Helping You Understand the Facts About Weather Forecasting Forecasting the Weather Is Essential to Help You Prepare for the Best and the Worst of Our Climate

Total Page:16

File Type:pdf, Size:1020Kb

Helping You Understand the Facts About Weather Forecasting Forecasting the Weather Is Essential to Help You Prepare for the Best and the Worst of Our Climate Clarity Helping you understand the facts about weather forecasting Forecasting the weather is essential to help you prepare for the best and the worst of our climate. Met Office forecasters work 24/7, 365 days of the year, using one of the world’s largest supercomputers to predict the weather for hours, days, weeks, seasons and even years ahead. Operating as part of an international network to collect weather data, we also partner with research institutes worldwide to develop the very latest techniques. We strive to ensure that you always have the very best advice in print, on air, and via the web. Our forecasts for tomorrow are right six times out of seven. Here you will find some facts about weather forecasting – an insight into our foresight. Weather forecasting — the big picture 01 Observations are essential FACT 1 — Before we forecast the weather, we collect observations. Observations Assimilation Observations of the weather are made Next we turn observational data into a 24 hours a day, all over the world. numerical representation of the current The main observations are from weather atmospheric conditions. This process is satellites, balloons, land­based known as assimilation. instruments, ships, buoys and aircraft. Small changes in atmospheric conditions Each day, the Met Office uses around lead to very different weather patterns, half a million observations of so it’s vital that the current state of the temperature, pressure, wind speed and atmosphere is represented as accurately direction, humidity and many other as possible. properties to provide the starting conditions of our weather forecast model. We continually update our Copyright European Space Agency (ESA), D. Ducros knowledge of the current state of the atmosphere. � Satellites measure radiation from Earth’s surface and the atmosphere. � Balloons and aircraft measure the bit of the atmosphere that they are passing through. � Buoys and land stations measure the lower part of the atmosphere. � Radar systems measure the reflection of radiation from rain drops and snowflakes. Weather forecasting — the big picture 02 We use numerical models and supercomputers FACT 2 — We use numerical computer models and supercomputers to forecast the weather. Numerical Weather Prediction (NWP) Met Office research scientists work to We predict how atmospheric conditions improve understanding of atmospheric will change with our knowledge of the processes, so they can be better simulated atmosphere, oceans and land surface. in our forecast model, and ultimately, lead to more accurate forecasts. Our numerical model starts with the current atmospheric conditions in the This is done by a combination of making area of interest from the surface to the and studying new types of observations upper atmosphere at points on a three­ and advanced numerical simulations. dimensional grid. The Met Office model is called the The atmosphere is a thin shell of Unified Model (UM) as different turbulent gas on a rotating Earth. configurations of the same model are Numerical Weather Prediction (NWP) used for both weather and climate models replicate the behaviour of this prediction. gas with mathematical equations. Supercomputers Details of the wind speed and direction, Numerical weather prediction involves temperature, pressure, moisture and billions of mathematical calculations. cloud in each grid box are then stored in The process of turning observational a computer. data into a numerical representation of the atmosphere takes the supercomputer Equations describing all of the relevant longer than it does to actually make the atmospheric processes are solved for forecast. We use powerful supercomputers each grid box to predict the values at to do these calculations as quickly as that point several minutes later. possible. Weather forecasting — the big picture 03 Human intervention is key FACT 3 — Human forecasters check and improve our forecasts. Our expert forecasters use their To ensure that people and critical knowledge to compare the predictions operations will not be put at risk by of computer models against actual unexpected weather, the Met Office observations. If necessary, they can Operations Centre operates round the respond quickly and amend a computer clock throughout the year, even on forecast if it is going wrong in some way Christmas Day. – for example, computer models sometimes have problems forecasting Nowcasting thunderstorms and other small­scale Nowcasting is a technique for very short­ details a short period ahead. In such a range forecasting that maps the current situation, rainfall radar observations and weather, and then uses an estimate of its satellite pictures can be very useful when speed and direction of movement to making predictions over short periods of forecast the weather a short period ahead time. This is an example of forecasters – assuming the weather will move adding value to computer guidance. without significant changes. Another example of forecasters adding The Met Office uses nowcasting for value to computer guidance is by many weather variables including wind, correcting for known biases or temperature, snow and fog. weaknesses in computer model As a forecasting technique it can be predictions. Through skilful interpretation applied quickly, either by human of computer output, forecasters also forecasters or by modest­sized decide on the correct emphasis in computers, so it is possible to update the weather forecasts. Forecasters also tailor forecasts frequently – every time there forecast information to the interests of are new observations available. different customer groups which can include for example, the general public, Most Met Office nowcasts are updated emergency responders or airlines. every hour. Sifting through the vast quantities of forecast data from the NWP system and identifying which are of particular significance to particular customersona particularday isa risk assessment process, considering the vulnerability of each user to all aspects of the weather. Weather forecasting — the big picture 04 We use a variety of techniques FACT 4 — To produce weather forecasts for one to 15 days ahead, we use a variety of techniques. Ensemble forecasting Probability and decision­making One example of the range of techniques By assessing the uncertainty in a forecast, we use to forecast the weather is ensemble forecasting helps decision­ ensemble forecasting. The risk of makers judge the appropriate level of particular weather events can be response to a risk of high­impact estimated using ensemble forecasting. weather. An ensemble forecasting system samples When the predicted risk of a severe the uncertainty inherent in weather weather event is high it can give prediction to provide more information forecasters the confidence to issue earlier about possible future weather warnings. If there is a smaller probability conditions. Multiple forecasts are of a severe event then emergency produced by making small alterations to planners and vulnerable businesses can either the starting conditions or the still be alerted to protect their vulnerable forecast model, or both. assets via a special advisory service. Weather happening many thousands of The output from the ensemble systems miles away today will affect the weather allows the uncertainty of the forecast to over the UK in a few days time. In be quantified, and the risk of a particular medium­range forecasts of two to 15 weather event occurring can be days ahead, the use of ensemble assessed. This can aid decision­making forecasting is essential as the uncertainty for those who are at risk from certain in the large­scale weather patterns weather events. becomes greater. Copyright 2009 EUMETSAT Weather forecasting — the big picture 05 We are always improving our forecasts FACT 5 — We are always improving our forecasts. We measure the accuracy of all our Another way of monitoring the accuracy forecasts. Over the years, there has been of our forecasts is by setting targets for: a steady pattern of improvement. For example, our four­day forecasts are now � Next­day rainfall forecasts for 11 places as accurate as our one­day forecasts were within the UK. 30 years ago. 2008 � Next­day temperature forecasts (max accuracy Improvement in forecast accuracy is a and min) for 11 places within the UK. result ofinvestment in research,faster ahead 1978 � The overall forecasting skill of our 2008 supercomputers and greater coverage computer models assessed by the Forecast and the targeting of observations. 1­day ahead NWP Index that takes into account ahead There are a number of ways of computer forecasts for several 1­day measuring the accuracy of a forecast. weather elements which we can 4­day One method used at the Met Office is compare with other forecasting called the Numerical Weather Prediction centres around the world. (NWP) index. This combines the accuracy of a number of different elements into a single measure of overall accuracy. Weather forecasting — the big picture 06 The atmosphere is chaotic FACT 6 — The atmosphere is chaotic. Despite the expertise of our researchers To further improve the accuracy of our and forecasters, and the sophistication of forecasts we are investing in further our computers and satellites, our forecasts research to reduce the likelihood of are sometimes inaccurate. This is due to errors. In addition to improving the the complexity of the atmosphere and a accuracy of the one­ to five­day forecast, lack of observational data. In fact, the research has enabled us to make atmosphere
Recommended publications
  • Scientific Collaborations (2014-2019)
    Scientific Collaborations (2014-2019) NOAA ● National Environmental Satellite, Data and Information Service ○ Center for Satellite Applications and Research ○ CoastWatch ○ National Centers for Environmental Information ○ OceanWatch ● National Marine Fisheries Service ○ Alaska Fisheries Science Center ○ Northeast Fisheries Science Center ○ Northwest Fisheries Science Center ○ Pacific Islands Fisheries Science Center ○ Office of Science and Technology ○ Southeast Fisheries Science Center ○ Southeast Regional Office ○ Southwest Fisheries Science Center ● National Ocean Service ○ U.S. Integrated Ocean Observing System ■ Caribbean Regional Association for Coastal Ocean Observing (CARICOOS) ■ Gulf of Mexico Coastal Ocean Observing System (GCOOS) ● Gulf of Mexico Coastal Acidification Network (GCAN) ■ Mid-Atlantic Coastal Ocean Observing System (MARACOOS) ■ Pacific Islands Ocean Observing System (PacIOOS) ■ Southeast Coastal Ocean Observing Regional Association (SECOORA) ● Southeast Ocean and Coastal Acidification Network (SOCAN) ○ National Centers for Coastal Ocean Science ○ National Geodetic Survey ○ Office of National Marine Sanctuaries ■ Florida Keys National Marine Sanctuary ■ Flower Gardens Bank National Marine Sanctuary ■ National Marine Sanctuary of American Samoa ■ Olympic Coast National Marine Sanctuary ○ Office of Response and Restoration ● National Weather Service ○ Climate Prediction Center ○ Environmental Modeling Center ○ National Centers for Environmental Prediction ○ National Data Buoy Center ○ National Hurricane Center 1 ○ Office
    [Show full text]
  • List of Participants
    WMO Sypmposium on Impact Based Forecasting and Warning Services Met Office, United Kingdom 2-4 December 2019 LIST OF PARTICIPANTS Name Organisation 1 Abdoulaye Diakhete National Agency of Civil Aviation and Meteorology 2 Angelia Guy National Meteorological Service of Belize 3 Brian Golding Met Office Science Fellow - WMO HIWeather WCRP Impact based Forecast Team, Korea Meteorological 4 Byungwoo Jung Administration 5 Carolina Gisele Cerrudo National Meteorological Service Argentina 6 Caroline Zastiral British Red Cross 7 Catalina Jaime Red Cross Climate Centre Directorate for Space, Security and Migration Chiara Proietti 8 Disaster Risk Management Unit 9 Chris Tubbs Met Office, UK 10 Christophe Isson Météo France 11 Christopher John Noble Met Service, New Zealand 12 Dan Beardsley National Weather Service NOAA/National Weather Service, International Affairs Office 13 Daniel Muller 14 David Rogers World Bank GFDRR 15 Dr. Frederiek Sperna Weiland Deltares 16 Dr. Xu Tang Weather & Disaster Risk Reduction Service, WMO National center for hydro-meteorological forecasting, Viet Nam 17 Du Duc Tien 18 Elizabeth May Webster South African Weather Service 19 Elizabeth Page UCAR/COMET 20 Elliot Jacks NOAA 21 Gerald Fleming Public Weather Service Delivery for WMO 22 Germund Haugen Met No 23 Haleh Kootval World Bank Group 24 Helen Bye Met Office, UK 25 Helene Correa Météo-France Impact based Forecast Team, Korea Meteorological 26 Hyo Jin Han Administration Impact based Forecast Team, Korea Meteorological 27 Inhwa Ham Administration Meteorological Service
    [Show full text]
  • SRNWP-V Programme: a Comparison of Regional European Forecast Models
    SRNWP-V programme: a comparison of regional European forecast models Clive Wilson , Marion Mittermaier Sep 2011 © Crown copyright Met Office Outline & motivation • Short Range Numerical Weather Prediction – EUMETNET programme • Desire to benchmark operational models cf CBS global exchange • Phase 1 2009-2010 • Establish framework, recommend methods • Phase 2 2011-2012 • Continue comparison, more parameters • Use radar/extra observations • Extremal measures © Crown copyright Met Office EUMETNET/SRNWP programme - Deliverables • D1: Operational verification comparison of deterministic forecasts from one version of each of the 4 regional models of Europe (available for all the participating members) • D2: Additional intercomparison of other versions of the consortia models including high resolution models • D3: Inventory and recommendations of “new” scale-selective verification methods. • D4: Catalogue of sources of non-GTS data • D5 Exchange methods and code for verification of severe weather forecasts © Crown copyright Met Office 15km 12km 7km 10km 5 km (10km) Hirlam UM COSMO ALADIN Aladin-Lace © Crown copyright Met Office Parameter Scores Mean sea level mean bias and root mean pressure square errors 2m temperature Bias, rmse 2m relative humidity Bias, rmse mean bias speed error 10m winds and root mean square vector wind error equitable threat score and 6 hourly total frequency bias for 0.5, precipitation 1.0 and 4.0 mm 6h -1 © Crown copyright Met Office Key Model Label Hirlam reference run by FMI UK-FI Aladin-France run by Meteo-France
    [Show full text]
  • Magazine Issue 35 | Improvements to the Seasonal Forecast System and the New UK Climate Projections (UKCP18) Which Come out Next Year
    Barometer Magazine issue 35 | www.metoffice.gov.uk improvements to the seasonal forecast system and the new UK Climate Projections (UKCP18) which come out next year. I also refocused the climate science programme Professor Stephen onto both science and services, and substantially increased Belcher, Met Office Chief our international work, for example through the Climate Scientist, describes his Science for Service Partnership China (CSSP China). passion for his new role Capitalising on the new supercomputer and work addressing the Our new supercomputer was delivered ahead of schedule challenges of big data which has meant that many of the latest science upgrades and climate change. are now going operational and are helping to improve our forecasts (page 19). Leading science A new supercomputer also means huge volumes of data. July 2017 Now, data is one thing, but information is another, so we are Barometer is a controlled circulation magazine looking at intelligent ways of creating useful information distributed free of charge to decision-makers in to services government, science and commerce, for whom and extracting value from that data (page 4). That is where weather and climate information has an impact. the science to service aspect comes in. Improvements to Product information is correct at the time of eing Chief Scientist at the Met Office is a wonderful our weather and climate models will enable development publication but may be subject to change. job because of the broad range of science done of better services, particularly relevant in our support of the For queries about Barometer contact: in the Met Office, as well as the world-leading scientists Government’s emerging Industrial Strategy (page 7) and in Jon Stanford who produce it.
    [Show full text]
  • Public Weather Service Value for Money Review
    Public Weather Service Value for Money Review March 2015 Mike Gray Public Weather Service Customer Group Secretariat Page 1 of 25 Public Weather Service Value for Money Review Executive Summary Through analysing existing studies and literature on the economic value of weather forecasts, and using up to date figures, this review concludes with high confidence that the benefits of the Public Weather Service (PWS) to the UK are very likely to exceed £1bn per annum, and are likely to be close to £1.5bn per annum. This is consistent with the findings of the previous value for money study prepared for the PWS Customer Group (PWSCG) by PA from 2007 which assessed the economic benefits of the PWS at £614m per annum and, given its limited scope, considered the benefits to be many times that figure. Sectors considered in the review were the perceived value to the public (which had an estimated benefit of £480m per annum), value to aviation (£400m per annum), added value to other sectors of the economy (£400m per annum), storm damage avoidance (£80m per annum), value to land transport (£100m per annum) and flood damage avoidance (£64m per annum). Other benefits included the hosting of the European Centre for Medium-range Weather Forecasting (ECMWF) in the UK (£60m per annum) and business of over €200m for the UK space industry by being able to bid for EUMETSAT (the European Organisation for the Exploitation of Meteorological Satellites) contracts by virtue of UK membership paid for by the PWS. It is estimated that the PWS contributes to reducing deaths from high impact weather by many tens per year, and many more during individual severe events such as North Sea coastal flooding.
    [Show full text]
  • Advanced GNSS Tropospheric Products for Monitoring Severe
    Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate Jonathan Jones • Guergana Guerova Jan Douša • Galina Dick • Siebren de Haan Eric Pottiaux • Olivier Bock • Rosa Pacione Roeland van Malderen Editors Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate COST Action ES1206 Final Action Dissemination Report Funded by the Horizon 2020 Framework Programme of the European Union Editors Jonathan Jones Guergana Guerova Met Office Physics Faculty, Department of Meteorology and Exeter, UK Geophysics Sofia University “St. Kliment Ohridski” Jan Douša Sofia, Bulgaria Geodetic Observatory Pecný, RIGTC Ondřejov, Czech Republic Galina Dick GFZ German Research Centre for Geosciences Siebren de Haan Helmholtz Centre Potsdam Royal Netherlands Meteorological Institute Potsdam, Germany De Bilt, The Netherlands Eric Pottiaux Olivier Bock Royal Observatory of Belgium IGN Institut national de l’information Brussels, Belgium géographique et forestière Paris, France Rosa Pacione e-GEOS/Centro di Geodesia Spaziale-Agenzia Roeland van Malderen Spaziale Italiana Royal Meteorological Institute (RMI) Matera, MT, Italy Brussels, Belgium This publication is based upon work from COST Action ES1206: Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate, supported by COST (European Cooperation in Science and Technology). www.cost.eu COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. ISBN 978-3-030-13900-1 ISBN 978-3-030-13901-8 (eBook) https://doi.org/10.1007/978-3-030-13901-8 © Springer Nature Switzerland AG 2020 This work is subject to copyright.
    [Show full text]
  • Draft List of Participants
    Draft List of Participants 24th session of the Atmospheric Observation Panel for Climate (AOPC-24) Ms Imke Durre Mr Rainer Hollmann Center for Weather and Climate Deutscher Wetterdienst NOAA's National Centers for Environmental Offenbach, Germany Information (NCEI) Asheville, NC, United States Mr Kenneth Holmlund Mr Robert H. Holzworth European Organisation for the Exploitation of University of Washington Meteorological Satellites (EUMETSAT) Seattle, WA, United States Darmstadt, Germany Mr Dale F. Hurst Ms Elizabeth Kent NOAA Earth System Research Laboratory University of Southampton Waterfront Boulder, CO, United States Campus Southampton, United Kingdom Mr Shinya Kobayashi Mr Paolo Laj Japan Meteorological Agency Université Grenoble Alpes Tokyo, Japan Saint-Martin-d'Hères, France Mr Christian Lanconelli Ms Johanna Tamminen European Commission, Joint Research Centre Finnish Meteorological Institute Ispra, Italy Helsinki, Finland Mr Peter Thorne Mr Peng Zhang National University of Ireland Maynooth China Meteorological Administration Maynooth, Ireland National Satellite Meteorological Center Beijing, China 22nd session of the Ocean Observations Panel for Physics and Climate (OOPC-22) Mr Nic Bax Ms Maria Paz Chidichimo CSIRO Oceans and Atmosphere Universidad de Buenos Aires Hobart, Australia Buenos Aires, Argentina OOPC OOPC Ms Meghan Cronin Mr Masao Ishi National Oceanic and Atmospheric Japan Meteorological Agency Administration Meteorological Research Institute Seattle, WA, United States Tsukuba, Japan Mr Johannes Karstensen Ms Marjolaine
    [Show full text]
  • The Public Weather Service's Contribution to the UK Economy
    Met Office The Public Weather Service’s contribution to the UK economy May 2007 “The Met Office is a big success story. You are world leaders in your field. Renowned and respected throughout the world to the extent you’re practically a global brand. We in the MoD are absolutely determined to make sure you stay that way.” Under Secretary of State for Defence “The Met Office have set up a unit internally which is excellent at providing emergency response data, critical to our ability to plan for a nuclear incident.” Defra “The independent capability of the Met Office provides a latitude in decision making for the MoD that otherwise would not be possible.” MoD “The work of the Met Office based on PWS’ model allows the UK to punch above its weight in terms of climate change insight.” Defra “The work being carried out by the Met Office is integral to the ongoing success of the National Traffic Control Centre, reducing loss of life, injury, and damage to property.” Highways Agency “The Met Office bring a clear, well considered and precise view to the table. This was particularly evident in the Buncefield incident which allowed our team to make appropriate decisions at critical times.” Cabinet Office The Met Office's model is great. It provides an invaluable input to our preparations for dealing with bluetongue - enabling us to have an idea of when the midges might arrive on these shores.” Contingency Planning Director, State Veterinary Service “The Severe Weather Warnings issued by you last week made sure the country was able to prepare and plan.
    [Show full text]
  • Review of Met Office Weather Forecast Accuracy
    REVIEW OF MET OFFICE WEATHER FORECAST ACC URACY Weather Forecasts National Grid currently procures its main weather forecasts for electricity demand forecasting from the Met Office. National Grid is currently in the middle of a three year contract for these forecasts. The Met Office won the contract via an open tender process run by National Grid in accordance with all National Grid’s standard procurement policies. As part of the tender assessment process, the accuracy of trial forecasts provided by different companies tendering for the contract were assessed. During this process the Met Office was found to be the most accurate of the companies that tendered for the contract. The Met Office state on their website that “The World Meteorological Organization compares similar statistics among national meteorological services around the world. These show that the Met Office is consistently one of the top two operational services in the world.” (http://www.metoffice.gov.uk/about-us/who/accuracy/forecasts) Use of Weather Forecasts in Electricity Demand Forecasts Weather forecasts are used in three areas of electricity demand forecasting. The first area is in forecasting consumer demand. People are more likely to put heating on if it is cold, or turn air conditioning on if it is hot, or turn the lights on earlier if it is dull and overcast. National Grid derive correlations between demand at different cardinal points of the day and a variety of weather variables, primarily average temperature over last four hours, average temperature at a specific time of day over the last few days, weighted towards most recent temperatures, wind speed and light levels.
    [Show full text]
  • Mahony, Elizabeth, Ed. a South Asia Curriculum
    DOCUMENT RESUME ED 421 440 SO 029 232 AUTHOR Greenberg, Hazel Sara; Mahony, Elizabeth, Ed. TITLE A South Asia Curriculum: Teaching about India. INSTITUTION American Forum for Global Education, New York, NY. SPONS AGENCY Department of Education, Washington, DC. ISBN ISBN-09-44675-52-2 PUB DATE 1994-00-00 NOTE 443p. AVAILABLE FROM American Forum for Global Education, 45 John St., Suite 908, New York, NY 10038; telephone: 212-732-8606 ($60). PUB TYPE Guides - Non-Classroom (055) EDRS PRICE MF01/PC18 Plus Postage. DESCRIPTORS Area Studies; *Asian Studies; Cultural Awareness; *Culture; Foreign Countries; Global Education; *Indians; Instructional Materials; Multicultural Education; *Non Western Civilization; Secondary Education; Social Studies; State Curriculum Guides; *World History IDENTIFIERS *India; New York ABSTRACT This curriculum evolved as an interactive cooperation between South Asian scholars and an educator/curriculum writer. The materials are congruent with the mandates of the New York State Global Studies program. Each lesson provides focus questions, performance objectives, procedures with accompanying student materials, and a summary/application. Teaching strategies also are included. Each student worksheet is keyed to thelesson with the same title and sequentially numbered worksheets. The teacher'sguide is divided into the following themes: (1) "The Physical/Historical Setting"; (2) "The Dynamics of Change"; (3) "Contemporary South Asian Nations and Cultures"; (4) "Economic Development in South Asia"; and (5)"South Asia in the
    [Show full text]
  • ECMWF, Met Office, UKSA
    Memo From: UK Space Agency, Met Office, ECMWF To: Ofcom Subject: Discussion of attenuation 175-191 GHz Date: 1 July 2020 Executive Summary The conclusion of this new study is that it has been determined that the protection provided by the additional path losses due to water vapour were over-estimated in the original Ofcom study. As a consequence, the proposed power limits and mitigation do not provide the expected level of protection to passive Earth Observation in the 175-191 GHz band and measurements from the AMSU-B and MHS instruments, which are used operationally for weather forecasting, including extreme events, would be at risk. In order to fully protect these measurements, we conclude that an additional 7 dB reduction in interference levels would be required. Introduction The recent Ofcom consultation “Supporting innovation in the 100-200 GHz range” focussed on sharing studies for bands centres on 118 and 183 GHz that are used by operational weather forecast and climate services. In undertaking technical studies on whether sharing is possible with the existing services using these bands, Ofcom made a number of assumptions. Of particular importance for the bands between 175-191 GHz, was that a global mean atmospheric profile was used to calculate atmospheric attenuation, to calculate how much an emission at the surface is reduced due to atmospheric absorption before reaching a sensor on a satellite. On examining this assumption, we note that this does not cater for cases where the atmosphere is much drier than the global mean profile. The strongest test would be to repeat the calculations assuming no atmospheric water vapour, because that is by construction the most extreme case possible (water vapour can’t go negative).
    [Show full text]
  • 1 Determining Probability-Circle Radii of Tropical Cyclone Track Forecasts with Multiple Ensembles JUNYA FUKUDA1 and MUNEHIKO YA
    Technical Review No. 21 (April 2019) RSMC Tokyo – Typhoon Center Determining Probability-Circle Radii of Tropical Cyclone Track Forecasts with Multiple Ensembles JUNYA FUKUDA1 and MUNEHIKO YAMAGUCHI2 1: Tokyo Typhoon Center, Forecast Department, Japan Meteorological Agency 2: Meteorological Research Institute, Japan Meteorological Agency 1. Introduction The Regional Specialized Meteorological Center (RSMC) Tokyo – Typhoon Center (referred to here simply as “the Center”) of the Japan Meteorological Agency (JMA) revised its 70% probability-circle radii for tropical cyclone (TC) track forecasts in June 2016 and 2017 (Fukuda 2018). Table 1 shows the radii used as of April 2019, with those for 3- to 72-hour forecasts being determined in line with TC direction and speed and pre-determined based on verification results for operational TC track forecasts for the period from 2011 to 2015. The radii for 96- to 120-hour forecasts are determined in line with forecast confidence levels and TC direction/speed. Confidence levels are derived from cumulative ensemble spread1 calculated using outputs from the Global Ensemble Prediction System (GEPS; Tokuhiro 2018), and the radii for different confidence levels are pre-determined based on verification results for the period from 2015 to 2016. As the methods used to determine probability-circle radii differ between 3- to 72-hour and 96- to 120-hour forecasts, there are discontinuities in the rate of radius increase. Although this discontinuity was alleviated to some extent with the above-mentioned radii upgrades in 2016 and 2017, the issue still remains (Figure 1). The World Meteorological Organization (WMO) Tropical Cyclone Programme (TCP) and World Weather Research Programme (WWRP) launched the North Western Pacific Tropical Cyclone Ensemble Forecast Project (NWP-TCEFP) in 2009 to explore the utility of ensemble forecasts, including multiple ensembles, and to promote such products for operational TC forecasting (Yamaguchi et al.
    [Show full text]