Topographic Feature Names on Venus: Progress in 2000, Review of 1997 – 2000 Development, Current State, and Prospective

Total Page:16

File Type:pdf, Size:1020Kb

Topographic Feature Names on Venus: Progress in 2000, Review of 1997 – 2000 Development, Current State, and Prospective Lunar and Planetary Science XXXII (2001) 2098.pdf TOPOGRAPHIC FEATURE NAMES ON VENUS: PROGRESS IN 2000, REVIEW OF 1997 – 2000 DEVELOPMENT, CURRENT STATE, AND PROSPECTIVE . G. A. Burba 1, J. Blue 2, D. B. Campbell 3, A. Dollfus 4, L. Gaddis 2, R. F. Jurgens 5, M. Ya. Marov 6, G.H. Pettengill 7, E.R. Stofan 5 1 Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow 117975, Russia <[email protected]>, 2 US Geological Survey, Flagstaff, AZ 86001, USA <[email protected]>, <[email protected]>, 3 Cornell University, Ithaca, NY, USA <[email protected]>, 4 Paris-Meudon Observatory, Paris, France <[email protected]>, 5 Jet Propulsion Laboratory, Pasadena, CA,USA<[email protected]>,<[email protected]>, 6 Keldysh Institute of Applied Mathematics, Moscow, Russia <[email protected]>, 7 Massachusetts Institute of Technology, Cambridge, MA, USA <[email protected]> Progress in 2000: Twelve new feature names have been assigned on Venus during 2000 by the REGIO: Task Group for Venus Nomenclature, a constituent Laufey Regio 16.0N/2.0S 305.0/325.0E 2100 part of the Working Group for Planetary System Norse giantess. Nomenclature of the International Astronomical Union (IAU). These names recently approved at the Review of 1997 – 2000 development: XXIV General Assembly of the IAU held this past New names. After the 1997 IAU General As- August in Manchester, Great Britain. The newly sembly, when about 660 new names were assigned, named features include 5 craters, 5 coronae, 1 dor- Venus obtained a mature system of topographic sum, and 1 regio. The list of the new names, assigned feature names [1,2]. During the following three years in 2000, follows. a smaller number of names have been added to Ve- nus [3–6]. Altogether, in the 1997–2000 period, 93 Name Latitude Longitude Size, km new feature names of 14 generic types have been Attribute data introduced. They include: 16 craters, 2 chasmata, 1 colles, 23 coronae, 6 dorsa, 13 fluctus, 2 fossae, 1 CRATERS: labyrinthus (the first example for Venus), 1 mons, 5 Blanche 9.3S 157.0E 12.3 paterae, 1 regio, 1 tessera, 12 tholi, and 9 valles. French first name. Dheepa 21.6S 176.3E 4.7 The names have been chosen on the international First name from India. basis; they were taken from sources, connected with Leona 3.1S 169.0E 3.0 every continent: 34 names come from Asia (includ- Greek first name. ing 11 from the Asiatic part of the former USSR), 32 Nanichi 44.8S 337.8E 19.0 from Europe (including 17 from the European part of Taino (Puerto Rico) first name. the former USSR), 8 from Oceania, 8 from South (Crater is located in Magellan coverage gap; and Central America, 6 from Africa, and 5 from visible on Earth-based Arecibo imagery). North America. Shirley 31.5N 55.4E 18.0 These 93 new names on Venus comprise 43% of the English first name. total number of 215 new names approved by the IAU during 1997–2000 for the features on 10 plane- CORONAE: tary bodies of the Solar system. Branwen Corona 27.0N 35.0E 320 British goddess of love. Deleted names. Eight names, adopted in an ear- Khabuchi Corona 11.0S 173.0E 285 lier period, have been dropped: 5 of them, after in- Avarian/Andalalan (Daghestan) childbirth deity. spection of higher-resolution images, were found to Nanen Corona 69.9N 198.5E 50 be of another feature type: Lilinau Corona, Hariasa Brazilian Earth and nature goddess. Linea, Vihansa Linea, Corday Patera, and Woodhull Nirmali Corona 6.3S 172.3E 60 Patera. Two names, Seshat Mons, and Carriera Nuristan (NE Afghanistan) childbirth goddess. Patera, were found to fit no specific feature. Sulis Corona 44.3N 14.2E 136 One more name, Hikuleo Tesserae, was found to be a British goddess of springs and healing waters. duplication (Hikuleo Fluctus had already been ap- proved for another feature on Venus), so, Hikuleo DORSUM: Tesserae was changed to Tushita Tesserae. Vetsorgo Dorsum 4.1/8.7S 160.0/165.3E 700 Mordovian/Erzya (Volga Finn) daughter of the Corrections. Minor corrections in spelling have supreme sky god Nishke. been applied to some of the previously approved Lunar and Planetary Science XXXII (2001) 2098.pdf FEATURE NAMES ON VENUS : G. A. Burba et al. names: Drena (crater) to Dena (crater), Vigier page ‘Images with names’ was visited 2211 times (on Lebrun (crater) to Vigee-Lebrun (crater), and Niola average about 3 times per each hour during 31 days). Mons to Nijole Mons. The planetary nomenclature web site continues to The descriptor term was changed for one name: consistently rank well within the top sites visited on Ludjatako Mons to Ludjatako Corona. the USGS/Flagstaff server. In two cases the descriptor terms were corrected from plural to singular form and vice versa to fit the real situation (Citlalpul Valles – to Vallis, Poranica Prospective: It is anticipated that during the Vallis – to Valles). 2000–2003 triennial period until the next General Assembly of the IAU, the naming on Venus will take New descriptor term. A new descriptor term, place in accordance with requests from the geologic proposed by A.T.Basilevsky of the Vernadsky Insti- mappers, who are involved in NASA's program of tute, Moscow, was approved – Astrum (pl. Astra) – quadrangle mapping at 1:5,000,000-scale, as well as for the naming of radial-patterned, ‘star-like’ fea- in the Vernadsky Institute and Brown University’s tures, usually radial systems of fractures/grooves. joint VENGLOBGEK project on the global map of The suggested category for the proper names for the Venus at 1:10,000,000-scale. new feature type is “miscellaneous goddesses”. So far, no feature has been named with the new term, It could be estimated that NASA's program of the 62- because the term has just been approved. There are sheet map has come so far through the naming proc- about 60 features of this type on Venus. Their di- ess for only approximately 10% of the planet's ameters range from 100 to 300 km. Some of them surface, and the Vernadsky/Brown map for have previously been named with the term corona or approximately 30%. mons, but such designations have caused problems for geologists who are mapping these areas. The impending tasks of Venus nomenclature devel- opment are aimed at suppling these maps with a suf- ficiently dense net of named features. Some 100 to Current state: The current list of the feature 150 new names are anticipated to appear on Venus names on Venus as of January 2001 includes 1821 during the forthcoming triennial period. names of 21 feature types. The gaps in Magellan image coverage, which take Names by feature types. Most of the names be- place in the Southern hemisphere of Venus, provide long to craters – 872 and coronae – 267, which to- more possibilities for new naming. It could take gether comprise 62% of the all named features on place on the base of the possible new results of the Venus. After craters and coronae, the most prevalent Earth-based radar observations, in particular from the feature types are (in decreasing number): dorsa – Arecibo observatory, where a resolution close to 100, montes – 97, valles – 72, paterae – 64, those of Magellan imagery is anticipated [7]. tesserae – 62, chasmata – 55, fluctus – 48, tholi – 46, and planitiae – 41. Altogether, these 11 types of References: features (including craters and coronae) contain 1724 [1] Burba G. A. and Blue J. (1997) Vernadsky- named features, this comprise approximately 95% of Brown microsymp. 26, 13. [2] Aksnes K. et al. the names. The other 10 types of features contain (1999) Trans. Internat. Astron.Union, XXIIIB, 231– only 105 names. 251. [3] Burba G. A. et al. (1998) 3rd Internat. Conf. Explor. Utiliz. Moon/Vernadsky-Brown Venus nomenclature on the web. A comprehen- microsymp. 28, 105. [4] Burba G. A. et al. (1999) sive list of the all named features on Venus can be LPS XXX, 1366 (CD-ROM). [5] Burba G. A. et al. found at the planetary nomenclature web site (1999) Vernadsky-Brown microsymp. 30, 11-12. <http://wwwflag.wr.usgs.gov/USGSFlag/Space/nome [6] Burba G. A. et al. (2000) LPS XXXI, 1076 (CD- n/nomen.html>. There is also a page within this web ROM). [7] Burba G. A. et al. (1999) LPS XXX, site titled ‘Images with names’, which contains im- 1756 (CD-ROM). agery of the four Jovian Galilean satellites and of Venus with every name associated with its feature. The Venus names are presented on 62 quadrangles of 1:5,000,000-scale black-and-white radar images (Magellan imagery), each 300 to 600 KB, as well as on 8 sheets of 1:10,000,000-scale color altimetry images (Magellan data), each 700 KB to 1.3 MB. The web site a is well-visited one. In May 2000, the title page alone was visited 2876 times (on average about 4 times each hour during 31 days), and the.
Recommended publications
  • IAC-04-Q.2.A.07 VENUS EXPRESS on the RIGHT TRACK
    IAC-04-Q.2.a.07 VENUS EXPRESS ON THE RIGHT TRACK J. Fabrega & T. Schirmann (1); R. Schmidt & D. McCoy (2) (1) EADS Astrium, 31 Avenue des Cosmonautes, 31042 Toulouse Cedex 4, France (2) ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands E-mail : [email protected] ASTRACT will allow meeting the challenge. Venus Express is on the right track!. On October 26th of next year, Venus Express spacecraft will depart from Baikonur on-board the Soyuz/Fregat Launch Vehicle. It will be the very first 1 INTRODUCTION European mission to the “morning star”, two years after the first European trip to Mars. Venus Express In the wee small hours of Christmas 2003, Mars will carry 7 science payloads dedicated to global Express was successfully inserted into Mars orbit. investigation of Venus atmosphere. Three Very first European spacecraft to ever orbit a planet, spectrometers covering wavelength range from UV it has been producing outstanding science results to IR, one plasma analyzer, one magnetometer, one since its arrival. imager and one radio-science experience, most of More than two years before Mars Express launch, them derived from similar instruments of Rosetta ESA asked for suggestions on how to reuse the and Mars Express, will map the whole atmosphere same platform. Guidelines were to use the same below 200 km, trying to solve some of Venus units and the same industrial teams, in order to be mysteries. After a 5 months journey, they will ready to fly in 2005. Out of 9 promising proposals, operate during at least 500 days, the nominal ESA selected Venus Express.
    [Show full text]
  • CRATER MORPHOMETRY on VENUS. C. G. Cochrane, Imperial College, London ([email protected])
    Lunar and Planetary Science XXXIV (2003) 1173.pdf CRATER MORPHOMETRY ON VENUS. C. G. Cochrane, Imperial College, London ([email protected]). Introduction: Most impact craters on Venus are propagating east and north/south. Can be minimised if pristine, and provide probably the best available ana- framelets have good texture on the left-hand side. logs for craters on Earth soon after impact; hence the Prominence extension – features extend down value of measuring their 3-D shape to known accuracy. range into a ridge, eg central peak linked to the rim. The USGS list 967 craters: from the largest, Mead at Probably due to radar shadowing differences, these are 270 km diameter, to the smallest, unnamed at 1.3 km. easily recognised and avoided during analysis. Initially, research focussed on the larger craters. Araration (from Latin: Arare to plough) consists of Schaber et al [1] (11 craters >50 km) and Ivanov et al parallel furrows some 50 pixels apart, oriented north- [2] (31 craters >70 km) took crater depth from Magel- south, and at least tens of metres deep. Fig 2, a lan altimetry. Sharpton [3] (94 craters >18 km) used floor-offsets in Synthetic Aperture Radar (SAR) F- MIDR pairs, as did Herrick & Phillips [4]. They list many parameters but not depth for 891 craters. The LPI database1 now numbers 941. Herrick & Sharpton [5] made Digital Elevation Models (DEMs) of all cra- ters at least partially imaged twice down to 12 km, and 20 smaller craters down to 3.6 km. Using FMAP im- ages and the Magellan Stereo Toolkit (MST) v.1, they automated matches every 900m but then manually ed- ited the resultant data.
    [Show full text]
  • A Systematic Concept Exploration Methodology Applied to Venus in Situ Explorer
    Session III: Probe Missions to the Giant Planets, Titan and Venus A Systematic Concept Exploration Methodology Applied to Venus In Situ Explorer Jarret M. Lafleur *, Gregory Lantoine *, Andrew L. Hensley *, Ghislain J. Retaureau *, Kara M. Kranzusch *, Joseph W. Hickman *, Marc N. Wilson *, and Daniel P. Schrage † Georgia Institute of Technology Atlanta, Georgia 30332 ABSTRACT One of the most critical tasks in the design of a complex system is the initial conversion of mission or program objectives into a baseline system architecture. Presented in this paper is a methodology to aid in this process that is frequently used for aerospace problems at the Georgia Institute of Technology. In this paper, the methodology is applied to initial concept formulation for the Venus In Situ Explorer (VISE) mission. Five primary steps are outlined which encompass program objective definition through evaluation of candidate designs. Tools covered include the Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and morphological matrices. Direction is given for the application of modeling and simulation as well as for subsequent iterations of the process. The paper covers both theoretical and practical aspects of the tools and process in the context of the VISE example, and it is hoped that this methodology may find future use in interplanetary probe design. 1. INTRODUCTION One of the most critical tasks in the design of a complex engineering system is the initial conversion of mission or program objectives and requirements into a baseline system architecture. In completing this task, the challenge exists to comprehensively but efficiently explore the global trade space of potential designs.
    [Show full text]
  • SFSC Search Down to 4
    C M Y K www.newssun.com EWS UN NHighlands County’s Hometown-S Newspaper Since 1927 Rivalry rout Deadly wreck in Polk Harris leads Lake 20-year-old woman from Lake Placid to shutout of AP Placid killed in Polk crash SPORTS, B1 PAGE A2 PAGE B14 Friday-Saturday, March 22-23, 2013 www.newssun.com Volume 94/Number 35 | 50 cents Forecast Fire destroys Partly sunny and portable at Fred pleasant High Low Wild Elementary Fire alarms “Myself, Mr. (Wally) 81 62 Cox and other administra- Complete Forecast went off at 2:40 tors were all called about PAGE A14 a.m. Wednesday 3 a.m.,” Waldron said Wednesday morning. Online By SAMANTHA GHOLAR Upon Waldron’s arrival, [email protected] the Sebring Fire SEBRING — Department along with Investigations into a fire DeSoto City Fire early Wednesday morning Department, West Sebring on the Fred Wild Volunteer Fire Department Question: Do you Elementary School cam- and Sebring Police pus are under way. Department were all on think the U.S. govern- The school’s fire alarms the scene. ment would ever News-Sun photo by KATARA SIMMONS Rhoda Ross reads to youngsters Linda Saraniti (from left), Chyanne Carroll and Camdon began going off at approx- State Fire Marshal seize money from pri- Carroll on Wednesday afternoon at the Lake Placid Public Library. Ross was reading from imately 2:40 a.m. and con- investigator Raymond vate bank accounts a children’s book she wrote and illustrated called ‘A Wildflower for all Seasons.’ tinued until about 3 a.m., Miles Davis was on the like is being consid- according to FWE scene for a large part of ered in Cyprus? Principal Laura Waldron.
    [Show full text]
  • Investigating Mineral Stability Under Venus Conditions: a Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geochemistry Commons, Mineral Physics Commons, and the The unS and the Solar System Commons Recommended Citation Kohler, Erika, "Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies" (2016). Theses and Dissertations. 1473. http://scholarworks.uark.edu/etd/1473 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Space and Planetary Sciences by Erika Kohler University of Oklahoma Bachelors of Science in Meteorology, 2010 May 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________ Dr. Claud H. Sandberg Lacy Dissertation Director Committee Co-Chair ____________________________ ___________________________ Dr. Vincent Chevrier Dr. Larry Roe Committee Co-chair Committee Member ____________________________ ___________________________ Dr. John Dixon Dr. Richard Ulrich Committee Member Committee Member Abstract Radar studies of the surface of Venus have identified regions with high radar reflectivity concentrated in the Venusian highlands: between 2.5 and 4.75 km above a planetary radius of 6051 km, though it varies with latitude.
    [Show full text]
  • The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 18 - Fall 1991 © 1991, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific "Having finally penetrated below the clouds of Venus, we find its surface to be naked [not hidden], revealing the history of hundreds of millions of years of geological activity. Venus is a geologist's dream planet.'' —Astronomer David Morrison This fall, the brightest star-like object you can see in the eastern skies before dawn isn't a star at all — it's Venus, the second closest planet to the Sun. Because Venus is so similar in diameter and mass to our world, and also has a gaseous atmosphere, it has been called the Earth's "sister planet''. Many years ago, scientists expected its surface, which is perpetually hidden beneath a thick cloud layer, to look like Earth's as well. Earlier this century, some people even imagined that Venus was a hot, humid, swampy world populated by prehistoric creatures! But we now know Venus is very, very different. New radar images of Venus, just returned from NASA's Magellan spacecraft orbiting the planet, have provided astronomers the clearest view ever of its surface, revealing unique geological features, meteor impact craters, and evidence of volcanic eruptions different from any others found in the solar system. This issue of The Universe in the Classroom is devoted to what Magellan is teaching us today about our nearest neighbor, Venus. Where is Venus, and what is it like? Spacecraft exploration of Venus's surface Magellan — a "recycled'' spacecraft How does Magellan take pictures through the clouds? What has Magellan revealed about Venus? How does Venus' surface compare with Earth's? What is the next step in Magellan's mission? If Venus is such an uninviting place, why are we interested in it? Reading List Why is it so hot on Venus? Where is Venus, and what is it like? Venus orbits the Sun in a nearly circular path between Mercury and the Earth, about 3/4 as far from our star as the Earth is.
    [Show full text]
  • Tanga Laboratoire Cassiopée - Observatoire De La Côte D’Azur
    Twilight phenomena in the atmosphere of Venus during the 2004 inferior conjunction Paolo Tanga Laboratoire Cassiopée - Observatoire de la Côte d’Azur Twilight phenomena in the atmosphere of Venus during the 2004 inferior conjunction Paolo Tanga Laboratoire Cassiopée - Observatoire de la Côte d’Azur Abstract - Twilight phenomena of Venus are peculiar aspects visible in proximity of the inferior conjunctions of the planet. They include the refraction image of the Sun that has been observed during the planet transits, and the cusp extensions observable at greater elongations. Those two phenomena have deeply different origins, the first being ascribed to refraction, the second to scattering by a thin layer of aerosols. In the following we briefly summarize the historical record of observations, giving some physical considerations and practical advices for observation close to the June 2004 Venus conjunction with the Sun. Introduction Starting with the 1761 event, several The transit of the planet Venus across observers has signalled the presence of an the Sun allows us to observe in detail some “aureola” around the planet disk, i.e. a phenomena that inspired several scientific luminescent arc running all around Venus speculations in the past. globe, or limited to the portion projected Starting from the end of the 19th beyond the Sun’s limb, against the sky. century, the observers have reported some Often, when Venus was partially peculiar phenomena promptly attributed to external to the Sun disk, the bright arc has Venus atmosphere: among them, in appeared broken in segments, reduced in particular, the outstanding cusp extension, extension or limited to a single bright point that tends to transform the thin crescent of (Fig.
    [Show full text]
  • Determination of Venus' Interior Structure with Envision
    remote sensing Technical Note Determination of Venus’ Interior Structure with EnVision Pascal Rosenblatt 1,*, Caroline Dumoulin 1 , Jean-Charles Marty 2 and Antonio Genova 3 1 Laboratoire de Planétologie et Géodynamique, UMR-CNRS6112, Université de Nantes, 44300 Nantes, France; [email protected] 2 CNES, Space Geodesy Office, 31401 Toulouse, France; [email protected] 3 Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; [email protected] * Correspondence: [email protected] Abstract: The Venusian geological features are poorly gravity-resolved, and the state of the core is not well constrained, preventing an understanding of Venus’ cooling history. The EnVision candidate mission to the ESA’s Cosmic Vision Programme consists of a low-altitude orbiter to investigate geological and atmospheric processes. The gravity experiment aboard this mission aims to determine Venus’ geophysical parameters to fully characterize its internal structure. By analyzing the radio- tracking data that will be acquired through daily operations over six Venusian days (four Earth’s years), we will derive a highly accurate gravity field (spatial resolution better than ~170 km), allowing detection of lateral variations of the lithosphere and crust properties beneath most of the geological ◦ features. The expected 0.3% error on the Love number k2, 0.1 error on the tidal phase lag and 1.4% error on the moment of inertia are fundamental to constrain the core size and state as well as the mantle viscosity. Keywords: planetary interior structure; gravity field determination; deep space mission Citation: Rosenblatt, P.; Dumoulin, C.; Marty, J.-C.; Genova, A.
    [Show full text]
  • User Guide to the Magellan Synthetic Aperture Radar Images
    https://ntrs.nasa.gov/search.jsp?R=19950018567 2020-06-16T07:22:10+00:00Z User Guide to the Magellan Synthetic Aperture Radar Images Stephen D. Wall Shannon L. McConnell Craig E. Left Richard S. Austin Kathi K. Beratan Mark J. Rokey National Aeronautics and Jet Propulsion Laboratory Space Administration California Institute of Technology Scientific and Technical Pasadena, California Information Branch NASA Reference Publication 1356 March 1995 This publication was prepared at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Contents Iri Introduction .................................................................................................................................................................... 1 I_1 The Spacecraft ................................................................................................................................................................ 2 IB Mission Design ................................................................................................................................................................ 4 D Experiment Description ................................................................................................................................................ 15 B Mission Operations ....................................................................................................................................................... 17 [] Notable Events and Problems .....................................................................................................................................
    [Show full text]
  • PAC March 9 10 2020 Report
    NASA ADVISORY COUNCIL PLANETARY SCIENCE ADVISORY COMMITTEE March 9-10, 2020 NASA Headquarters Washington, DC MEETING REPORT _____________________________________________________________ Anne Verbiscer, Chair ____________________________________________________________ Stephen Rinehart, Executive Secretary Table of Contents Opening and Announcements, Introductions 3 PSD Update and Status 3 PSD R&A Status 5 Planetary Protection 7 Discussion 8 Mars Exploration Program 8 Lunar Exploration Program 9 PDCO 11 Planetary Data System 12 PDS at Headquarters 13 Findings and Discussion 13 General Comments 13 Exoplanets in Our Backyard 14 AP Assets for Solar System Observations 15 Solar System Science with JWST 16 Mercury Group 17 VEXAG 17 SBAG 18 OPAG 19 MEPAG 19 MAPSIT 20 LEAG 21 CAPTEM 21 Discussion 22 Findings and Recommendations Discussion 23 Appendix A- Attendees Appendix B- Membership roster Appendix C- Agenda Appendix D- Presentations Prepared by Joan M. Zimmermann Zantech, Inc. 2 Opening, Announcements, Around the Table Identification Executive Secretary of the Planetary Science Advisory Committee (PAC), Dr. Stephen Rinehart, opened the meeting and made administrative announcements. PAC Chair, Dr. Anne Verbiscer, welcomed everyone to the virtual meeting. Announcements were made around the table and on Webex. PSD Status Report Dr. Lori Glaze, Director of the Planetary Science Division, gave a status report. First addressing the President’s Budget Request (PBR) for Fiscal Year 2021 (FY21) for the Science Mission Directorate (SMD), Dr. Glaze noted that it was one of the strongest science budgets in NASA history, representing a 12% increase over the enacted FY20 budget. The total PBR keeps NASA on track to land on the Moon by 2024; and to help prepare for human exploration at Mars.
    [Show full text]
  • ISSUE 134, AUGUST 2013 2 Imperative: Venus Continued
    Imperative: Venus — Virgil L. Sharpton, Lunar and Planetary Institute Venus and Earth began as twins. Their sizes and densities are nearly identical and they stand out as being considerably more massive than other terrestrial planetary bodies. Formed so close to Earth in the solar nebula, Venus likely has Earth-like proportions of volatiles, refractory elements, and heat-generating radionuclides. Yet the Venus that has been revealed through exploration missions to date is hellishly hot, devoid of oceans, lacking plate tectonics, and bathed in a thick, reactive atmosphere. A less Earth-like environment is hard to imagine. Venus, Earth, and Mars to scale. Which L of our planetary neighbors is most similar to Earth? Hint: It isn’t Mars. PWhy and when did Earth’s and Venus’ evolutionary paths diverge? This fundamental and unresolved question drives the need for vigorous new exploration of Venus. The answer is central to understanding Venus in the context of terrestrial planets and their evolutionary processes. In addition, however, and unlike virtually any other planetary body, Venus could hold important clues to understanding our own planet — how it has maintained a habitable environment for so long and how long it can continue to do so. Precisely because it began so like Earth, yet evolved to be so different, Venus is the planet most likely to cast new light on the conditions that determine whether or not a planet evolves habitable environments. NASA’s Kepler mission and other concurrent efforts to explore beyond our star system are likely to find Earth-sized planets around Sun-sized stars within a few years.
    [Show full text]
  • New Insights Into Coronae Evolution: Mapping on Venus
    New insights into Coronae evolution: Mapping on Venus Duncan L. Copp and John E. Guest Department of Physics and Astronomy, University of London Observatory, University College, London, England Ellen R. Stofan Jet Propulsion Laboratory, California Institute of Technology, Pasadena Abstract. Coronae are geologically and geophysically important features on Venus, since they are thought to contribute to planetary heat loss. It is thus necessary to understand their role in space and time in the evolution of Venus. Detailed mapping of five coronae in Guinevere and Sedna Planitia illustrates that although previous models invoked initial uplift, not all coronae can be explained in such a simple way. We show that the formation of corona annuli can be multistaged and that the position of the annulus does not always coincide with the main topographic ridges and troughs that outline the feature. The magnitude and timing of volcanism are not necessarily the same at each corona, and coronae can have long and complex histories, in contrast with the stratigraphic relations suggested by other workers. We demonstrate that coronae do not all have the same relative ages with respect to adjacent units. These results suggest that corona formation was (is) not confined to a single time period in the history of Venus and that detailed mapping is a reliable method of establishing the relative timing of corona formation. 1. Introduction Coronaeconsist of concentricannuli ofridges andor graben [Barsukov et al., 1986; Stofan et al., 1992; Squyres et al., 19921.Most have a circularor ovoidal planform shape, with maximum diameters of 65 to 2100 km. The topography of coronae varies, with most having a raised rim [Stofan et al., 1992,19971.
    [Show full text]