orbit c. Orbital period of the moon = the rotational period of the moon = 27.3 days i. Synchronous rotation ii. Reason that we only see one side of the Moon 2. Phases of the Moon a. Order of the phases i. Based on the Moon appears to us on Earth ii. New moon, waxing crescent, 1st quarter, waxing gibbous, full moon, waning gibbous, 3rd/last quarter, waning crescent b. The sun’s light moves from right to left across the face of the moon c. Moonrise and moonset i. Time when one’s location on Earth can see the moon 3. Eclipses a. Any time one celestial body passes between another celestial body and the Sun b. Lunar eclipse i. Partial lunar eclipse; when the any part of the Moon falls within the penumbra (partial shadow) of the Earth ii. Total lunar eclipse; when the Moon falls entirely within the umbra (total shadow) of the Earth c. Solar eclipse i. Partial solar eclipse; when any point on the Earth falls within the penumbra (partial shadow) of the Moon ii.
    [Show full text]
  • Chapter 19 the Almanacs
    CHAPTER 19 THE ALMANACS PURPOSE OF ALMANACS 1900. Introduction The Air Almanac was originally intended for air navigators, but is used today mostly by a segment of the Celestial navigation requires accurate predictions of the maritime community. In general, the information is similar to geographic positions of the celestial bodies observed. These the Nautical Almanac, but is given to a precision of 1' of arc predictions are available from three almanacs published and 1 second of time, at intervals of 10 minutes (values for annually by the United States Naval Observatory and H. M. the Sun and Aries are given to a precision of 0.1'). This Nautical Almanac Office, Royal Greenwich Observatory. publication is suitable for ordinary navigation at sea, but The Astronomical Almanac precisely tabulates celestial lacks the precision of the Nautical Almanac, and provides data for the exacting requirements found in several scientific GHA and declination for only the 57 commonly used fields. Its precision is far greater than that required by navigation stars. celestial navigation. Even if the Astronomical Almanac is The Multi-Year Interactive Computer Almanac used for celestial navigation, it will not necessarily result in (MICA) is a computerized almanac produced by the U.S. more accurate fixes due to the limitations of other aspects of Naval Observatory. This and other web-based calculators are the celestial navigation process. available from: http://aa.usno.navy.mil. The Navy’s The Nautical Almanac contains the astronomical STELLA program, found aboard all seagoing naval vessels, information specifically needed by marine navigators. contains an interactive almanac as well.
    [Show full text]
  • Naked-Eye Observations of the Moon (See Also Take-Home Exp
    TAKE-HOME EXP. # 3 Naked-Eye Observations of the Moon (See also Take-Home Exp. #4 which can easily be done at the same time as this one.) You have already seen what the Moon looks like in its various phases, but you may not realize it can be "out" in the day as well as the night. Nor are most people familiar enough with the geometry of the Sun-Moon-Earth system to draw it as easily as you will be able to by the end of this experiment. a. When to make observations of the moon's phases: nytime you can find the Moon, make an observation. These observations do not have to occur only at the principal phases. Anytime and anywhere you can see the Moon is a good time to make a sketch and record the requested information. b. Dates of the Principal phases of the Moon, Times of Moonrise, and Moonset: Earth When doing this experiment, check your newspaper New Moon everyday for the times of moonrise and moonset; they are listed on the weather page. Many calendars show the days of occurrence of the principal phases--new, first- 1st Qrtr quarter, full, third quarter--of the Moon. Most newspapers have the principal phase dates listed every day. In the view of Earth pictured to the right, the Moon’s orbit is the circle, and incoming sunlight is from the right. Full The Moon moves counterclockwise around the Earth, taking 28 days to complete its cycle. Starting at the topmost diagram, a “New Moon” phase, seven days elapse between each succeeding diagram.
    [Show full text]
  • Key Stage 2: Daytime Moon Viewing
    Key Stage 2: Daytime Moon Viewing Teacher’s Notes Curriculum Links: Unit 5E Earth, Sun and Moon, Unit 3F Light and Shadows This extension activity uses daytime viewing of the Moon (during school hours) to reinforce ideas learned in the classroom about light, shadow and the Moon itself. Equipment: Magnetic compass, notepads and pencils for students. Optional: Set(/s) of binoculars, monoculars or telescopes for closer observation of the Moon, cameras. Class discussion before the activity: How can we see the Moon? Answer: The light from the Sun reflects off the Moon and into our eyes or our telescopes. Reflections are how we see most things on a day-to-day basis. Sunlight also reflects off the planets and that is how we see them. Stars, like the Sun are light sources, while other objects are not. Draw the Moon and Earth on the board as shown below, but with no shaded halves. The curved arrows represent the way the Moon orbits the Earth (viewed from a top-down perspective) and the straight arrows represent the light coming from the Sun. Ask students to copy the diagram and shade in the bits of the Earth and Moon that are in darkness, where the Sun’s light does not reach. Some students may ask how the light of the Moon can get to the Earth in the previous diagram. The orbit of the Moon is tilted with respect to Earth’s orbit around the Sun – the diagram on the next page will help students visualise what is happening. Is the Moon ever completely dark? Answer: No.
    [Show full text]
  • Phases of the Moon
    TA Guide for Notes Phases of the Moon Description In this activity, students stand around a bright light bulb in an otherwise dark room, holding a styrofoam ball at arm’s length. As they turn around, they watch the changing pattern of light and dark on the styrofoam ball which reproduces the phases of the Moon. Then, using a second ball as the Earth, students explore the geometry of the Sun-Earth-Moon system to predict the rise and set times of different phases of the Moon. The students “accidentally” stumble onto the alignment of the Sun, Earth and Moon during lunar and solar eclipses. Learning Goals After this tutorial, together with lecture materials, students should be able to • use the geometry of the Sun, Earth and Moon to illustrate the phases of the Moon and to predict the Moon’s rise and set times • illustrate the geometry of the Sun, Earth and Moon during lunar and solar eclipses, and explain why there are not eclipses every month Set-up 20 minutes The students will work together in groups of 3. In order to fit enough groups of students, you may need to use 2 light sources (shown at right). Set up one in the center of the lab and, if necessary, one in the center of the reading room (push the tables to the inside around the light. This will stop the students from getting too close to the light and messing up the geometry.) When both lights are needed, both TAs will be “A” TAs that lead the activity to their own groups of students.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • Planit! User Guide
    ALL-IN-ONE PLANNING APP FOR LANDSCAPE PHOTOGRAPHERS QUICK USER GUIDES The Sun and the Moon Rise and Set The Rise and Set page shows the 1 time of the sunrise, sunset, moonrise, and moonset on a day as A sunrise always happens before a The azimuth of the Sun or the well as their azimuth. Moon is shown as thick color sunset on the same day. However, on lines on the map . some days, the moonset could take place before the moonrise within the Confused about which line same day. On those days, we might 3 means what? Just look at the show either the next day’s moonset or colors of the icons and lines. the previous day’s moonrise Within the app, everything depending on the current time. In any related to the Sun is in orange. case, the left one is always moonrise Everything related to the Moon and the right one is always moonset. is in blue. Sunrise: a lighter orange Sunset: a darker orange Moonrise: a lighter blue 2 Moonset: a darker blue 4 You may see a little superscript “+1” or “1-” to some of the moonrise or moonset times. The “+1” or “1-” sign means the event happens on the next day or the previous day, respectively. Perpetual Day and Perpetual Night This is a very short day ( If further north, there is no Sometimes there is no sunrise only 2 hours) in Iceland. sunrise or sunset. or sunset for a given day. It is called the perpetual day when the Sun never sets, or perpetual night when the Sun never rises.
    [Show full text]
  • The Continuum (Version 2.5)
    The Continuum (version 2.5) by Constantine Thomas Anders Sandberg and DJ Babb i Table of Contents Book 0: Introduction to the Continuum 1 • Introduction to the Continuum and Nexus 1 • Theme 2 • An Alternative Chronicle: The Continuum vs. The Technocracy 2 • Virtuals 3 • Bibliography 4 • Acknowledgements 5 5 • Credits Book 1: The Continuum 6 The Continuum Tradition Page 7 • History and Overview 7 • Philosophy 9 • Organisation 9 • Meetings 10 • Initiation 10 • Other Information 11 • Stereotypes 13 The Continuum Paradigm Page 17 • The Paradigm 17 • Magick 17 • Spheres 17 • Arete 19 • Quintessence 19 • Paradox 19 19 • Awakening/Ascension 19 • Mage-Specific Backgrounds Continuum Policy 20 • Terminology 20 • Nephandi/The Darkness 20 • The Marauders 21 • The Technocracy 21 • The Traditions 21 • The Ascension War 21 • Virtuals 22 22 • The Umbra 23 • Wraiths 23 • Spirits 23 • Garou 23 • Vampires 24 • Changelings and Faeries 24 • Sleepers Continuum Rotes 25 • Rotes Index 25 • Cross-Time Co-ordination 25 • Detect Portal 25 • Detect Vortex 25 • Labyrinth Map 25 • Open Portal 26 27 • Reality Check 27 • Sense Timestone • 27 Temporal Containment 28 • Translator ii Book 2: The Labyrinth Of Time 29 The Labyrinth of Time 30 • The Nature of the Virtuals and the Metaverse 30 • On the Cosmology and Metaphysicks of Virtuals 32 • The Law of Continuity 33 • The Layers of Time 33 • Temporal Avatars 35 • Virtual Cosmology 36 37 • Dopplegangers, Indistinguishables, and Copies Indistinguishables and the Mirror Zone 38 Copies 39 39 Flows and Vortices 40 • Magick
    [Show full text]
  • Moon-Miners-Manifesto-Mars.Pdf
    http://www.moonsociety.org/mars/ Let’s make the right choice - Mars and the Moon! Advantages of a low profile for shielding Mars looks like Arizona but feels like Antarctica Rover Opportunity at edge of Endeavor Crater Designing railroads and trains for Mars Designing planes that can fly in Mars’ thin air Breeding plants to be “Mars-hardy” Outposts between dunes, pulling sand over them These are just a few of the Mars-related topics covered in the past 25+ years. Read on for much more! Why Mars? The lunar and Martian frontiers will thrive much better as trading partners than either could on it own. Mars has little to trade to Earth, but a lot it can trade with the Moon. Both can/will thrive together! CHRONOLOGICAL INDEX MMM THEMES: MARS MMM #6 - "M" is for Missing Volatiles: Methane and 'Mmonia; Mars, PHOBOS, Deimos; Mars as I see it; MMM #16 Frontiers Have Rough Edges MMM #18 Importance of the M.U.S.-c.l.e.Plan for the Opening of Mars; Pavonis Mons MMM #19 Seizing the Reins of the Mars Bandwagon; Mars: Option to Stay; Mars Calendar MMM #30 NIMF: Nuclear rocket using Indigenous Martian Fuel; Wanted: Split personality types for Mars Expedition; Mars Calendar Postscript; Are there Meteor Showers on Mars? MMM #41 Imagineering Mars Rovers; Rethink Mars Sample Return; Lunar Development & Mars; Temptations to Eco-carelessness; The Romantic Touch of Old Barsoom MMM #42 Igloos: Atmosphere-derived shielding for lo-rem Martian Shelters MMM #54 Mars of Lore vs. Mars of Yore; vendors wanted for wheeled and walking Mars Rovers; Transforming Mars; Xities
    [Show full text]
  • Moon Project Pictures
    Ian Spangenberg Popular Astronomy Club September 2019 Go to this link and type in your city: ◦ https://www.timeanddate.com/moon/ This website provides the rise, meridian, and set times for the Moon. ◦ Moonrise: when the Moon just comes up over the horizon – you will probably be able to see the Moon 10 minutes or so after this time if you aren’t surrounded by tall trees (if there are no obstructions on your horizon). ◦ Moonset: when the Moon sets below the horizon. ◦ Meridian: without getting into a bunch of complex concepts, it is basically when the Moon is up highest in the sky. This will be the best time to view the Moon, but anytime between Moonrise and Moonset would be great. The link on the previous page also provides information about ◦ Rise/set times for the Sun and planets ◦ Eclipses ◦ Moon phases (but I have a different website for those) ◦ Time and time zones Last quarter is also known as 3rd Quarter One side of the moon is always illuminated. There is a dark side of the moon, but it is not permanently dark. Let’s look at 1st Quarter. If you are having trouble visualizing it, The sun is illuminating the draw in a stick figure right side of the moon. standing on the Based on how the Earth is Earth’s surface and looking at the Moon, we looking “upwards.” I see a “half” moon. We can’t did that on the next see all of the illuminated slide. side of the moon. We see half of the dark side and half of the light side.
    [Show full text]
  • Measuring the Distance to the Moon
    Day Lab 2 - Measuring the Distance to the Moon This lab attempts to measure the change in the apparent size of the Moon during the course of a day, and to use this information, plus a knowledge of the size of the Earth, to determine how far away the Moon is. The Earth is spherical and rotates; thus during a day (or night) when the Moon is visible, the Earth’s rotation moves our position on the surface of the Earth closer and then farther from the Moon. This change in distance between us and the Moon results in a change in the apparent size of the Moon. We will work out the geometry to get the equation that expresses the distance to the Moon in terms of things we will measure. The measurements themselves will come from images we obtain with a digital camera and a telephoto lens. Part 1 - Build a Model of the Current Earth - Moon - Sun System * The direction towards the light bulb is the direction towards the Sun. Orient the globe of the Earth such that the direction of its axis of rotation is correct with respect to the direction towards the Sun. To do this, you will need to know the day of the year and how the seasons work. * Knowing the date of the last new Moon, and today's date, place the model of the Moon at its proper position. * Knowing the time of day, rotate the globe to the current orientation. * Use the model to predict when the Moon will be highest in the sky * When will the Moon set? * How many kilometers closer to the Moon are we when the Moon is highest in the sky compared to when it sets (or rises)? This is a value we can call D2- D1.
    [Show full text]
  • Moonrise, Moonset, and Phases
    Name: ______________________________________ Date: ________________________ Student Exploration: Moonrise, Moonset, and Phases Vocabulary: horizon, Moon phase, moonrise, moonset Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. When is the last day and approximate time of day you recall seeing the Moon? ___________________________________________________ In the space at right, draw what you saw. 2. Does the Moon always rise and set at the same time? ______________________________ Gizmo Warm-up The Moon is not always in the same position in the sky at a given time. Sometimes the Moon rises in the early evening, sometimes in the middle of the night, and sometimes during the day. The Moonrise, Moonset, and Phases Gizmo allows you to determine how the Moon phases are related to the timing of moonrise and moonset. To begin, turn on Show horizon. The Gizmo shows Earth, the Moon, and an observer on Earth. The Sun is located far away to the right of Earth. The long white line is the horizon. 1. Click Play ( ). Look at the VIEW OF MOON FROM EARTH pane. What do you see? _________________________________________________________________________ _________________________________________________________________________ 2. Click Reset ( ) and set the Speed to Slow. Click Play, and then click Pause ( ) when the Moon is aligned with the eastern horizon (E). Look to the upper left. What time is it? __________________ This is the time of moonrise. 3. Click Play and then Pause when the Moon is aligned with the western (W) horizon. What time is it? __________________ This is the time of moonset. 2019 Get the Gizmo ready: Activity: Click Reset. Moonrise and Check that Show horizon is on and the Speed is moonset set to Slow.
    [Show full text]