Phytolith Assemblages in the Leaves of Guadua Bamboo in Amazonia

Total Page:16

File Type:pdf, Size:1020Kb

Phytolith Assemblages in the Leaves of Guadua Bamboo in Amazonia Journal of Bamboo & Rattan 31 J. Bamboo and Rattan, Vol. 18, Nos. 2, pp. 31 - 43 (2019) www.jbronline.org Phytolith assemblages in the leaves of Guadua bamboo in Amazonia Risto Kalliola1*. Ari Linna1. Linnea Toiviainen1. Kalle Ruokolainen2 Received: 28 June 2019/Accepted:17 August 2019 ©KFRI (2019) Abstract: We studied phytoliths (plant stones) from Introduction 228 leaf samples of Guadua weberbaueri and Guadua sarcocarpa bamboos from eleven collection locations The subfamily of Bambusoideae (Poaceae) inhab- in Southern Peruvian Amazonia and in the state of Acre its a wide range of tropical and subtropical habi- in Brazil. Four leaf-blade transverse thin sections were tats. Bamboos absorb silicon from the soil solu- made by grinding and smoothing them into a 30 µm tion and deposit it as amorphous hydrated silicon thickness, and over 550 phytolith slides created by (SiO .nH O) in the cell wall, cell lumina, and inter- using both the dry ashing and wet oxidation methods. 2 2 Large-sized (up to 50 µm) cuneiform bulliform cells in cellular spaces of various tissues (Piperno, 2006). the intercostal adaxial leaf-blade areas were the most These phytoliths (plant opals, plant stones) can be conspicuous phytoliths in Guadua leaves, but their both abundant and morphologically diverse, and abundance varied even locally. Other recurrent phyto- diagnostic up to the level of tribe or genus. Phyto- lith types included bilobate, saddle, and rondel shaped liths are preserved in the soil even after the organ- short cells; long cells in many different sizes and or- namentations; and prickle hairs, spikes, stomatal, and ic parts of the plant have degraded, making them inter-stomatal cells. We found the definite classifica- useful as microfossils to help paleoecological and tion of phytoliths into morphotypes difficult because of archaeological studies (Ball et al., 2016; Watling their variable sizes, forms, and surface characteristics. et al., 2015). Moreover, phytoliths often occlude Conjoined tricellular cell structures with one to three carbon (PhytOC), which is preserved in the soil mineral-accumulating cells forming a characteristic and contribute to carbon sequestration (Parr et al., mushroom-like constellation were also documented. Fusoid cells forming dense rows attached to the costal 2010). zones locally showed mineralization, indicating their Probably the world’s largest lowland bamboo role in inorganic mineral mobilization and deposition in Guadua leaves. Foliar phytolith assemblages showed forests in their natural state are located in south little variation among the different collection locations western Amazonia in Brazil and Peru, where two compared to the variation found among leaves within species of arborescent semi-scandent bamboos individual sites. (Guadua weberbaueri Pilg. and Guadua sarcocar- pa Londono and Peterson) dominate tropical rain Keywords: Amazonia, bamboo, fusoid cell, Guadua, forests in an area of over 160,000 km2 (de Carval- leaf, phytolith ho et al., 2013). These bamboo species form large patches that flower gregariously and die off after *Corresponding Author the flowering event’(Nelson, 1994). It has been 1 Department of Geography and Geology, University of argued that the pre-Colombian civilization that oc- Turku, FI20014 Turku, Finland cupied at least a part of these present-day bamboo 2 Department of Biology, University of Turku, FI20014 forests utilised the die-off events as a window of Turku, Finland opportunity to clear the forest using the fires fu- E-mail: [email protected] elled by dead bamboo biomass. Hence, Guadua Published online 21 October 2020 32 Journal of Bamboo & Rattan phytoliths in archaeological deposits are among and among different plant structures. For example, the key microfossils of that region (McMichael et in the bamboo genus Aristida, rondels occur in al., 2013; Watling et al., 2016). both the leaves and inflorescences, whereas sad- dles form in the leaves, culms, and inflorescences The relevance of Guadua phytoliths in archaeolo- (Piperno and Pearsall, 1998). Moreover, individu- gy and their potential contributions to carbon se- al plants growing in different habitats may differ in questration call for a closer look to examine their their phytolith compositions (Twiss et al., 1969). characteristics in the living plant. Opal phytoliths in grasses can be variable, depending on when, As such, there are no studies that describe the where, and how silicon deposition occurs in the variation in appearance of foliar Guadua bamboo plant. Phytoliths with bulliform morphology are phytoliths between individuals or populations. common in the family, but many other phytolith The study aims to fill this gap by describing the morphotypes have also been described (Rapp Guadua phytoliths in leaves sampled widely from and Mulholland, 1992). In the Guadua bamboos, eleven different locations across the Amazonian known morphotypes include bulliform, bilobate, bamboo forest area. By using a variety of analyt- saddle, rondel, cross and narrow elliptate phyto- ical methods, we attempt to answer the following liths (Piperno and Pearsall, 1998; Watling et al., research questions: (1) Which kinds of phytoliths 2016). However, the phytolith composition of a do the living Guadua bamboo leaves contain? (2) given plant species can vary from one individu- Where do the different phytolith types occur in the al plant to another (Twiss et al., 1969). Variations leaf structure? (3) How much do the overall phyto- also occur between different parts of a single leaf lith assemblages vary among different individuals blade, between the leaves of an individual plant, or populations? Fig 1. The bamboo sampling locations in the lowland Amazonia. The grey shaded area shows the total distribution of the bam- boo forest formation according to de Carvaljo et al., (2013). 1 = San Carlos, 2 = Ojeayo, 3 = Cumarillo, 4 = Tahuamanu, 5 = Primavera. 6 = Chico Mendes, 7 = Maciopira, 8 = Edmilson, 9 = São Tomé, 10 = Campo Alegre, 11 = Ivo. Journal of Bamboo & Rattan 33 Materials and methods lections made in the Peruvian locations (Table 1). Each leaf sample was taken at a minimum of 30 m The Guadua samples were collected during 2017 apart from another collected culm, so as to repre- and 2018 from eleven different locations in South- sent separate genets. The samples were assigned- ern Peruvian Amazonia and the Brazilian state of consecutive collection numbers from 1 onwards Acre (Fig. 1). The Brazilian samples were on av- in each location. Care was taken to sample leaves erage fewer than those collected from Peru (Table that were healthy-looking. The collected samples 1). Due to difficulty in distinguishing G.sarcocar- were folded, placed in small paper bags, and im- pa from G. weberbaueri in sterile conditions, the mediately deposited in silica gel to achieve rapid common term Guadua bamboo is used throughout drying. the text, acknowledging the possibility that our material could represent two different species (Ol- The laboratory studies were undertaken in the geo- ivier and Poncy, 2009). scientific laboratory at the University of Turku, In each location, the regional abundance of bam- Finland. Three different analytical lineages used boo-dominated forests was confirmed by exam- to produce microscopy slides are shown in Fig 2. ining Landsat TM satellite images wherein these Foliar transverse thin sections were prepared forests are clearly discernible due to their high from four leaf-blade samples. Because phytoliths reflectance in the near-infrared radiation. The tar- are minerals, thin section methodology used in geted bamboo stands in the patches were identified mineralogy and petrology was applied. Air-dried with the help of local inhabitants. All the collec- leaf-blade samples were first embedded into Stru- tion locations were below 200 meters above sea ers EpoFix and air bubbles were removed via a level. Annual rainfall in these locations varies be- low-pressure treatment (200 mbar) for about 20 tween 2000 and 2500 mm per year, and there is a minutes. After the samples had hardened at room distinct dry season, which typically lasts three to temperature for several days, they were levelled at four months. Guadua leaves are commonly ca. 20 the broadest point of the leaf using an Astera Solu- cm long and 2 to 3 cm wide. Foliar samples (about tions precision grinding machine GRN16 (#400 5 cm long) from the central parts of leaves were diamond cup wheel) and then attached with EPO- used for the study, and in total, 228 different leaf TEK 301 into levelled glass that had also been blades were collected from 7 to 41 bamboo ramets produced using the GRN16 (#140). The samples in each location, with the highest numbers of col- were cut with an Astera Solutions precision cut- Table 1. Collection locations with their respective numbers of studied Guadua leaves, transverse section micros- copy samples and dry ashing photographs. Location Country Leaves studied Transverse Dry ashing sections photographs San Carlos Peru 32 1 97 Ojeayo Peru 26 2 82 Cumarillo Peru 41 0 102 Tahuamanu Peru 38 0 96 Primavera Peru 36 1 88 Chico Mendes Brazil 10 0 16 Maciopira Brazil 7 0 10 Edmilson Brazil 11 0 15 Sao Tomé Brazil 10 0 15 Campo Alegre Brazil 10 0 23 Ivo Brazil 7 0 13 Total 228 4 557 34 Journal of Bamboo & Rattan off saw CUT8 and levelled down to 30 µm using The third methodological lineage was wet oxida- the GRN16 (#800). The samples were finalised by tion (Piperno, 2006: 97; Katz et al., 2010) to al- diamond polishing with Saint-Gobain W606AS low individual phytolith examination and photog- slurries and Struers Largo (3 micron), PoliSat1 raphy. The bamboo leaves were first soaked in a (1 micron) and PoliFloc4 (1/4 micron) polishing 1% solution of Alconox detergent and then washed pads. with distilled water. The organic materials were re- moved using nitric acid (HNO ) in a bath of boiling In the second lineage, phytolith spodograms were 3 water by adding pinches of solid potassium chlo- prepared with the dry ashing method (Piperno, rate (KClO ) to speed up the reaction time.
Recommended publications
  • A Preliminary Phytolith Reference Collection for the Mountains of Dhufar, Oman
    The use of phytoliths as a proxy for distinguishing ecological communities: A preliminary phytolith reference collection for the mountains of Dhufar, Oman Undergraduate Research Thesis Presented in Partial Fulfillment of the Requirements for Graduation “with Honors Research Distinction in Evolution and Ecology” in the Undergraduate Colleges of The Ohio State University by Drew Arbogast The Ohio State University May 2019 Project Co-Advisors: Professor Ian Hamilton, Department of Evolution, Ecology, and Organismal Biology Professor Joy McCorriston, Department of Anthropology 2 Table of Contents Page List of Tables...................................................................................................................................3 List of Figures..................................................................................................................................4 Abstract............................................................................................................................................5 Introduction......................................................................................................................................6 Background......................................................................................................................................7 Materials and Methods...................................................................................................................11 Results............................................................................................................................................18
    [Show full text]
  • Benefits of Plant Silicon for Crops: a Review Flore Guntzer, Catherine Keller, Jean-Dominique Meunier
    Benefits of plant silicon for crops: a review Flore Guntzer, Catherine Keller, Jean-Dominique Meunier To cite this version: Flore Guntzer, Catherine Keller, Jean-Dominique Meunier. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2012, 32 (1), pp.201-213. 10.1007/s13593-011-0039-8. hal-00930510 HAL Id: hal-00930510 https://hal.archives-ouvertes.fr/hal-00930510 Submitted on 1 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agron. Sustain. Dev. (2012) 32:201–213 DOI 10.1007/s13593-011-0039-8 REVIEW ARTICLE Benefits of plant silicon for crops: a review Flore Guntzer & Catherine Keller & Jean-Dominique Meunier Accepted: 25 November 2010 /Published online: 30 June 2011 # INRA and Springer Science+Business Media B.V. 2011 Abstract Since the beginning of the nineteenth century, contains large amounts of phytoliths, should be recycled in silicon (Si) has been found in significant concentrations in order to limit the depletion of soil bioavailable Si. plants. Despite the abundant literature which demonstrates its benefits in agriculture, Si is generally not considered as Keywords Nutrient cycling .
    [Show full text]
  • Phytoarkive Project General Report: Phytolith Assessment of Samples from 16-22 Coppergate and 22 Piccadilly (ABC Cinema), York
    PhytoArkive Project General Report: Phytolith Assessment of Samples from 16-22 Coppergate and 22 Piccadilly (ABC Cinema), York An Insight Report By Hayley McParland, University of York ©H. McParland 2016 Contents 1. INTRODUCTION .............................................................................................................................. 3 A VERY BRIEF HISTORY OF PHYTOLITH STUDIES IN THE UK................................................................................ 4 2. METHODOLOGY ............................................................................................................................. 6 3. RESULTS .......................................................................................................................................... 6 4. RECOMMENDATIONS AND POTENTIAL .......................................................................................... 7 2 1. Introduction This pilot study builds on an initial assessment of phytolith preservation in samples from Coppergate and 22 Picadilly (ABC Cinema) which demonstrated adequate to excellent preservation of phytoliths1. At that time, phytolith studies were in their infancy and their true potential for the interpretation of archaeological contexts was unknown. Phytoliths are plant silica microfossils, ranging from 0.01mm to 0.1mm in size and visible only through a high powered microscope. Phytoliths, literally ‘plant rocks’12, are formed from solidified monosilicic acid, which is absorbed by the plant in the groundwater. It is deposited as
    [Show full text]
  • Potential of Grasses in Phytolith Production in Soils Contaminated with Cadmium
    plants Article Potential of Grasses in Phytolith Production in Soils Contaminated with Cadmium Múcio Mágno de Melo Farnezi 1, Enilson de Barros Silva 1,* , Lauana Lopes dos Santos 1, Alexandre Christofaro Silva 1, Paulo Henrique Grazziotti 1 , Jeissica Taline Prochnow 1, Israel Marinho Pereira 1 and Ivan da Costa Ilhéu Fontan 2 1 Federal University of the Jequitinhonha and Mucuri Valley (UFVJM), Campus JK, Diamantina 39.100-000, Minas Gerais, Brazil; [email protected] (M.M.d.M.F.); [email protected] (L.L.d.S.); [email protected] (A.C.S.); [email protected] (P.H.G.); [email protected] (J.T.P.); [email protected] (I.M.P.) 2 Federal Institute of Minas Gerais - Campus São João Evangelista, Av. Primeiro de Junho, 1043, Centro, São João Evangelista 39.705-000, Minas Gerais, Brazil; [email protected] * Correspondence: [email protected] Received: 14 December 2019; Accepted: 13 January 2020; Published: 15 January 2020 Abstract: Cadmium (Cd) is a very toxic heavy metal occurring in places with anthropogenic activities, making it one of the most important environmental pollutants. Phytoremediation plants are used for recovery of metal-contaminated soils by their ability to absorb and tolerate high concentrations of heavy metals. This paper aims to evaluate the potential of grasses in phytolith production in soils contaminated with Cd. The experiments, separated by soil types (Typic Quartzipsamment, Xanthic Hapludox and Rhodic Hapludox), were conducted in a completely randomized design with a distribution of treatments in a 3 4 factorial scheme with three replications. The factors × were three grasses (Urochloa decumbens, Urochloa brizantha and Megathyrsus maximus) and four 1 concentrations of Cd applied in soils (0, 2, 4 and 12 mg kg− ).
    [Show full text]
  • Amazon Alive: a Decade of Discoveries 1999-2009
    Amazon Alive! A decade of discovery 1999-2009 The Amazon is the planet’s largest rainforest and river basin. It supports countless thousands of species, as well as 30 million people. © Brent Stirton / Getty Images / WWF-UK © Brent Stirton / Getty Images The Amazon is the largest rainforest on Earth. It’s famed for its unrivalled biological diversity, with wildlife that includes jaguars, river dolphins, manatees, giant otters, capybaras, harpy eagles, anacondas and piranhas. The many unique habitats in this globally significant region conceal a wealth of hidden species, which scientists continue to discover at an incredible rate. Between 1999 and 2009, at least 1,200 new species of plants and vertebrates have been discovered in the Amazon biome (see page 6 for a map showing the extent of the region that this spans). The new species include 637 plants, 257 fish, 216 amphibians, 55 reptiles, 16 birds and 39 mammals. In addition, thousands of new invertebrate species have been uncovered. Owing to the sheer number of the latter, these are not covered in detail by this report. This report has tried to be comprehensive in its listing of new plants and vertebrates described from the Amazon biome in the last decade. But for the largest groups of life on Earth, such as invertebrates, such lists do not exist – so the number of new species presented here is no doubt an underestimate. Cover image: Ranitomeya benedicta, new poison frog species © Evan Twomey amazon alive! i a decade of discovery 1999-2009 1 Ahmed Djoghlaf, Executive Secretary, Foreword Convention on Biological Diversity The vital importance of the Amazon rainforest is very basic work on the natural history of the well known.
    [Show full text]
  • Allometric Derivation and Estimation of Guadua Weberbaueri and G. Sarcocarpa Biomass in the Bamboo-Dominated Forests of SW Amazonia
    bioRxiv preprint doi: https://doi.org/10.1101/129262; this version posted April 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Allometric derivation and estimation of Guadua weberbaueri and G. sarcocarpa biomass in the bamboo-dominated forests of SW Amazonia Noah Yavit 10103 Farrcroft Drive Fairfax, VA 22030 Direct all correspondence to: [email protected] (571) 213-7571* bioRxiv preprint doi: https://doi.org/10.1101/129262; this version posted April 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Bamboo-dominated forests in Southwestern Amazonia encompass an estimated 180,000 km2 of nearly contiguous primary, tropical lowland forest. This area, largely composed of two bamboo species, Guadua weberbaueri Pilger and G. sarcocarpa Londoño & Peterson, comprises a significant portion of the Amazon Basin and has a potentially important effect on regional carbon storage. Numerous local REDD(+) projects would benefit from the development of allometric models for these species, although there has been just one effort to do so. The aim of this research was to create a set of improved allometric equations relating the above and belowground biomass to the full range of natural size and growth patterns observed. Four variables (DBH, stem length, small branch number and branch number ≥ 2cm diameter) were highly significant predictors of stem biomass (N≤ 278, p< 0.0001 for all predictors, complete model R2=0.93).
    [Show full text]
  • Combining Environmental History and Soil Phytolith Analysis at the City of Rocks National Reserve: Developing New Methods in Historical Ecology
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2008 Combining Environmental History and Soil Phytolith Analysis at the City of Rocks National Reserve: Developing New Methods in Historical Ecology Lesley Morris Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons, Botany Commons, and the United States History Commons Recommended Citation Morris, Lesley, "Combining Environmental History and Soil Phytolith Analysis at the City of Rocks National Reserve: Developing New Methods in Historical Ecology" (2008). All Graduate Theses and Dissertations. 35. https://digitalcommons.usu.edu/etd/35 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. COMBINING ENVIRONMENTAL HISTORY AND SOIL PHYTOLITH ANALYSIS AT THE CITY OF ROCKS NATIONAL RESERVE: DEVELOPING NEW METHODS IN HISTORICAL ECOLOGY by Lesley R. Morris A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: __________________ _________________ Dr. Ronald J. Ryel Dr. Neil West Major Professor Committee Member __________________ __________________ Dr. Fred Baker Dr. John Malechek Committee Member Committee Member __________________ __________________ Dr. Christopher Conte Dr. Byron Burnham Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2008 ii Copyright © Lesley R. Morris 2008 All Rights Reserved iii ABSTRACT Combining Environmental History and Soil Phytolith Analysis at the City of Rocks National Reserve: Developing New Methods in Historical Ecology by Lesley R.
    [Show full text]
  • Bamboo Biodiversity
    Bamboo biodiversity Africa, Madagascar and the Americas Nadia Bystriakova, Valerie Kapos, Igor Lysenko Bamboo biodiversity Africa, Madagascar and the Americas Nadia Bystriakova, Valerie Kapos, Igor Lysenko UNEP World Conservation International Network for Bamboo and Rattan Monitoring Centre No. 8, Fu Tong Dong Da Jie, Wang Jing Area 219 Huntingdon Road Chao Yang District, Beijing 100102 Cambridge People’s Republic of China CB3 0DL Postal address: Beijing 100102-86 United Kingdom People’s Republic of China Tel: +44 (0) 1223 277314 Tel: +86 (0) 10 6470 6161 Fax: +44 (0) 1223 277136 Fax: +86 (0) 10 6470 2166 Email: [email protected] Email: [email protected] Website: www.unep-wcmc.org Website: www.inbar.int Director: Mark Collins Director General: Ian Hunter THE UNEP WORLD CONSERVATION MONITORING CENTRE is the THE INTERNATIONAL NETWORK FOR BAMBOO AND RATTAN (INBAR) biodiversity assessment and policy implementation arm of is an international organization established by treaty in the United Nations Environment Programme (UNEP), the November 1997, dedicated to improving the social, world’s foremost intergovernmental environmental economic, and environmental benefits of bamboo and organization. UNEP-WCMC aims to help decision-makers rattan. INBAR connects a global network of partners from recognize the value of biodiversity to people everywhere, and the government, private and not-for-profit sectors in over 50 to apply this knowledge to all that they do. The Centre’s countries to define and implement a global agenda for challenge is to transform complex data into policy-relevant sustainable development through bamboo and rattan. information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action.
    [Show full text]
  • Microscopy Characterization of Silica-Rich Agrowastes to Be Used in Cement Binders: Bamboo and Sugarcane Leaves
    Microsc. Microanal. 21, 1314–1326, 2015 doi:10.1017/S1431927615015019 © MICROSCOPY SOCIETY OF AMERICA 2015 Microscopy Characterization of Silica-Rich Agrowastes to be used in Cement Binders: Bamboo and Sugarcane Leaves Josefa Roselló,1 Lourdes Soriano,2 M. Pilar Santamarina,1 Jorge L. Akasaki,3 José Luiz P. Melges,3 and Jordi Payá2,* 1Departamento de Ecosistemas Agroforestales, Universitat Politècnica de Valéncia, E-46022 Spain 2Instituto de Ciencia y Tecnología del Hormigón ICITECH, Universitat Politècnica de Valéncia, E-46022 Spain 3UNESP - Univ Estadual Paulista, Departamento de Engenharia Civil, Campus de Ilha Solteira, SP CEP 15385-000, Brasil Abstract: Agrowastes are produced worldwide in huge quantities and they contain interesting elements for producing inorganic cementing binders, especially silicon. Conversion of agrowastes into ash is an interesting way of yielding raw material used in the manufacture of low-CO2 binders. Silica-rich ashes are preferred for preparing inorganic binders. Sugarcane leaves (Saccharum officinarum, SL) and bamboo leaves (Bambusa vulgaris, BvL and Bambusa gigantea, BgL), and their corresponding ashes (SLA, BvLA, and BgLA), were chosen as case studies. These samples were analyzed by means of optical microscopy, Cryo-scanning electron microscopy (SEM), SEM, and field emission scanning electron microscopy. Spodograms were obtained for BvLA and BgLA, which have high proportions of silicon, but no spodogram was obtained for SLA because of the low silicon content. Different types of phytoliths (specific cells, reservoirs of silica in plants) in the studied leaves were observed. These phytoliths maintained their form after calcination at temperatures in the 350–850°C range. Owing to the chemical composition of these ashes, they are of interest for use in cements and concrete because of their possible pozzolanic reactivity.
    [Show full text]
  • Advantages and Disadvantages of Phytolith
    Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: an assessment based on modern phytolith, pollen and botanical data (Luberon, France) Laurent Bremond, Anne Alexandre, Errol Véla, Joel Guiot To cite this version: Laurent Bremond, Anne Alexandre, Errol Véla, Joel Guiot. Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: an assessment based on modern phytolith, pollen and botanical data (Luberon, France). Review of Palaeobotany and Palynology, Elsevier, 2004, 129 (4), pp.213 - 228. 10.1016/j.revpalbo.2004.02.002. hal-01909607 HAL Id: hal-01909607 https://hal.archives-ouvertes.fr/hal-01909607 Submitted on 14 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE IN PRESS Review of Palaeobotany and Palynology xx (2004) xxx–xxx www.elsevier.com/locate/revpalbo Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: an assessment based on modern phytolith, pollen and botanical data (Luberon, France) Laurent Bremonda,*, Anne Alexandrea, Errol Ve´lab, Joe¨l Guiota a CEREGE, Me´diterrane´en de l’Arbois, B.P. 80, Aix-en-Provence Cedex 04 F-13545, France b IMEP, Europoˆle Me´diterrane´en de l’Arbois, B.P.
    [Show full text]
  • 21 Irrigation and Phytolith Formation: an Experimental Study
    Comp. by: ISAAC PANDIAN Stage: Revises1 Chapter No.: 21 Title Name: Mithen&Black Page Number: 0 Date:28/1/11 Time:05:17:46 21 Irrigation and phytolith formation: an experimental study Emma Jenkins, Khalil Jamjoum and Sameeh Al Nuimat ABSTRACT of durum wheat and six-row barley show that if an assemblage of single-celled phytoliths consists of over It has been proposed that phytoliths from archaeological 60% dendritic long cells then this strongly suggests that sites can be indicators of water availability and hence the crop received optimum levels of water. Further inform about past agricultural practices (Rosen and research is needed to determine if this finding is Weiner, 1994; Madella et al., 2009). Rosen and Weiner consistent in phytolith samples from the leaves and (1994) found that the number of conjoined phytoliths stems, as suggested by Madella et al.(2009),andinother from cereal husks increased with irrigation while Madella species of cereals. If this is the case then phytoliths are a et al. (2009) demonstrated that the ratio of long-celled valuble tool for assessing the level of past water phytoliths to short-celled phytoliths increased with availability and, potentially, past irrigation. irrigation. In order to further explore these hypotheses, wheat and barley were experimentally grown from 2005 21.1 INTRODUCTION to 2008 in three different crop growing stations in Jordan. Four different irrigation regimes were initially employed: 21.1.1 Archaeology, irrigation and phytoliths 0% (rainfall only), 80%, 100% and 120% of the optimum crop water requirements, with a 40% plot being added in The development of water management systems in southwest the second and third growing seasons.
    [Show full text]
  • Phytolith Analysis of Feature Fill Samples from the El Dornajo Site, Ecuador
    PHYTOLITH ANALYSIS OF FEATURE FILL SAMPLES FROM THE EL DORNAJO SITE, ECUADOR. By Chad Yost Paleo Research Institute Golden, Colorado Paleo Research Institute Technical Report 08-129 Prepared For Sarah Taylor University of Pittsburgh February 2008 INTRODUCTION Sediment samples from six different features were submitted for plant opal phytolith analysis from the El Dornajo site, located 10 km inland from the southern coast of Ecuador. This site has two distinct upper and lower occupations, and is affiliated with the Jambeli culture. Previous macrofloral analysis by other researchers failed to identify any economical plant remains. The goal of this analysis is to recover evidence of economic plant use from features associated with the upper and lower occupations. METHODS Phytolith Extraction Extraction of phytoliths from these sediments was based on heavy liquid floatation. Hydrochloric acid (HCL) was first used to remove calcium carbonates and iron oxides from a 15 ml sediment sample. Then sodium hypochlorite (bleach) was used to destroy the organic fraction of the sediment. Once this reaction was complete, a 5% solution of sodium hexametaphosphate was added to the mixture to suspend the clays. Each sample was rinsed thoroughly with distilled water to remove the clays, allowing the samples to settle by gravity. Next, a 10% solution of ethylenediaminetetraacetic acid (EDTA) was added to each sample and throughly mixed. EDTA aids in the removal of organic humic substances. Once most of the clays were removed, the silt and sand size fraction was dried under vacuum. The dried silts and sands were then mixed with sodium polytungstate (SPT, density 2.3 g/ml) and centrifuged to separate the phytoliths, which will float, from most of the inorganic silica fraction, which will not.
    [Show full text]