Fluid Management in Diabetic Ketoacidosis

Total Page:16

File Type:pdf, Size:1020Kb

Fluid Management in Diabetic Ketoacidosis CONTROVERSY 443 General paediatrics case controlled studies of cerebral Arch Dis Child: first published as 10.1136/adc.86.6.443 on 1 June 2002. Downloaded from ................................................................................... oedema complicating DKA and there is conflicting evidence as to the role of iatrogenic factors in fatal cases.613How- Fluid management in diabetic ever, excessive rates of fluid administra- tion, particularly early in resuscitaion,14 ketoacidosis and failure of plasma sodium to rise as plasma glucose declines, have been iden- C D Inward, T L Chambers tified as risk factors. Studies using computed tomography ................................................................................... suggest that subclinical cerebral swelling Have we got it right yet? may be a common occurrence in children presenting with DKA,15 16 although this has been disputed.17 If cerebral swelling oung people with insulin depend- may be considered and treated as a vari- is a relatively common event it is not ent diabetes mellitus are three ant of renal electrolyte disorder with clear why only a minority progress to times more likely to die in child- hypertonic dehydration. herniation. In addition, fatal herniation Y 1 hood than the general population. De- has occurred in the absence of any fluid spite advances in management over the FLUID AND ELECTROLYTE LOSSES therapy. Therefore, although clearly not past 20 years, the incidence of mortality The fluid and electrolyte losses of DKA the only cause, it seems reasonable to associated with diabetic ketoacidosis are predominantly caused by hypergly- conclude that fluid management may be (DKA) remains unchanged. Cerebral caemia with resultant glycosuria and a factor contributing to the development oedema is the predominant cause of this osmotic diuresis. In addition, the kidney of overt cerebral oedema. On the basis of mortality; young children are particu- has a low threshold for ketoacids, which the available evidence it would seem larly at risk, with an incidence of 0.7–1% are excreted into the urine with an prudent to avoid rapid rates of fluid of episodes of DKA.23 The mortality accompanying cation, further exacerbat- infusion and to maintain serum sodium appears to be greatest among patients at ing the electrolyte loss. Relative acute concentrations in order to avoid the first presentation,134if there has been a dehydration with a larger sodium loss potential danger of excess free water long history of symptoms prior to will result primarily in intravascular administration which may exacerbate admission,3 and during the first 24 hours dehydration, but a more prolonged de- the development of symptomatic brain of treatment.4 In a recently published velopment will result in a greater degree swelling. retrospective multicentre analysis of of intracellular dehydration, with rela- Failure to follow guidelines for the children with DKA, low pCO2 levels and tive maintenance of intravascular vol- management of DKA has been well high serum sodium concentration at ume, particularly if the patient remains documented.18 Of particular concern is presentation were identified as particu- polydipsic.9 There are thus wide varia- the evidence that clinicians have been lar risk factors for the development of tions in fluid, acid–base, and electrolyte consistently shown to overestimate the cerebral oedema, together with bicarbo- deficiencies, during both development degree of dehydration in this 5 19 20 nate therapy. However, in the accompa- and treatment of DKA, yet few protocols condition. Nevertheless, the assump- http://adc.bmj.com/ nying editorial, Dunger and Edge point acknowledge this. tion underlying most DKA protocols is out that this may simply be revealing an There is clear evidence that volume that rehydration is desirable and achiev- association between severe DKA and depletion triggers the release of counter able in 24 hours, using a volume calcu- dehydration and the risk of cerebral regulatory hormones including catecho- lated by “maintenance plus deficit”. oedema.6 The pathogenesis of cerebral lamines, growth hormone, and cortisol oedema remains poorly understood but as well as renin, aldosterone, and ar- THE NEED FOR CHANGE? there may be many contributing ginine vasopressin.10 11 These hormones, From a renal perspective the term 7 factors. whose combined actions are directed “maintenance fluid” is a misnomer. True on September 28, 2021 by guest. Protected copyright. The aim of management of DKA is to towards preserving intravascular vol- maintenance fluid volume in children is restore metabolic homoeostasis while ume, also cause insulin resistance. An the sum of the insensible losses plus the minimising the risks of complications important effect of fluid administration obligate urine production and is prob- including hypoglycaemia, hypokalaemia, is therefore reducing the stimulus for the ably only 40% of recommended cardiac failure, and in children the secretion of the counter regulatory hor- amounts.21 Water requirements are re- development of cerebral oedema. How mones. Indeed it has been shown that lated to energy expenditure. The recom- best to achieve this remains contentious, plasma glucose starts to fall following mended “maintenance” volumes are with particular controversy centred on fluid administration prior to giving insu- based on calculations of insensible losses optimal fluid management. The most lin, although insulin is required for (estimated as 50 ml/100 cal/day) plus appropriate volume, type, and rate of correction of the metabolic acidosis.12 66.7 ml/100 cal/day to replace urine fluid to be given have all been the subject output.22 This allows for production of of debate. A survey in 1994 of UK RISK FACTORS FOR CEREBRAL isotonic urine. As normally functioning paediatricians found a threefold varia- OEDEMA kidneys are capable of fourfold concen- tion in the amount of fluid recom- The importance of prompt restoration of traton of the glomerular filtrate, “main- mended within the first 12 hours.8 Since the circulating volume for patients pre- tenance fluids” will provide sufficient then national guidelines have been de- senting with DKA is clear. However, the volume for both insensible and obligate veloped by the British Society for Paedi- observation that symptomatic cerebral losses as well as the extra needed for atric Endocrinology (BSPE). However, it oedema often occurs several hours after rehydration. A 5% dehydrated child with remains uncertain whether the recom- treatment has begun, usually at a time normally functioning kidneys can be mended strategy, using a volume calcu- when plasma glucose has started to fall rehydrated using “maintenance” fluid lated by “maintenance plus deficit”, is and metabolic acidosis to improve, has only—albeit slowly. the safest and most appropriate way to led to concern that the treatment itself In non-diabetic dehydration it is cus- manage rehydration in children with may contribute to the development of tomary to assess whether the dehydra- DKA. We suggest that childhood DKA cerebral oedema. There have been few tion is hypertonic, hypotonic, or isotonic www.archdischild.com 444 CONTROVERSY and whether there is simple contraction ..................... 21 Molteni KH. Initial management of of the extracellular compartment or hypernatraemic dehydration in the breastfed Arch Dis Child: first published as 10.1136/adc.86.6.443 on 1 June 2002. Downloaded from Authors’ affiliations infant. Clin Pediatr 1994;33:731–40. whether compensatory mechanisms are C D Inward, T L Chambers, Bristol Royal 22 Holliday MA, Segar WE. The maintenance operating. Hospital for Children, Bristol, UK need for water in parenteral fluid therapy. It is accepted that safe therapy of Pediatrics 1957;19:823–32. Correspondence to: Dr C D Inward, Bristol 23 Hollidat M. The evolution of therapy for hypertonic dehydration should be both Royal Hospital for Children, Upper Maudlin dehydration: should deficit therapy still be prolonged and cautious to avoid the Street, Bristol BS2 8BJ, UK taught? Pediatrics 1996;98:171–7. development of fits and cerebral oedema 24 Oddie S, Richmond S, Coultard M. 23 24 Hypernatraemic dehydration and breast during rehydration. REFERENCES feeding: a population study. Arch Dis Child The cells of the central nervous system 1 Edge JA, Ford-Adams ME, Dunger DB. 2001;85:318–20. protect cell volume under hyperosmolar Causes of death in children with insulin 25 Lee JH, Arcinue E, Ross BD. Organic dependent diabetes 1990–96. Arch Dis Child osmolytes in the brain of an infant with conditions by producing intracellelular 1999;81:318–23. hypernatremia. N Engl J Med osmotically active molecules, “idiogenic 2 Edge JA, Hawkins MM, Winter DL, et al. 1994;331:439–42. osmoles”.25 Once formed these molecules Incidence presentation management and 26 Lebovitz HA. Diabetic ketoacidosis. Lancet outcome of cerebral oedema associated with dissipate slowly. Rapid reduction of 1995;345:767–71. diabetic ketoacidosis (DKA) in Great Britain. 27 Adrogue H, Barrero J, Eknoyan G. Salutary plasma osmolality by the administration Arch Dis Child 1999;80(suppl 1):A11. effects of modest fluid replacement in the of free water under these conditions will 3 Bello FA, Sotos JF. Cerebral oedema in treatment of adults with ketoacidosis. JAMA diabetic ketoacidosis in children. Lancet create a gradient, causing movement of 1989;262:2108–13. 1990;336:64. 28 Harris GD, Fiordalisi I. Physiologic water into brain cells and thus brain 4 Rosenbloom AL. Intracerebral crises during management
Recommended publications
  • Diabetic Ketoacidosis and Hyperosmolar BMJ: First Published As 10.1136/Bmj.L1114 on 29 May 2019
    STATE OF THE ART REVIEW Diabetic ketoacidosis and hyperosmolar BMJ: first published as 10.1136/bmj.l1114 on 29 May 2019. Downloaded from hyperglycemic syndrome: review of acute decompensated diabetes in adult patients Esra Karslioglu French,1 Amy C Donihi,2 Mary T Korytkowski1 1Division of Endocrinology and Metabolism, Department of ABSTRACT Medicine, University of Pittsburgh, Pittsburgh, PA, USA Diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome (HHS) are life threatening 2University of Pittsburgh School of complications that occur in patients with diabetes. In addition to timely identification of the Pharmacy, Pittsburgh, PA, USA Correspondence to: M Korytkowski precipitating cause, the first step in acute management of these disorders includes aggressive [email protected] administration of intravenous fluids with appropriate replacement of electrolytes (primarily Cite this as: BMJ 2019;365:l1114 doi: 10.1136/bmj.l1114 potassium). In patients with diabetic ketoacidosis, this is always followed by administration Series explanation: State of the of insulin, usually via an intravenous insulin infusion that is continued until resolution of Art Reviews are commissioned on the basis of their relevance to ketonemia, but potentially via the subcutaneous route in mild cases. Careful monitoring academics and specialists in the US and internationally. For this reason by experienced physicians is needed during treatment for diabetic ketoacidosis and HHS. they are written predominantly by Common pitfalls in management include premature termination of intravenous insulin US authors therapy and insufficient timing or dosing of subcutaneous insulin before discontinuation of intravenous insulin. This review covers recommendations for acute management of diabetic ketoacidosis and HHS, the complications associated with these disorders, and methods for http://www.bmj.com/ preventing recurrence.
    [Show full text]
  • 20Mg Spironolactone I.P…..50Mg
    For the use only of a Registered Medical Practitioner or Hospital or a Laboratory. This package insert is continually updated: Please read carefully before using a new pack Frusemide and Spironolactone Tablets Lasilactone® 50 COMPOSITION Each film coated tablet contains Frusemide I.P. …….. 20mg Spironolactone I.P…..50mg THERAPEUTIC INDICATIONS Lasilactone® contains a short-acting diuretic and a long-acting aldosterone antagonist. It is indicated in the treatment of resistant oedema where this is associated with secondary hyperaldosteronism; conditions include chronic congestive cardiac failure and hepatic cirrhosis. Treatment with Lasilactone® should be reserved for cases refractory to a diuretic alone at conventional doses. This fixed ratio combination should only be used if titration with the component drugs separately indicates that this product is appropriate. The use of Lasilactone® in the management of essential hypertension should be restricted to patients with demonstrated hyperaldosteronism. It is recommended that in these patients also, this combination should only be used if titration with the component drugs separately indicates that this product is appropriate. POSOLOGY AND METHOD OF ADMINISTRATION For oral administration. The dose must be the lowest that is sufficient to achieve the desired effect. Adults: 1-4 tablets daily. Children: The product is not suitable for use in children. Elderly: Frusemide and Spironolactone may both be excreted more slowly in the elderly. Tablets are best taken at breakfast and/or lunch with a generous amount of liquid (approx. 1 glass). An evening dose is not recommended, especially during initial treatment, because of the increased nocturnal output of urine to be expected in such cases.
    [Show full text]
  • Persistent Lactic Acidosis - Think Beyond Sepsis Emily Pallister1* and Thogulava Kannan2
    ISSN: 2377-4630 Pallister and Kannan. Int J Anesthetic Anesthesiol 2019, 6:094 DOI: 10.23937/2377-4630/1410094 Volume 6 | Issue 3 International Journal of Open Access Anesthetics and Anesthesiology CASE REPORT Persistent Lactic Acidosis - Think beyond Sepsis Emily Pallister1* and Thogulava Kannan2 1 Check for ST5 Anaesthetics, University Hospitals of Coventry and Warwickshire, UK updates 2Consultant Anaesthetist, George Eliot Hospital, Nuneaton, UK *Corresponding author: Emily Pallister, ST5 Anaesthetics, University Hospitals of Coventry and Warwickshire, Coventry, UK Introduction • Differential diagnoses for hyperlactatemia beyond sepsis. A 79-year-old patient with type 2 diabetes mellitus was admitted to the Intensive Care Unit for manage- • Remember to check ketones in patients taking ment of Acute Kidney Injury refractory to fluid resusci- Metformin who present with renal impairment. tation. She had felt unwell for three days with poor oral • Recovery can be protracted despite haemofiltration. intake. Admission bloods showed severe lactic acidosis and Acute Kidney Injury (AKI). • Suspect digoxin toxicity in patients on warfarin with acute kidney injury, who develop cardiac manifes- The patient was initially managed with fluid resus- tations. citation in A&E, but there was no improvement in her acid/base balance or AKI. The Intensive Care team were Case Description asked to review the patient and she was subsequently The patient presented to the Emergency Depart- admitted to ICU for planned haemofiltration. ment with a 3 day history of feeling unwell with poor This case presented multiple complex concurrent oral intake. On examination, her heart rate was 48 with issues. Despite haemofiltration, acidosis persisted for blood pressure 139/32.
    [Show full text]
  • Preventing Dehydration
    State of New Jersey Department of Human Services Division of Developmental Disabilities DDDDDD PREVENTIONPREVENTION BULLETINBULLETIN Dehydration Dehydration is a loss of too much fluid from the body. The body needs water in order to maintain normal functioning. If your body loses too much fluid - more than you are getting from your food and liquids - your body loses electrolytes. Electrolytes include important nutrients like sodium and potassium which your body needs to work normally. A person can be at risk for dehydration in any season, not just the summer months. It is also important to know that elderly individuals are at heightened risk for dehydration because their bodies have a lower water content than younger people. Why people with Common Causes and a developmental Risk Factors for disability may be Dehydration: at a higher risk for dehydration. v Diarrhea v Vomiting v People with physical limitations may v Excessive sweating not be able to get something to drink on their own and will need the assistance of v Fever others. v Burns v People who cannot speak or whose v Diabetes when blood sugar is too high speech is hard to understand may have a v hard time telling their support staff that Increased urination (undiagnosed diabetes) they are thirsty. v Not drinking enough water, especially on warm and hot days v Some people may have difficulty swal- lowing their food or drinks and may v Not drinking enough during or after exercise refuse to eat or drink. This can make v Some medications (diuretics, blood pressure them more susceptible to becoming meds, certain psychotropic and anticonvul- dehydrated.
    [Show full text]
  • The Effect of Dehydration, Hyperthermia, and Fatigue on Landing Error Scoring System Scores
    ABSTRACT THE EFFECT OF DEHYDRATION, HYPERTHERMIA, AND FATIGUE ON LANDING ERROR SCORING SYSTEM SCORES Purpose: To examine the effects of exercise-induced dehydration, hyperthermia, and fatigue on Landing Error Scoring System (LESS) scores during a jump-landing task, and the effectiveness of a personalized hydration plan. Methods: Five recreationally active heat-acclimatized males 25.4 y (SD=5.7) completed two trials: with fluid replacement, (EXP) and without fluid (CON), in a counterbalanced, randomized, cross-over fashion. Exercise was terminated when gastrointestinal temperature (Tgi) = 39.5°C and fatigue ≥ 7/10, or 90 min of exercise. Percent dehydration was determined by body mass change from pre- exercise (PRE) and post-exercise (POST). Tgi, heart rate (HR), and perceived fatigue were measured PRE, during exercise, and POST. Three jump-landing tasks were filmed in the frontal and sagittal planes. An experienced grader evaluated jump-landing tasks using the LESS. Statistical Analysis: Repeated measures ANOVA assessed primary dependent and independent variables while a priori dependent t-tests evaluated pairwise comparisons. Results: No interaction, group, or time main effects were observed for LESS scores (p=0.437). POST dehydration (%) was greater in CON (M=2.59, SD=0.52) vs. EXP (M=0.92, SD=0.41; p<0.001), whereas hyperthermia (°C) (CON, M=39.29, SD=0.31, EXP, M=39.03, SD=0.61; p=0.425), and fatigue (CON, M=9, SD=1, EXP, M=9, SD=2; p=0.424) were similar. Conclusion: LESS scores were not affected by exercise-induced dehydration, hyperthermia, and fatigue, nor by a personal hydration plan.
    [Show full text]
  • Unit 4 Acid-Base Homeostasis
    Vanderbilt University Medical Center Emergency General Surgery Service Surgical Residency Rotation and Curriculum UNIT 4 ACID-BASE HOMEOSTASIS UNIT OBJECTIVES: 1. Demonstrate an understanding of the biochemistry and physiology of acid-base homeostasis. 2. Demonstrate the ability to diagnose and effectively treat complex disorders of acid-base balance. COMPETENCY-BASED KNOWLEDGE OBJECTIVES: 1. Explain hydrogen ion biochemistry and physiology to include: a. The Henderson-Hasselbalch equation (1) Ventilatory component (pCO2) (2) Renal component (HCO3-) 2. Classify metabolic acidosis, including "anion gap" and hyperchloremic acidosis. 3. Identify specific causes of metabolic acidosis. 4. Given values for pH, pCO2, and HCO3-, distinguish between metabolic acidosis, respiratory acidosis, metabolic alkalosis, respiratory alkalosis, and mixed abnormalities; derive a differential diagnosis for each. 5. Predict the importance of primary diseases and their complications to the evaluation of patient risk for: a. Shock b. Bowel obstruction c. Sepsis 6. Analyze the acid-base problem and its cause in specific clinical situations, and determine an appropriate course of therapy for the following conditions: a. "Medical" problems such as: (1) Diabetic ketoacidosis (2) Lactic acidosis (3) Renal tubular acidosis (4) Renal insufficiency (5) Respiratory failure b. "Surgical" problems such as: (1) Gastric outlet obstruction (2) Fistulas (3) Shock COMPETENCY-BASED PERFORMANCE OBJECTIVES: 1. Diagnose and treat acid-base disturbances of all types. 2. Diagnose and treat complex and combined problems in acid-base disturbances as a component of overall care. 3. Manage complex situations in the intensive care unit where acid-base Vanderbilt University Medical Center Emergency General Surgery Service Surgical Residency Rotation and Curriculum abnormalities coexist with other metabolic derangements, including: a.
    [Show full text]
  • Lecture-1 Keto Acidosis, Bovine Ketosis, Ovine Pregnancy Toxemia
    Lecture-1 Keto acidosis Ketoacidosis is a metabolic acidosis due to an excessive blood concentration of ketone bodies (acetone, acetoacetate and beta-hydroxybutyrate). Ketone bodies are released into the blood from the liver when hepatic lipid metabolism has changed to a state of increased ketogenesis. The abnormal accumulation of ketones in the body occurs due to excessive breakdown of fats in deficiency or inadequate use of carbohydrates. It is characterized by ketonuria, loss of potassium in the urine, and a fruity odor of acetone on the breath. Untreated, ketosis may progress to ketoacidosis, coma, and death. This condition is seen in starvation, occasionally in pregnancy if the intake of protein and carbohydrates is inadequate, and most frequently in diabetes mellitus. Different Types of Ketoacidosis Diabetes Keto Acidosis (DKA): Due to lack of insulin glucose uptake and metabolism by cells is decrased.Fatty acid catabolism increased in resulting in excess production of ketone bodies. Starvation Ketosis: Starvation leads to hypoglycemia as there is little or no absorption of glucose from intestine and also due to depletion of liver glycogen. In Fatty acid oxidation leads to excess ketone body. Bovine Ketosis Introduction Bovine ketosis occurs in the high producing dairy cows during the early stages of lactation, when the milk production is generally the highest. Abnormally high levels of the ketone bodies, acetone, acetoacetic and beta-hydroxy butyric acid and also iso- propanol appear in blood, urine and in milk. The alterations are accompanied by loss of appetite , weight loss, decrease in milk production and nervous disturbances. Hypoglycemia (starvation) is a common finding in bovine ketosis and in ovine pregnancy toxemia.
    [Show full text]
  • Water Requirements, Impinging Factors, and Recommended Intakes
    Rolling Revision of the WHO Guidelines for Drinking-Water Quality Draft for review and comments (Not for citation) Water Requirements, Impinging Factors, and Recommended Intakes By A. Grandjean World Health Organization August 2004 2 Introduction Water is an essential nutrient for all known forms of life and the mechanisms by which fluid and electrolyte homeostasis is maintained in humans are well understood. Until recently, our exploration of water requirements has been guided by the need to avoid adverse events such as dehydration. Our increasing appreciation for the impinging factors that must be considered when attempting to establish recommendations of water intake presents us with new and challenging questions. This paper, for the most part, will concentrate on water requirements, adverse consequences of inadequate intakes, and factors that affect fluid requirements. Other pertinent issues will also be mentioned. For example, what are the common sources of dietary water and how do they vary by culture, geography, personal preference, and availability, and is there an optimal fluid intake beyond that needed for water balance? Adverse consequences of inadequate water intake, requirements for water, and factors that affect requirements Adverse Consequences Dehydration is the adverse consequence of inadequate water intake. The symptoms of acute dehydration vary with the degree of water deficit (1). For example, fluid loss at 1% of body weight impairs thermoregulation and, thirst occurs at this level of dehydration. Thirst increases at 2%, with dry mouth appearing at approximately 3%. Vague discomfort and loss of appetite appear at 2%. The threshold for impaired exercise thermoregulation is 1% dehydration, and at 4% decrements of 20-30% is seen in work capacity.
    [Show full text]
  • Diabetic Ketoalkalosis in Children and Adults
    Original Article Diabetic Ketoalkalosis in Children and Adults Emily A. Huggins, MD, Shawn A. Chillag, MD, Ali A. Rizvi, MD, Robert R. Moran, PhD, and Martin W. Durkin, MD, MPH and DR are calculated because the pH and bicarbonate may be near Objectives: Diabetic ketoacidosis (DKA) with metabolic alkalosis normal or even elevated. In addition to having interesting biochemical (diabetic ketoalkalosis [DKALK]) in adults has been described in the features as a complex acid-base disorder, DKALK can pose diagnostic literature, but not in the pediatric population. The discordance in the and/or therapeutic challenges. change in the anion gap (AG) and the bicarbonate is depicted by an Key Words: delta ratio, diabetic ketoacidosis, diabetic ketoalkalosis, elevated delta ratio (DR; rise in AG/drop in bicarbonate), which is metabolic alkalosis normally approximately 1. The primary aim of this study was to de- termine whether DKALK occurs in the pediatric population, as has been seen previously in the adult population. The secondary aim was iabetic ketoacidosis (DKA), a common and serious dis- to determine the factors that may be associated with DKALK. Dorder that almost always results in hospitalization, is de- Methods: A retrospective analysis of adult and pediatric cases with a fined by the presence of hyperglycemia, reduced pH, metabolic 1 primary or secondary discharge diagnosis of DKA between May 2008 and acidosis, elevated anion gap (AG), and serum or urine ketones. August 2010 at a large urban hospital was performed. DKALK was as- In some situations, a metabolic alkalosis coexists with DKA sumedtobepresentiftheDRwas91.2 or in cases of elevated bicarbonate.
    [Show full text]
  • Diabetic Ketoacidosis: Evaluation and Treatment DYANNE P
    Diabetic Ketoacidosis: Evaluation and Treatment DYANNE P. WESTERBERG, DO, Cooper Medical School of Rowan University, Camden, New Jersey Diabetic ketoacidosis is characterized by a serum glucose level greater than 250 mg per dL, a pH less than 7.3, a serum bicarbonate level less than 18 mEq per L, an elevated serum ketone level, and dehydration. Insulin deficiency is the main precipitating factor. Diabetic ketoacidosis can occur in persons of all ages, with 14 percent of cases occurring in persons older than 70 years, 23 percent in persons 51 to 70 years of age, 27 percent in persons 30 to 50 years of age, and 36 percent in persons younger than 30 years. The case fatality rate is 1 to 5 percent. About one-third of all cases are in persons without a history of diabetes mellitus. Common symptoms include polyuria with polydipsia (98 percent), weight loss (81 percent), fatigue (62 percent), dyspnea (57 percent), vomiting (46 percent), preceding febrile illness (40 percent), abdominal pain (32 percent), and polyphagia (23 percent). Measurement of A1C, blood urea nitro- gen, creatinine, serum glucose, electrolytes, pH, and serum ketones; complete blood count; urinalysis; electrocar- diography; and calculation of anion gap and osmolar gap can differentiate diabetic ketoacidosis from hyperosmolar hyperglycemic state, gastroenteritis, starvation ketosis, and other metabolic syndromes, and can assist in diagnosing comorbid conditions. Appropriate treatment includes administering intravenous fluids and insulin, and monitoring glucose and electrolyte levels. Cerebral edema is a rare but severe complication that occurs predominantly in chil- dren. Physicians should recognize the signs of diabetic ketoacidosis for prompt diagnosis, and identify early symp- toms to prevent it.
    [Show full text]
  • Hyperchloremia – Why and How
    Document downloaded from http://www.elsevier.es, day 23/05/2017. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. n e f r o l o g i a 2 0 1 6;3 6(4):347–353 Revista de la Sociedad Española de Nefrología www.revistanefrologia.com Brief review Hyperchloremia – Why and how Glenn T. Nagami Nephrology Section, Department of Medicine, VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, United States a r t i c l e i n f o a b s t r a c t Article history: Hyperchloremia is a common electrolyte disorder that is associated with a diverse group of Received 5 April 2016 clinical conditions. The kidney plays an important role in the regulation of chloride concen- Accepted 11 April 2016 tration through a variety of transporters that are present along the nephron. Nevertheless, Available online 3 June 2016 hyperchloremia can occur when water losses exceed sodium and chloride losses, when the capacity to handle excessive chloride is overwhelmed, or when the serum bicarbonate is low Keywords: with a concomitant rise in chloride as occurs with a normal anion gap metabolic acidosis Hyperchloremia or respiratory alkalosis. The varied nature of the underlying causes of the hyperchloremia Electrolyte disorder will, to a large extent, determine how to treat this electrolyte disturbance. Serum bicarbonate Published by Elsevier Espana,˜ S.L.U. on behalf of Sociedad Espanola˜ de Nefrologıa.´ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
    [Show full text]
  • Hyperthermia & Heat Stroke: Heat-Related Conditions
    Hyperthermia & Heat Stroke: Heat-Related Conditions Joseph Rampulla, MS, APRN,BC eat-related conditions occur when excess heat taxes or overwhelms the body’s thermoregulatory mechanisms. Heat illness is preventable and occurs more Hcommonly than most clinicians realize. Heat illness most seriously affects the poor, urban-dwellers, young children, those with chronic physical and mental illnesses, substance abusers, the elderly, and people who engage in excessive physical The exposure to activity under harsh conditions. While considerable overlap occurs, the important the heat and the concrete during the syndromes are: heat stroke, heat exhaustion, and heat cramps. Heat stroke is a life- hot summer months places many rough threatening emergency and occurs when the loss of thermoregulatory control results sleepers at great risk in hyperpyrexia (very high fever) and severe damage to many internal organs. for heat stroke and hyperthermia. Photo by Epidemiology Sharon Morrison RN Heat illness is generally underreported, and the deaths than all other natural disasters combined in true incidence is unknown. Death rates from other the USA. The elderly, the very poor, and socially causes (e.g. cardiovascular, respiratory) increase isolated individuals are disproportionately affected during heat waves but are generally not reflected in by heat waves. For example, death records during the morbidity and mortality statistics related to heat heat waves invariably include many elders who died illness. Nonetheless, heat waves account for more alone in hot apartments. Age 65 years, chronic The Health Care of Homeless Persons - Part II - Hyperthermia and Heat Stroke 199 illness, and residence in a poor neighborhood are greater than 65.
    [Show full text]