SARS-Cov-2 and Norovirus Co-Infection After Lung Transplantation

Total Page:16

File Type:pdf, Size:1020Kb

SARS-Cov-2 and Norovirus Co-Infection After Lung Transplantation Case Report SARS-CoV-2 and Norovirus Co-Infection after Lung Transplantation Carolin Steinack 1,2,* , René Hage 1,2 , Christian Benden 2,3 and Macé M. Schuurmans 1,2 1 Division of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland; [email protected] (R.H.); [email protected] (M.M.S.) 2 Faculty of Medicine, University of Zurich, Raemistrasse 71, 8006 Zurich, Switzerland; [email protected] 3 Swisstransplant, Effingerstrasse 1, Postfach, 3011 Bern, Switzerland * Correspondence: [email protected] Received: 5 May 2020; Accepted: 27 May 2020; Published: 29 May 2020 Abstract: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spreading as a pandemic in 2020. Few reports on infections in thoracic transplantation have been published so far. We present a case of COVID-19 in a 55-year old female lung transplant recipient infected 5 months posttransplant, who additionally was co-infected with a Norovirus. Respiratory and gastrointestinal symptoms were observed without need of therapeutic escalation except for antibiotic therapy. We observed a moderate disease evolution likely due to triple immunosuppression. Keywords: Lung Transplantation; COVID-19; SARS-CoV-2; Coronavirus; norovirus 1. Introduction In late 2019, a novel coronavirus, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged from Wuhan, China [1]. This virus leads to the coronavirus disease 2019 (COVID-19), currently causing a pandemic with worldwide severe economic and healthcare consequences [2]. Among the most dominant clinical characteristics are fever, cough and fatigue, whereas gastrointestinal symptoms are rather uncommon. Critical disease conditions may be caused by severe and sustained systemic inflammatory responses (hyperinflammation or “cytokine storm”) and a cytopathic effect, leading to acute respiratory distress syndrome (ARDS), septic shock, metabolic acidosis that is hard to correct, coagulation dysfunction and multiple organ failure. The exact viral host factors that influence the pathogenesis are still being investigated. The SARS-CoV-2 infection binds to human host cell receptors, using human angiotensin-converting enzyme 2 (hACE2), although there are more factors influencing susceptibility to infection and disease progression. Elderly people (>65 years of age) with underlying diseases such as hypertension, chronic obstructive pulmonary disease (COPD), diabetes and cardiovascular disease seem more susceptible to an infection and prone to serious outcomes of this viral disease [3]. Since the spread of SARS-CoV-2 around the world, there have only been a few case reports describing COVID-19 in patients after solid organ transplantation (SOT). We present a case of COVID-19 in a lung transplant (LTX) recipient presenting with fever and gastrointestinal symptoms in our emergency department. Transplantology 2020, 1, 16–23; doi:10.3390/transplantology1010002 www.mdpi.com/journal/transplantology Transplantology 2020, 1 17 2. Case Report Transplantology 2020, 1, FOR PEER REVIEW 2 A 55-year-old female with advanced chronic obstructive pulmonary disease (COPD) underwent a successfulwas started bilateral on a standard LTX 5 immunosuppressive months earlier. Induction regime therapy (cyclosporine—C2 (basiliximab) target was used,level 1200–1500 and the patient µg/L wasafter started48 h), 1.0 on g a standardbid mycophenolate immunosuppressive mofetil, and regime i.v. methylprednisolone (cyclosporine—C2 targetaccording level to 1200–1500 our standardµg/L afterprotocol. 48 h), In 1.0 March g bid 2020 mycophenolate she presente mofetil,d with vomiting, and i.v. methylprednisolone diarrhea and a 38.9 °C according fever in toour our emergency standard protocol.department. In MarchIn the 2020recent she months presented and withweeks, vomiting, she had diarrhea an uneventful and a 38.9 post-transplant◦C fever in our course emergency except department.for a switch from In the cyclosporine recent months to andtacrolimus weeks, because she had anof strongly uneventful variable post-transplant trough levels. course A exceptrecent forsurveillance a switch frombronchoscopy cyclosporine showed to tacrolimus no evidence because of acute of strongly cellular variable rejection trough and alevels. stable Aallograft recent surveillancefunction with bronchoscopy an FEV1 of showed 104% predicted no evidence based of acute on standard cellular rejection triple immunosuppressive and a stable allograft functiontherapy with(tacrolimus, an FEV1 mycophenolate of 104% predicted and basedprednisolone). on standard At th triplee time immunosuppressive of presentation, she therapy had a new (tacrolimus, onset of mycophenolatemild respiratory and symptoms prednisolone). consisting At the of timea dry of cough presentation, and rhinorrhea. she had a Due new onsetto the offever, mild respiratory respiratory symptoms and consisting ongoing of SARS-CoV-2 a dry cough pandemic, and rhinorrhea. diagnostic Due sampling to the fever, included respiratory blood, feces, symptoms and urine and ongoingand a nasal SARS-CoV-2 swab for pandemic, SARS-CoV-2. diagnostic The sampling nasophar includedyngeal blood,swab feces,for SARS-CoV-2 and urine and was a nasal positive, swab forprompting SARS-CoV-2. hospitalization The nasopharyngeal on a special swab isolation for SARS-CoV-2 ward. Feces was were positive, positive prompting for norovirus hospitalization after having on abeen special negative isolation 2 months ward. earlier. Feces were The positivestool specimen for norovirus tested after negative having for been SARS-CoV-2. negative2 The months serological earlier. Theantibody stool test specimen for SARS-CoV-2 tested negative IgG und for SARS-CoV-2.IgM was negative The 14 serological days after antibody the positive test fornasopharyngeal SARS-CoV-2 IgGswab und test. IgM The wasmain negative results at 14 presentation days after theincluded positive CRP nasopharyngeal 77 mg/L, leukocytosis swab test. (9.9 g/L), The mainneutrophilia results at(8.96 presentation g/L) and a includedmarked declining CRP 77 mg lymphocytopenia/L, leukocytosis (0.52 (9.9 gg/L,/L), previously neutrophilia 1.3 (8.96 g/L). g The/L) andarterial a marked blood declininggas analysis lymphocytopenia was within normal (0.52 limits, g/L, previously thus no oxygen 1.3 g/L). supplementation The arterial blood was gas given analysis initially. was withinInitial normalserum interleukin limits, thus no(IL-)6 oxygen was supplementationslightly elevated was 4.5 givenpg/mL initially. (Ref < Initial3.1) and serum decreased interleukin subsequently. (IL-)6 was slightlySoluble elevatedIL-2-receptor 4.5 pg (sIL-2R)/mL (Ref was< 3.1) 394 andpg/mL decreased (Ref < 477) subsequently. at presentation, Soluble increased IL-2-receptor up to (sIL-2R)2778 on wasday 3946 and pg decreased/mL (Ref < to477) normal at presentation, levels (327) on increased day 15. upIgG to was 2778 in on the day lower 6 and normal decreased range towith normal 7.1 g/L levels (7– (327)16). Five on daydays 15. after IgG admission, was in the CRP lower dropped normal to range5.7 mg/L with (Ref 7.1 < g 5/L mg/L). (7–16). Bronchoalveolar Five days after lavage admission, was CRPnot performed dropped todue 5.7 to mgthe/ Lfavorable (Ref < 5 clinical mg/L). evolutio Bronchoalveolarn and the lack lavage of respiratory was not performed deterioration. due toChest the favorablecomputed clinicaltomography evolution (CT) andimaging the lack revealed, of respiratory at initial deterioration.presentation, three Chest small computed new solid tomography nodular (CT)consolidations imaging revealed, without predominant at initial presentation, ground-gla threess opacities small new or solidpleural nodular effusions consolidations (Figure 1a−c). without These predominant ground-glass opacities or pleural effusions (Figure1a c). These findings had not been findings had not been observed 3 months earlier in a routine CT −examination. The consolidations observeddiminished 3 monthsover time earlier and in some a routine of them CT examination.disappeared completely The consolidations in a follow diminished up chest over CT time6 weeks and somelater (Figure of them 1d–f). disappeared completely in a follow up chest CT 6 weeks later (Figure1d–f). (a) Figure 1. Cont. Transplantology 2020, 1 18 Transplantology 2020, 1, FOR PEER REVIEW 3 (b) (c) (d) Figure 1. Cont. Transplantology 2020, 1 19 Transplantology 2020, 1, FOR PEER REVIEW 4 (e) (f) Figure 1. (a–c) new pulmonary consolidations in the chest computed tomography (CT) on March 18th Figure 1. (a)−(c) new pulmonary consolidations in the chest computed tomography (CT) on March that were not visible in a chest CT 3 months before. (d–f): All of the consolidations resolved partially or 18th that were not visible in a chest CT 3 months before. (d)−(f): All of the consolidations resolved completely in the follow-up chest CT 6 weeks later. partially or completely in the follow-up chest CT 6 weeks later. The patient was treated empirically with intravenous piperacillin/tazobactam 4.5 g every 8 h for 10 days.The Wepatient administered was treated neither empirically lopinavir with/ritonavir intraven norous hydroxychloroquine, piperacillin/tazobactam the 4.5 drug g every regimen 8 h for COVID-1910 days. We used administered predominantly neither in lopinavir/ritonavir China and Italy at thatnor hydroxychloroquine, time and also the drug the regimen drug regimen for severe for casesCOVID-19 at our used hospital predominantly then.
Recommended publications
  • List N: Products with Emerging Viral Pathogens and Human Coronavirus Claims for Use Against SARS-Cov-2 Date Accessed: 06/12/2020
    List N: Products with Emerging Viral Pathogens AND Human Coronavirus claims for use against SARS-CoV-2 Date Accessed: 06/12/2020 EPA Active Ingredient(s) Product Company To kill SARS- Contact Formulation Surface Use Sites Emerging Date Registration Name CoV-2 Time (in Type Types Viral Added to Number (COVID-19), minutes) Pathogen List N follow Claim? disinfection directions for the following virus(es) 1677-202 Quaternary ammonium 66 Heavy Duty Ecolab Inc Norovirus 2 Dilutable Hard Healthcare; Yes 06/04/2020 Alkaline Nonporous Institutional Bathroom (HN) Cleaner and Disinfectant 10324-81 Quaternary ammonium Maquat 7.5-M Mason Norovirus; 10 Dilutable Hard Healthcare; Yes 06/04/2020 Chemical Feline Nonporous Institutional; Company calicivirus (HN); Food Residential Contact Post-Rinse Required (FCR); Porous (P) (laundry presoak only) 4822-548 Triethylene glycol; Scrubbing S.C. Johnson Rotavirus 5 Pressurized Hard Residential Yes 06/04/2020 Quaternary ammonium Bubbles® & Son Inc liquid Nonporous Multi-Purpose (HN) Disinfectant 1839-167 Quaternary ammonium BTC 885 Stepan Rotavirus 10 Dilutable Hard Healthcare; Yes 05/28/2020 Neutral Company Nonporous Institutional; Disinfectant (HN) Residential Cleaner-256 93908-1 Hypochlorous acid Envirolyte O & Aqua Norovirus 10 Ready-to-use Hard Healthcare; Yes 05/28/2020 G Engineered Nonporous Institutional; Solution Inc (HN); Food Residential Contact Post-Rinse www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2 1 of 66 EPA Active Ingredient(s) Product Company To kill SARS- Contact
    [Show full text]
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Pt Education-Rubella
    Patient Education Healthcare Epidemiology and Infection Control Rubella An illness requiring droplet precautions This handout describes What is Rubella? Rubella and it symptoms. It Rubella (also called German measles, 3-day measles or Rubella virus also explains how this infection) is a viral disease. It can be prevented with a vaccine. disease can be spread and You are not at risk if you have: offers steps to prevent • Had blood tests showing that you are immune due to a history of others from getting it. clinical disease. To learn more about Rubella, • Received 2 doses of the MMR (Mumps, Measles, Rubella) vaccine. visit these Web sites: Rubella is a reportable disease. The health department is notified when a case is diagnosed to protect others who may have come in contact with www.cdc.gov/ncidod/dvrd/ you and are at risk of becoming ill. revb/measles/rubella_index The greatest danger from rubella is to unborn babies. If a woman gets .htm rubella in the early months of her pregnancy, there is an 80% chance that www.cdc.gov/vaccines/vpd her baby will be born with birth defects. Babies may be born deaf or blind. They may have damaged hearts or small brains. Many are mentally -vac/rubella/default.htm retarded. Miscarriages are also common among women who get rubella while they are pregnant. What are the symptoms? The symptoms of Rubella include a slight fever that lasts for about 24 hours, and a rash on the face and neck that lasts 2 or 3 days. The rash is pink or light red spots that may merge to form splotches.
    [Show full text]
  • Prospects of Replication-Deficient Adenovirus Based Vaccine Development Against SARS-Cov-2
    Brief Report Prospects of Replication-Deficient Adenovirus Based Vaccine Development against SARS-CoV-2 Mariangela Garofalo 1,* , Monika Staniszewska 2 , Stefano Salmaso 1 , Paolo Caliceti 1, Katarzyna Wanda Pancer 3, Magdalena Wieczorek 3 and Lukasz Kuryk 3,4,* 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; [email protected] (S.S.); [email protected] (P.C.) 2 Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; [email protected] 3 Department of Virology, National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland; [email protected] (K.W.P.); [email protected] (M.W.) 4 Clinical Science, Targovax Oy, Saukonpaadenranta 2, 00180 Helsinki, Finland * Correspondence: [email protected] (M.G.); [email protected] (L.K.) Received: 1 May 2020; Accepted: 6 June 2020; Published: 10 June 2020 Abstract: The current appearance of the new SARS coronavirus 2 (SARS-CoV-2) and it quickly spreading across the world poses a global health emergency. The serious outbreak position is affecting people worldwide and requires rapid measures to be taken by healthcare systems and governments. Vaccinations represent the most effective strategy to prevent the epidemic of the virus and to further reduce morbidity and mortality with long-lasting effects. Nevertheless, currently there are no licensed vaccines for the novel coronaviruses. Researchers and clinicians from all over the world are advancing the development of a vaccine against novel human SARS-CoV-2 using various approaches.
    [Show full text]
  • A Human Coronavirus Evolves Antigenically to Escape Antibody Immunity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423313; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A human coronavirus evolves antigenically to escape antibody immunity Rachel Eguia​1​, Katharine H. D. Crawford​1,2,3​, Terry Stevens-Ayers​4​, Laurel Kelnhofer-Millevolte​3​, Alexander L. Greninger​4,5​, Janet A. Englund​6,7​, Michael J. Boeckh​4​, Jesse D. Bloom​1,2,# 1​Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 2​Department of Genome Sciences, University of Washington, Seattle, WA, USA 3​Medical Scientist Training Program, University of Washington, Seattle, WA, USA 4​Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 5​Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA 6​Seattle Children’s Research Institute, Seattle, WA USA 7​Department of Pediatrics, University of Washington, Seattle, WA USA 8​Howard Hughes Medical Institute, Seattle, WA 98109 #​Corresponding author. E-mail: ​[email protected] Abstract There is intense interest in antibody immunity to coronaviruses. However, it is unknown if coronaviruses evolve to escape such immunity, and if so, how rapidly. Here we address this question by characterizing the historical evolution of human coronavirus 229E. We identify human sera from the 1980s and 1990s that have neutralizing titers against contemporaneous 229E that are comparable to the anti-SARS-CoV-2 titers induced by SARS-CoV-2 infection or vaccination.
    [Show full text]
  • Where Do We Stand After Decades of Studying Human Cytomegalovirus?
    microorganisms Review Where do we Stand after Decades of Studying Human Cytomegalovirus? 1, 2, 1 1 Francesca Gugliesi y, Alessandra Coscia y, Gloria Griffante , Ganna Galitska , Selina Pasquero 1, Camilla Albano 1 and Matteo Biolatti 1,* 1 Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] (F.G.); gloria.griff[email protected] (G.G.); [email protected] (G.G.); [email protected] (S.P.); [email protected] (C.A.) 2 Complex Structure Neonatology Unit, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 March 2020; Accepted: 5 May 2020; Published: 8 May 2020 Abstract: Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance.
    [Show full text]
  • Common Human Coronaviruses
    Common Human Coronaviruses Common human coronaviruses, including types 229E, NL63, OC43, and HKU1, usually cause mild to moderate upper-respiratory tract illnesses, like the common cold. Most people get infected with one or more of these viruses at some point in their lives. This information applies to common human coronaviruses and should not be confused with Coronavirus Disease-2019 (formerly referred to as 2019 Novel Coronavirus). Symptoms of common human coronaviruses Treatment for common human coronaviruses • runny nose • sore throat There is no vaccine to protect you against human • headache • fever coronaviruses and there are no specific treatments for illnesses caused by human coronaviruses. Most people with • cough • general feeling of being unwell common human coronavirus illness will recover on their Human coronaviruses can sometimes cause lower- own. However, to relieve your symptoms you can: respiratory tract illnesses, such as pneumonia or bronchitis. • take pain and fever medications (Caution: do not give This is more common in people with cardiopulmonary aspirin to children) disease, people with weakened immune systems, infants, and older adults. • use a room humidifier or take a hot shower to help ease a sore throat and cough Transmission of common human coronaviruses • drink plenty of liquids Common human coronaviruses usually spread from an • stay home and rest infected person to others through If you are concerned about your symptoms, contact your • the air by coughing and sneezing healthcare provider. • close personal contact, like touching or shaking hands Testing for common human coronaviruses • touching an object or surface with the virus on it, then touching your mouth, nose, or eyes before washing Sometimes, respiratory secretions are tested to figure out your hands which specific germ is causing your symptoms.
    [Show full text]
  • Early Surveillance and Public Health Emergency Responses Between Novel Coronavirus Disease 2019 and Avian Influenza in China: a Case-Comparison Study
    ORIGINAL RESEARCH published: 10 August 2021 doi: 10.3389/fpubh.2021.629295 Early Surveillance and Public Health Emergency Responses Between Novel Coronavirus Disease 2019 and Avian Influenza in China: A Case-Comparison Study Tiantian Zhang 1,3†, Qian Wang 2†, Ying Wang 2, Ge Bai 2, Ruiming Dai 2 and Li Luo 2,3,4* 1 School of Social Development and Public Policy, Fudan University, Shanghai, China, 2 School of Public Health, Fudan University, Shanghai, China, 3 Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China, 4 Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China Background: Since the novel coronavirus disease (COVID-19) has been a worldwide pandemic, the early surveillance and public health emergency disposal are considered crucial to curb this emerging infectious disease. However, studies of COVID-19 on this Edited by: Paul Russell Ward, topic in China are relatively few. Flinders University, Australia Methods: A case-comparison study was conducted using a set of six key time Reviewed by: nodes to form a reference framework for evaluating early surveillance and public health Lidia Kuznetsova, University of Barcelona, Spain emergency disposal between H7N9 avian influenza (2013) in Shanghai and COVID-19 in Giorgio Cortassa, Wuhan, China. International Committee of the Red Cross, Switzerland Findings: A report to the local Center for Disease Control and Prevention, China, for *Correspondence: the first hospitalized patient was sent after 6 and 20 days for H7N9 avian influenza and Li Luo COVID-19, respectively.
    [Show full text]
  • High-Throughput Human Primary Cell-Based Airway Model for Evaluating Infuenza, Coronavirus, Or Other Respira- Tory Viruses in Vitro
    www.nature.com/scientificreports OPEN High‑throughput human primary cell‑based airway model for evaluating infuenza, coronavirus, or other respiratory viruses in vitro A. L. Gard1, R. J. Luu1, C. R. Miller1, R. Maloney1, B. P. Cain1, E. E. Marr1, D. M. Burns1, R. Gaibler1, T. J. Mulhern1, C. A. Wong1, J. Alladina3, J. R. Coppeta1, P. Liu2, J. P. Wang2, H. Azizgolshani1, R. Fennell Fezzie1, J. L. Balestrini1, B. C. Isenberg1, B. D. Medof3, R. W. Finberg2 & J. T. Borenstein1* Infuenza and other respiratory viruses present a signifcant threat to public health, national security, and the world economy, and can lead to the emergence of global pandemics such as from COVID‑ 19. A barrier to the development of efective therapeutics is the absence of a robust and predictive preclinical model, with most studies relying on a combination of in vitro screening with immortalized cell lines and low‑throughput animal models. Here, we integrate human primary airway epithelial cells into a custom‑engineered 96‑device platform (PREDICT96‑ALI) in which tissues are cultured in an array of microchannel‑based culture chambers at an air–liquid interface, in a confguration compatible with high resolution in‑situ imaging and real‑time sensing. We apply this platform to infuenza A virus and coronavirus infections, evaluating viral infection kinetics and antiviral agent dosing across multiple strains and donor populations of human primary cells. Human coronaviruses HCoV‑NL63 and SARS‑CoV‑2 enter host cells via ACE2 and utilize the protease TMPRSS2 for spike protein priming, and we confrm their expression, demonstrate infection across a range of multiplicities of infection, and evaluate the efcacy of camostat mesylate, a known inhibitor of HCoV‑NL63 infection.
    [Show full text]
  • Chronic Viral Infections Vs. Our Immune System: Revisiting Our View of Viruses As Pathogens
    Chronic Viral Infections vs. Our Immune System: Revisiting our view of viruses as pathogens Tiffany A. Reese Assistant Professor Departments of Immunology and Microbiology Challenge your idea of classic viral infection and disease • Define the microbiome and the virome • Brief background on persistent viruses • Illustrate how viruses change disease susceptibility – mutualistic symbiosis – gene + virus = disease phenotype – virome in immune responses Bacteria-centric view of the microbiome The microbiome defined Definition of microbiome – Merriam-Webster 1 :a community of microorganisms (such as bacteria, fungi, and viruses) that inhabit a particular environment and especially the collection of microorganisms living in or on the human body 2 :the collective genomes of microorganisms inhabiting a particular environment and especially the human body Virome Ø Viral component of the microbiome Ø Includes both commensal and pathogenic viruses Ø Viruses that infect host cells Ø Virus-derived elements in host chromosomes Ø Viruses that infect other organisms in the body e.g. phage/bacteria Viruses are everywhere! • “intracellular parasites with nucleic acids that are capable of directing their own replication and are not cells” – Roossinck, Nature Reviews Microbiology 2011. • Viruses infect all living things. • We are constantly eating and breathing viruses from our environment • Only a small subset of viruses cause disease. • We even carry viral genomes as part of our own genetic material! Diverse viruses all over the body Adenoviridae Picornaviridae
    [Show full text]
  • Astrovirus-Like, Coronavirus-Like, and Parvovirus-Like Particles Detected in the Diarrheal Stools of Beagle Pups
    Archives of Virology Archives of Virology 66, 2t5--226 (1980) © by Springer-Verlag 1980 Astrovirus-Like, Coronavirus-Like, and Parvovirus-Like Partieles Detected in the Diarrheal Stools of Beagle Pups By F. P. WILLIAMS, JR. Health Effects Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio, U.S.A. With 5 Figures Accepted May 26, 1980 Summary Astrovirus-like, coronavirus-like, and parvovirus-like particles were detected through electron microscopic (EM) examination of loose and diarrheal stools from a litter of beagle pups. Banding patterns obtained from equilibrium centrifuga- tions in CsC1 supported the EM identification. Densities associated with the identified particles were : 1.34 g/ml for astrovirus, 1.39 g/ml for "full" parvovirus, and 1.24--1.26 g/ml for "typical" coronavirus. Convalescent sera from the pups aggregated these three particle types as observed by immunoelectron microscopy (IEM). Only coronavirus-like particles were later detected in formed stools from these same pups. Coronavirus and parvo-likc viruses arc recognized agents of canine viral enteritis, however, astrovirus has not been previously reported in dogs. Introduction A number of virus-like particles detected in fecal material by electron micro- scopy (EM) have been found to manifest sufficiently distinct morphology to warrant individual classification. Such readily identified agents include: rota- virus (11), coronavirus (30), adenovirus (12), ealieivirus (20), and possibly-mini- reo/rotavirus (23, 29). Astrovirus, another characteristic agent identified by EIM, was originally associated with infantile gastroenteritis (18, 19). Subsequent investigations confirmed the identification of this agent in stools of newborns with acute non- bacterial gastroenteritis (16), and in outbreaks of gastroenteritis involving chil- dren and adults (2, 15).
    [Show full text]
  • Prevent Worker Exposure to Coronavirus (COVID-19)
    Prevent Worker Exposure to Coronavirus (COVID-19) The novel coronavirus, SARS-CoV-2, which causes COVID-19, spreads from person-to-person, primarily through respiratory droplets produced when an infected person coughs or sneezes. The virus is also believed to spread by people touching a surface or object and then touching one’s mouth, nose, or possibly the eyes. Employers and workers should follow these general practices to help prevent exposure to coronavirus: Frequently wash your hands with soap and water for at least 20 seconds. If soap and running water are not available, use an alcohol-based hand rub that contains at least 60% alcohol. Avoid touching your eyes, nose, or mouth with unwashed hands. Avoid close contact with people who are sick. Employers of workers with potential occupational exposures to coronavirus should follow these practices: Assess the hazards to which workers may be exposed. Evaluate the risk of exposure. Select, implement, and ensure workers use controls to prevent exposure, including physical barriers to control the spread of the virus; social distancing; and appropriate personal protective equipment, hygiene, and cleaning supplies. For the latest information on the symptoms, prevention, and treatment of coronavirus, visit the Centers for Disease Control and Prevention coronavirus webpage. For interim guidance and other resources on protecting workers from coronavirus, visit OSHA’s COVID-19 webpage. OSHA issues alerts to draw attention to worker safety and health issues and solutions. 2020 3 0 - 9 398 • osha.gov/covid-19 • 1-800-321-OSHA (6742) • @OSHA_DOL OSHA OSHA .
    [Show full text]