(12) Patent Application Publication (10) Pub. No.: US 2010/0267569 A1 Salmon Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gene Expression Imputation Across Multiple Brain Regions Provides Insights Into Schizophrenia Risk
VU Research Portal Gene expression imputation across multiple brain regions provides insights into schizophrenia risk iPSYCH-GEMS Schizophrenia Working Group; CommonMind Consortium; The Schizophrenia Working Group of the PsyUniversity of Copenhagenchiatric Genomics Consortium published in Nature Genetics 2019 DOI (link to publisher) 10.1038/s41588-019-0364-4 document version Publisher's PDF, also known as Version of record document license Article 25fa Dutch Copyright Act Link to publication in VU Research Portal citation for published version (APA) iPSYCH-GEMS Schizophrenia Working Group, CommonMind Consortium, & The Schizophrenia Working Group of the PsyUniversity of Copenhagenchiatric Genomics Consortium (2019). Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics, 51(4), 659–674. https://doi.org/10.1038/s41588-019-0364-4 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 28. -
Rab18 Promotes Lipid Droplet (LD) Growth by Tethering the ER to Lds Through SNARE and NRZ Interactions
Published Online: 24 January, 2018 | Supp Info: http://doi.org/10.1083/jcb.201704184 Article Downloaded from jcb.rupress.org on August 7, 2018 Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions Dijin Xu,1* Yuqi Li,1* Lizhen Wu,1* Ying Li,1 Dongyu Zhao,1 Jinhai Yu,1 Tuozhi Huang,1 Charles Ferguson,2 Robert G. Parton,2,3 Hongyuan Yang,4 and Peng Li1 1State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China 2Institute for Molecular Bioscience and 3Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia 4School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia Lipid incorporation from endoplasmic reticulum (ER) to lipid droplet (LD) is important in controlling LD growth and intra- cellular lipid homeostasis. However, the molecular link mediating ER and LD cross talk remains elusive. Here, we identi- fied Rab18 as an important Rab guanosine triphosphatase in controlling LD growth and maturation.Rab18 deficiency resulted in a drastically reduced number of mature LDs and decreased lipid storage, and was accompanied by increased ER stress. Rab3GAP1/2, the GEF of Rab18, promoted LD growth by activating and targeting Rab18 to LDs. LD-associated Rab18 bound specifically to the ER-associated NAG-RINT1-ZW10 (NRZ) tethering complex and their associated SNAREs (Syntaxin18, Use1, BNIP1), resulting in the recruitment of ER to LD and the formation of direct ER–LD contact. Cells with defects in the NRZ/SNA RE complex function showed reduced LD growth and lipid storage. -
Identification of Rab18 As an Essential Host Factor for Bkpyv Infection Using a Whole Genome RNA 2 Interference Screen
bioRxiv preprint doi: https://doi.org/10.1101/157602; this version posted June 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Identification of Rab18 as an Essential Host Factor for BKPyV Infection Using a Whole Genome RNA 2 Interference Screen 3 4 Linbo Zhaoa, Michael J. Imperialea,b,* 5 6 aDepartment of Microbiology and Immunology, bComprehensive Cancer Center, University of Michigan, 7 Ann Arbor, MI, 48109, USA 8 9 10 11 12 13 14 15 16 17 18 * Corresponding author. Department of Microbiology and Immunology, 1150 West Medical Center 19 Drive, 5724 Medical Science II, Ann Arbor, MI 48109-5620, USA. Tel. +1 (734) 763 9162. Fax: +1 (734) 20 764 3562. 21 E-mail addresses: [email protected] (L. Zhao); [email protected] (M.J. Imperiale). 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/157602; this version posted June 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 25 Abstract 26 27 BK polyomavirus (BKPyV) is a human pathogen first isolated in 1971. BKPyV infection is ubiquitous in the 28 human population, with over 80% of adults worldwide being seropositive for BKPyV. BKPyV infection is 29 usually asymptomatic; however, BKPyV reactivation in immunosuppressed transplant patients causes 30 two diseases, polyomavirus-associated nephropathy and hemorrhagic cystitis. -
Rare Mutations in RINT1 Predispose Carriers to Breast and Lynch Syndrome–Spectrum Cancers
Published OnlineFirst May 2, 2014; DOI: 10.1158/2159-8290.CD-14-0212 RESEARCH ARTICLE Rare Mutations in RINT1 Predispose Carriers to Breast and Lynch Syndrome–Spectrum Cancers Daniel J. Park 1 , K a y o k o Ta o 7 , Florence Le Calvez-Kelm 17 , Tu Nguyen-Dumont 1 , Nivonirina Robinot 17 , Fleur Hammet1 , Fabrice Odefrey 1 , Helen Tsimiklis 1 , Zhi L. Teo 1 , Louise B. Thingholm 1 , Erin L. Young 7 , Catherine Voegele 17 , Andrew Lonie 4 , Bernard J. Pope 2 , 4 , Terrell C. Roane 10 , Russell Bell 7 , Hao Hu 11 , Shankaracharya 11 , Chad D. Huff 11 , Jonathan Ellis 6 , Jun Li 6 , Igor V. Makunin 6 , Esther M. John 12 , 13 , Irene L. Andrulis 19 , Mary B. Terry 14 , Mary Daly 15 , Saundra S. Buys 9 , Carrie Snyder 16 , Henry T. Lynch 16 , Peter Devilee20 , Graham G. Giles 3 , 5 , John L. Hopper 3 , 21 , Bing-Jian Feng 8 , 9 , Fabienne Lesueur 17 , 18 , Sean V. Tavtigian 7 , Melissa C. Southey 1 , and David E. Goldgar 8 , 9 ABSTRACT Approximately half of the familial aggregation of breast cancer remains unex- plained. A multiple-case breast cancer family exome-sequencing study identifi ed three likely pathogenic mutations in RINT1 (NM_021930.4) not present in public sequencing data- bases: RINT1 c.343C>T (p.Q115X), c.1132_1134del (p.M378del), and c.1207G>T (p.D403Y). On the basis of this fi nding, a population-based case–control mutation-screening study was conducted that identifi ed 29 carriers of rare (minor allele frequency < 0.5%), likely pathogenic variants: 23 in 1,313 early-onset breast cancer cases and six in 1,123 frequency-matched controls [OR, 3.24; 95% confi - dence interval (CI), 1.29–8.17; P = 0.013]. -
A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort. -
On the Role of Chromosomal Rearrangements in Evolution
On the role of chromosomal rearrangements in evolution: Reconstruction of genome reshuffling in rodents and analysis of Robertsonian fusions in a house mouse chromosomal polymorphism zone by Laia Capilla Pérez A thesis submitted for the degree of Doctor of Philosophy in Animal Biology Supervisors: Dra. Aurora Ruiz-Herrera Moreno and Dr. Jacint Ventura Queija Institut de Biotecnologia i Biomedicina (IBB) Departament de Biologia Cel·lular, Fisiologia i Immunologia Departament de Biologia Animal, Biologia Vegetal i Ecologia Universitat Autònoma de Barcelona Supervisor Supervisor PhD candidate Aurora Ruiz-Herrera Moreno Jacint Ventura Queija Laia Capilla Pérez Bellaterra, 2015 A la mare Al pare Al mano “Visto a la luz de la evolución, la biología es, quizás, la ciencia más satisfactoria e inspiradora. Sin esa luz, se convierte en un montón de hechos varios, algunos de ellos interesantes o curiosos, pero sin formar ninguna visión conjunta.” Theodosius Dobzhansky “La evolución es tan creativa. Por eso tenemos jirafas.” Kurt Vonnegut This thesis was supported by grants from: • Ministerio de Economía y Competitividad (CGL2010-15243 and CGL2010- 20170). • Generalitat de Catalunya, GRQ 1057. • Ministerio de Economía y Competitividad. Beca de Formación de Personal Investigador (FPI) (BES-2011-047722). • Ministerio de Economía y Competitividad. Beca para la realización de estancias breves (EEBB-2011-07350). Covers designed by cintamontserrat.blogspot.com INDEX Abstract 15-17 Acronyms 19-20 1. GENERAL INTRODUCTION 21-60 1.1 Chromosomal rearrangements -
Evaluation of Rint1 As a Modifier of Intestinal Tumorigenesis and Cancer Risk
RESEARCH ARTICLE Evaluation of Rint1 as a modifier of intestinal tumorigenesis and cancer risk Karla L. Otterpohl¤, Karen A. Gould* Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America ¤ Current address: Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America * [email protected] a1111111111 Abstract a1111111111 a1111111111 The Rad50 Interacting Protein 1 (Rint1) influences cellular homeostasis through mainte- a1111111111 nance of endoplasmic reticulum, Golgi and centrosome integrity and regulation of vesicle a1111111111 transport, autophagy and the G2/M checkpoint. Rint1 has been postulated to function as a tumor suppressor as well as an oncogene, with its role depending perhaps upon the precise cellular and/or experimental context. In humans, heterozygosity for germline missense vari- ants in RINT1 have, in some studies, been associated with increased risk of both breast and OPEN ACCESS Lynch syndrome type cancers. However, it is not known if these germline variants represent Citation: Otterpohl KL, Gould KA (2017) Evaluation loss of function alleles or gain of function alleles. Based upon these findings, as well as our of Rint1 as a modifier of intestinal tumorigenesis initial consideration of Rint1 as a potential candidate for Mom5, a genetic modifier of intesti- and cancer risk. PLoS ONE 12(3): e0172247. Min/+ doi:10.1371/journal.pone.0172247 nal tumorigenesis in Apc mice, we sought to explicitly examine the impact of Rint1 on tumorigenesis in ApcMin/+ mice. However, heterozygosity for a knockout of Rint1 had no Editor: Alvaro Galli, CNR, ITALY impact on tumorigenesis in Rint1+/-; ApcMin/+ mice. -
The FEM R Package: Identification of Functional Epigenetic Modules
The FEM R package: Identification of Functional Epigenetic Modules Yinming Jiao and Andrew E. Teschendorff April 24, 2017 1 Summary This vignette provides examples of how to use the package FEM to identify interactome hotspots of differential promoter methylation and differential ex- pression, where an inverse association between promoter methylation and gene expression is assumed [1]. By \interactome hotspot" we mean a connected sub- network of the protein interaction network (PIN) with an exceptionally large average edge-weight density in relation to the rest of the network. The weight edges are constructed from the statistics of association of DNA methylation and gene expression with the phenotype of interest. Thus, the FEM algorithm can be viewed as a functional supervised algorithm, which uses a network of relations between genes (in our case a PPI network), to identify subnetworks where a significant number of genes are associated with a phenotype of interest (POI). We call these \hotspots" also Functional Epigenetic Modules (FEMs). Current functionality of FEM works for Illumina Infinium 450k data, how- ever, the structure is modular allowing easy application or generalization to DNA methylation data generated with other technologies. The FEM algorithm on Illumina 27k data was first presented in [2], with its extension to Illumina 450k data described in [1]. The module detection algorithm used is the spin- glass algorithm of [3]. The PIN used in this vignette includes only protein- protein interactions, derives from Pathway Commons [4] and is available from http://sourceforge.net/projects/funepimod/files under filename hprdAsigH*.Rd, but the user is allowed to specify his own network. -
Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs. -
Comparative Analysis of the Ubiquitin-Proteasome System in Homo Sapiens and Saccharomyces Cerevisiae
Comparative Analysis of the Ubiquitin-proteasome system in Homo sapiens and Saccharomyces cerevisiae Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Hartmut Scheel aus Rheinbach Köln, 2005 Berichterstatter: Prof. Dr. R. Jürgen Dohmen Prof. Dr. Thomas Langer Dr. Kay Hofmann Tag der mündlichen Prüfung: 18.07.2005 Zusammenfassung I Zusammenfassung Das Ubiquitin-Proteasom System (UPS) stellt den wichtigsten Abbauweg für intrazelluläre Proteine in eukaryotischen Zellen dar. Das abzubauende Protein wird zunächst über eine Enzym-Kaskade mit einer kovalent gebundenen Ubiquitinkette markiert. Anschließend wird das konjugierte Substrat vom Proteasom erkannt und proteolytisch gespalten. Ubiquitin besitzt eine Reihe von Homologen, die ebenfalls posttranslational an Proteine gekoppelt werden können, wie z.B. SUMO und NEDD8. Die hierbei verwendeten Aktivierungs- und Konjugations-Kaskaden sind vollständig analog zu der des Ubiquitin- Systems. Es ist charakteristisch für das UPS, daß sich die Vielzahl der daran beteiligten Proteine aus nur wenigen Proteinfamilien rekrutiert, die durch gemeinsame, funktionale Homologiedomänen gekennzeichnet sind. Einige dieser funktionalen Domänen sind auch in den Modifikations-Systemen der Ubiquitin-Homologen zu finden, jedoch verfügen diese Systeme zusätzlich über spezifische Domänentypen. Homologiedomänen lassen sich als mathematische Modelle in Form von Domänen- deskriptoren (Profile) beschreiben. Diese Deskriptoren können wiederum dazu verwendet werden, mit Hilfe geeigneter Verfahren eine gegebene Proteinsequenz auf das Vorliegen von entsprechenden Homologiedomänen zu untersuchen. Da die im UPS involvierten Homologie- domänen fast ausschließlich auf dieses System und seine Analoga beschränkt sind, können domänen-spezifische Profile zur Katalogisierung der UPS-relevanten Proteine einer Spezies verwendet werden. Auf dieser Basis können dann die entsprechenden UPS-Repertoires verschiedener Spezies miteinander verglichen werden. -
Endometrial Cancer Gene Panels: Clinical Diagnostic Vs Research Germline DNA Testing Amanda B Spurdle1, Michael a Bowman1, Jannah Shamsani1 and Judy Kirk2
Modern Pathology (2017) 30, 1048–1068 1048 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Endometrial cancer gene panels: clinical diagnostic vs research germline DNA testing Amanda B Spurdle1, Michael A Bowman1, Jannah Shamsani1 and Judy Kirk2 1Molecular Cancer Epidemiology Laboratory, Genetics and Computational Biology Division, Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia and 2Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney Medical School, University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia Endometrial cancer is the most common gynecological cancer, but is nevertheless uncommon enough to have value as a signature cancer for some hereditary cancer syndromes. Commercial multigene testing panels include up to 13 different genes annotated for germline DNA testing of patients with endometrial cancer. Many other genes have been reported as relevant to familial endometrial cancer from directed genome-wide sequencing studies or multigene panel testing, or research. This review assesses the evidence supporting association with endometrial cancer risk for 32 genes implicated in hereditary endometrial cancer, and presents a summary of rare germline variants in these 32 genes detected by analysis of quasi-population-based endometrial cancer patients from The Cancer Genome Atlas project. This comprehensive investigation has led to the conclusion that convincing evidence currently exists to support clinical testing of only six of these genes for diagnosis of hereditary endometrial cancer. Testing of endometrial cancer patients for the remaining genes should be considered in the context of research studies, as a means to better establish the level of endometrial cancer risk, if any, associated with genetic variants that are deleterious to gene or protein function. -
Download Special Issue
BioMed Research International Integrated Analysis of Multiscale Large-Scale Biological Data for Investigating Human Disease 2016 Guest Editors: Tao Huang, Lei Chen, Jiangning Song, Mingyue Zheng, Jialiang Yang, and Zhenguo Zhang Integrated Analysis of Multiscale Large-Scale Biological Data for Investigating Human Disease 2016 BioMed Research International Integrated Analysis of Multiscale Large-Scale Biological Data for Investigating Human Disease 2016 GuestEditors:TaoHuang,LeiChen,JiangningSong, Mingyue Zheng, Jialiang Yang, and Zhenguo Zhang Copyright © 2016 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Integrated Analysis of Multiscale Large-Scale Biological Data for Investigating Human Disease 2016 Tao Huang, Lei Chen, Jiangning Song, Mingyue Zheng, Jialiang Yang, and Zhenguo Zhang Volume 2016, Article ID 6585069, 2 pages New Trends of Digital Data Storage in DNA Pavani Yashodha De Silva and Gamage Upeksha Ganegoda Volume 2016, Article ID 8072463, 14 pages Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse Jianghong Wu, Husile Gong, Yongsheng Bai, and Wenguang Zhang Volume 2016, Article ID 5469371, 9 pages Differential Regulatory Analysis Based on Coexpression Network in Cancer Research Junyi