Role of Histone Deacetylases in Gene Expression and RNA Splicing

Total Page:16

File Type:pdf, Size:1020Kb

Role of Histone Deacetylases in Gene Expression and RNA Splicing Role of Histone Deacetylases in Gene Expression and RNA Splicing by Dilshad Hussain Khan A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba In partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Biochemistry and Medical Genetics University of Manitoba Winnipeg, Manitoba, Canada Copyright 2013 by Dilshad Hussain Khan Thesis Abstract Histone deacetylases (HDAC) 1 and 2 play crucial role in chromatin remodeling and gene expression regimes, as part of multiprotein corepressor complexes. Protein kinase CK2-driven phosphorylation of HDAC1 and 2 regulates their catalytic activities and is required to form the corepressor complexes. Phosphorylation-mediated differential distributions of HDAC1 and 2 complexes in regulatory and coding regions of transcribed genes catalyze the dynamic protein acetylation of histones and other proteins, thereby influence gene expression. During mitosis, highly phosphorylated HDAC1 and 2 heterodimers dissociate and displace from mitotic chromosomes. Our goal was to identify the kinase involved in mitotic phosphorylation of HDAC1 and 2. We postulated that CK2-mediated increased phosphorylation of HDAC1 and 2 leads to dissociation of the heterodimers, and, the mitotic chromosomal exclusions of HDAC1 and 2 are largely due to the displacement of HDAC-associated proteins and transcription factors, which recruit HDACs, from chromosomes during mitosis. We further explored the role of un- or monomodified HDAC1 and 2 complexes in immediate-early genes (IEGs), FOSL1 (FOS-like antigen-1) and MCL1 (Myeloid cell leukemia-1), regulation. Dynamic histone acetylation is an important regulator of these genes that are overexpressed in a number of diseases and cancers. We hypothesized that transcription dependent recruitment of HDAC1 and 2 complexes over the gene body regions plays a regulatory role in transcription and splicing regulation of these genes. We present evidence that CK2-catalyzed increased phosphorylation of HDAC1 and 2 regulates the formation of distinct corepressor complexes containing either HDAC1 or HDAC2 I homodimers during mitosis, which might target cellular factors. Furthermore, the exclusion of HDAC-recruiting proteins is the major factor for their displacement from mitotic chromosomes. We further demonstrated that un- or monophosphorylated HDAC1 and 2 are associated with gene body of FOSL1 in a transcription dependent manner. However, HDAC inhibitors prevented FOSL1 activation independently of the nucleosome response pathway, which is required for IEG induction. Interestingly, our mass spectrometry results revealed that HDAC1 and 2 interact with a number of splicing proteins, in particular, with serine/arginine-rich splicing factor 1 (SRSF1). HDAC1 and 2 are co-occupied with SRSF1 over gene body regions of FOSL1 and MCL1, regardless of underlying splicing mechanisms. Using siRNA-mediated knockdown approaches and HDAC inhibitors, we demonstrated that alternative splicing of MCL1 is regulated by RNA- directed localized changes in the histone acetylation levels at the alternative exon. The change in histone acetylation levels correlates with the increased transcription elongation and results in change in MCL1 splicing by exon skipping mechanism. Taken together, our results contribute to further understanding of how the multi-faceted HDAC1 and 2 complexes can be regulated and function in various processes, including, but not limited to, transcription regulation and alternative splicing. This can be an exciting area of future research for therapeutic interventions. II Acknowledgements I owe my deepest gratitude to all those people who have helped me through the completion of this dissertation with their endless support, contributions, and encouragement. Because of them, my graduate school life and experience has been one that I will remember and cherish forever. First of all, I am greatly indebted to my supervisor, Dr. Jim Davie. Throughout the years, his invaluable guidance, motivation, expertise and enthusiastic support have made this a thoughtful and rewarding journey. He has truly been an inspiration for me to become an independent researcher. I could not have imagined having a better advisor. I hope that I can in turn, pass on the research values and passion that he has instilled in me. My sincere thanks go to the members of my thesis advisory committee: Dr. Lorrie Kirshenbaum, Dr. Etienne Leygue, and, Dr. Kirk McManus for their guidance over the years. Their continuous support and insightful advices have driven my project further, and, helped to reach at this accomplishment. I owe them my heartfelt appreciation. I would also like to acknowledge Dr. Philippe Georgel from Marshall University, for his critical review of my thesis and for taking the time to attend my oral defence. I consider it an honor to work in Davie lab with my companions, a talented team of ‘crazy’ researchers. The former lab members Dr. Bojan Drobic, Dr. Paula Espino and Dr. Jian Min Sun were instrumental to me in learning techniques and to start up my project. Ms. Cheryl Peltier, our III ‘Lab Mom’, always had what I was looking for, whether it be a reagent, lab supply or a protocol. She has been a good friend. I appreciate her generosity for providing the delicious cakes and cookies, which helped me to survive the long hours and weekends in the lab! Very special thanks to Dr. Shihua He, Dr. Jenny Yu and Dr. Wenguang Cao, with whom I have worked in a number of projects. I specially acknowledge Dr. Shihua He for all his help, advice and for his wonderful immunofluorescence data presented in this thesis. A Big ‘Thank you’ goes to Ms. Carolina Gonzalez, who spent months to run ‘the radioactive gels’ to help me in the splicing project. I would like to greatly acknowledge Dr. Soma Mandal, my bench mate and a very good friend, for being a great person to whom I could always talk about my ideas, excitements, struggles, frustrations and problems and, for the innumerable discussions and fun times over the ‘Tea parties’. You took the pain to go through the drafts of my thesis chapters in a very short time! Thank you for being there to support and encourage me, and, for the many precious memories along the way. I have also enjoyed the company of Dr. Shannon Healy and Ms. Protiti Khan as my ‘bay mates’ for sharing all the crazy ideas, discussions, and, for the many laughs. I have got the habit to expect Shannon, a humorous and dedicated person, in the lab in the weekends and after hours. She always remembers to tell me when she is going for climbing and I have to stay in lab! My gratitude is extended to Dr. Wayne Xu, Dr. Deborah Tsuyuki, Ms. Xuemei Wang, Ms. Nehal Patel, and Ms. Donna Lee, and, to the fellow lab mates Sanzida Jahan and Alekxandar Ilic. It is been a pleasure to work with you all. I would like to give a heartfelt thanks to our collaborators Dr. Etienne Leygue and Mr. Charlton Cooper here at University of Manitoba, Dr. Stefan Winter and Dr. Christian Seiser at Medical University of Vienna, and, Dr. Karen Smith and Dr. Jerry Workman at Stowers Institute for IV Medical Research, who were involved in the respective projects from the beginning and also for all their invaluable insights, suggestions, support and help over these years. My special appreciation to all the amazing office supports of Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology and Manitoba Institute of Child Health, especially Ms. Cecile Verrier, Ms. Mary Marko, Ms. Nikki Rayan, and, Ms. Debbie Korpesho to help me out whenever I expressed a complete lack of knowledge about paper works and procedures. A deeply felt thanks to Ms. Tuntun Sarkar, who has been kind enough to advise and to help in any matters related to graduate studies, and, for all her supports throughout the years. I am very grateful to the Manitoba Institute of Cell Biology and Manitoba Institute of Child Health for providing the stimulating training environment. I would also like to acknowledge the financial supports of Manitoba Health Research Council and University of Manitoba Graduate Studentship. Last, but not the least, I would like to express my immense gratitude to my parents and to my husband, Zinnatun Nabi. My parents are the reason I have started this journey. My husband, who has been a never-ending source of love, inspiration, encouragement, support and strength all these years, is my ‘driving force’ to reach the end of this journey. I cannot thank you enough. This is a tribute to three of you. I hope that this work will make you proud. V In loving memory of my father Late Nazibul Hussain Khan VI Table of Contents Thesis abstract……………………………………………………………………..I Acknowledgements……………………………………………………………...III Dedication………………………………………………………………………..VI Table of contents………………………………………………………………..VII List of Tables…………………………………………………………………...XIV List of figures………………………………………………………………......XIV List of abbreviations………………………………………………………….XVII List of copyright materials for which permission was obtained…………..XXII Chapter 1: Introduction…………………………………………………………..1 1.1 Chromatin structures and modifications……………………………………………….......2 1.1.1 The building block of chromatin: nucleosome……………………………………………2 1.1.2 Chromatin modifications………………………………………………………….............4 1.1.3 Histone modifications…………………………………………..........................................5 1.1.3.1 Histone acetylation………………………………………………………………………...8 1.1.3.2 Histone phosphorylation…………………………………………………………………10 1.1.3.3 Histone methylation……………………………………………………….......................12
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
    531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant.
    [Show full text]
  • Mapping Influenza-Induced Posttranslational Modifications On
    viruses Article Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells Svetlana Rezinciuc 1, Zhixin Tian 2, Si Wu 2, Shawna Hengel 2, Ljiljana Pasa-Tolic 2 and Heather S. Smallwood 1,3,* 1 Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; [email protected] (Z.T.); [email protected] (S.W.); [email protected] (S.H.); [email protected] (L.P.-T.) 3 Children’s Foundation Research Institute, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-(901)-448–3068 Academic Editor: Italo Tempera Received: 10 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection.
    [Show full text]
  • HDAC7 Sikens the Heart
    The black sheep of class IIa: HDAC7 SIKens the heart Joshua G. Travers, … , Tianjing Hu, Timothy A. McKinsey J Clin Invest. 2020;130(6):2811-2813. https://doi.org/10.1172/JCI137074. Commentary Class IIa histone deacetylases (HDACs) repress cardiomyocyte hypertrophy through association with the prohypertrophic transcription factor (TF) myocyte enhancer factor-2 (MEF2). The four class IIa HDACs — HDAC4, -5, -7, and -9 — are subject to signal-dependent phosphorylation by members of the Ca2+/calmodulin-dependent protein kinase (CaMK) group. In response to stress, HDAC4, HDAC5, and HDAC9 undergo phosphorylation-induced nuclear export in cardiomyocytes, freeing MEF2 to stimulate progrowth genes; it was generally assumed that HDAC7 is also antihypertrophic. However, in this issue of the JCI, Hsu and colleagues demonstrate that, in sharp contrast to the other class IIa HDACs, HDAC7 is constitutively localized to the cardiomyocyte cytoplasm, where it promotes cardiac hypertrophy. Phosphorylation of HDAC7 by the CaMK group member salt-inducible kinase 1 (SIK1) stabilized the deacetylase, leading to increased expression of c-Myc, which in turn stimulated a pathological gene program. These unexpected findings highlight the SIK1/HDAC7 signaling axis as a promising target for the treatment of cardiac hypertrophy and heart failure. Find the latest version: https://jci.me/137074/pdf The Journal of Clinical Investigation COMMENTARY The black sheep of class IIa: HDAC7 SIKens the heart Joshua G. Travers, Tianjing Hu, and Timothy A. McKinsey Division of Cardiology, Department of Medicine, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. repress gene expression, block cardiac hypertrophy by associating with the myo- Class IIa histone deacetylases (HDACs) repress cardiomyocyte hypertrophy cyte enhancer factor-2 (MEF2) transcrip- through association with the prohypertrophic transcription factor (TF) tion factor (TF) (11).
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Supporting Online Material
    1 2 3 4 5 6 7 Supplementary Information for 8 9 Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic 10 retinopathy 11 12 *Samuel A. Mills, *Andrew I. Jobling, *Michael A. Dixon, Bang V. Bui, Kirstan A. Vessey, Joanna A. Phipps, 13 Ursula Greferath, Gene Venables, Vickie H.Y. Wong, Connie H.Y. Wong, Zheng He, Flora Hui, James C. 14 Young, Josh Tonc, Elena Ivanova, Botir T. Sagdullaev, Erica L. Fletcher 15 * Joint first authors 16 17 Corresponding author: 18 Prof. Erica L. Fletcher. Department of Anatomy & Neuroscience. The University of Melbourne, Grattan St, 19 Parkville 3010, Victoria, Australia. 20 Email: [email protected] ; Tel: +61-3-8344-3218; Fax: +61-3-9347-5219 21 22 This PDF file includes: 23 24 Supplementary text 25 Figures S1 to S10 26 Tables S1 to S7 27 Legends for Movies S1 to S2 28 SI References 29 30 Other supplementary materials for this manuscript include the following: 31 32 Movies S1 to S2 33 34 35 36 1 1 Supplementary Information Text 2 Materials and Methods 3 Microglial process movement on retinal vessels 4 Dark agouti rats were anaesthetized, injected intraperitoneally with rhodamine B (Sigma-Aldrich) to label blood 5 vessels and retinal explants established as described in the main text. Retinal microglia were labelled with Iba-1 6 and imaging performed on an inverted confocal microscope (Leica SP5). Baseline images were taken for 10 7 minutes, followed by the addition of PBS (10 minutes) and then either fractalkine or fractalkine + candesartan 8 (10 minutes) using concentrations outlined in the main text.
    [Show full text]
  • Exogenous Hydrogen Sulfide Plays an Important Role by Regulating
    International Journal of Molecular Sciences Review Exogenous Hydrogen Sulfide Plays an Important Role by Regulating Autophagy in Diabetic-Related Diseases Shuangyu Lv , Huiyang Liu and Honggang Wang * Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China; [email protected] (S.L.); [email protected] (H.L.) * Correspondence: [email protected] Abstract: Autophagy is a vital cell mechanism which plays an important role in many physiological processes including clearing long-lived, accumulated and misfolded proteins, removing damaged organelles and regulating growth and aging. Autophagy also participates in a variety of biological functions, such as development, cell differentiation, resistance to pathogens and nutritional hunger. Recently, autophagy has been reported to be involved in diabetes, but the mechanism is not fully understood. Hydrogen sulfide (H2S) is a colorless, water-soluble, flammable gas with the typical odor of rotten eggs, which has been known as a highly toxic gas for many years. However, it has been reported recently that H2S, together with nitric oxide and carbon monoxide, is an important gas signal transduction molecule. H2S has been reported to play a protective role in many diabetes- related diseases, but the mechanism is not fully clear. Recent studies indicate that H2S plays an important role by regulating autophagy in many diseases including cancer, tissue fibrosis diseases and glycometabolic diseases; however, the related mechanism has not been fully studied. In this review, we summarize recent research on the role of H2S in regulating autophagy in diabetic-related diseases to provide references for future related research.
    [Show full text]
  • Subcellular Distribution of HDAC1 in Neurotoxic Conditions Is Dependent on Serine Phosphorylation
    The Journal of Neuroscience, August 2, 2017 • 37(31):7547–7559 • 7547 Neurobiology of Disease Subcellular Distribution of HDAC1 in Neurotoxic Conditions Is Dependent on Serine Phosphorylation Yunjiao Zhu,1* Oscar G. Vidaurre,1* XKadidia P. Adula,1 XNebojsa Kezunovic,1 XMaureen Wentling,1 X George W. Huntley,1 and XPatrizia Casaccia1,2 1Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and 2Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031 Calcium-dependent nuclear export of histone deacetylase 1 (HDAC1) was shown previously to precede axonal damage in culture, but the in vivo relevance of these findings and the potential posttranslational modifications of HDAC1 remained elusive. Using acute hippocam- pal slices from mice of either sex with genetic conditional ablation of Hdac1 in CA1 hippocampal neurons (i.e., Camk2a-cre;Hdac1 fl/fl), we show significantly diminished axonal damage in response to neurotoxic stimuli. The protective effect of Hdac1 ablation was detected also in CA3 neurons in Grik4-cre;Hdac1 fl/f mice, which were more resistant to the excitotoxic damage induced by intraventricular injection of kainic acid. The amino acid residues modulating HDAC1 subcellular localization were identified by site-directed mutagenesis, which identified serine residues 421 and 423 as critical for its nuclear localization. The physiological phosphorylation of HDAC1 was decreased by neurotoxic stimuli, which stimulated the phosphatase enzymatic activity of calcineurin. Treatment of neurons with the calcineurin inhibitors FK506 or cyclosporin A resulted in nuclear accumulation of phospho-HDAC1 and was neuroprotective.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • Georgia's Newborn Screening Panel (Disorders)
    Georgia’s Newborn Screening Panel (Disorders) Organic Acid Fatty Acid Oxidation Amino Acid Hemoglobinopathy Other • Beta Ketothiolase (BKT) • Caritine Uptake • Cobalamin A and B Defect Deficiency (Cbl A,B ) • Long Chain 3 • Glutaric Acidemia type hydroxyl acyl-CoA • Biotinidase I dehydrogenase • Argininosuccinic Deficiency • Congenital • 3OH 3-CH3 Glutaric Acidemia • Sickle Cell • Adrenal Aciduria (HMG) Medium Chain acyl- • Citrullinemia Disease Hyperplasia • Isovaleric Acidemia CoA dehydrogenase • Homocystinuria • Sickle SC Deficiency • Congenital (IVA) • Maple Syrup Urine Disease • Trifunctional Protein Hypothyroidism • 3 Methylcrotonyl-Co A Disease • Sickle Beta Deficiency • Cystic Fibrosis Carboxylase Deficiency • Phenylketonuria Thalassemia • Very Long chain • Galactosemia (3MCC) • Tyrosinemia • Multiple Carboxylase acyl-CoA Deficiency dehydrogenase Deficiency • Methylmalonic Acidemia (MMA) • Propionic Acidemia 3-methylcrotonyl-CoA carboxylase deficiency (3-MCC) (3-methel-crow-ton-eel co-A car-box-il-ace de-fish-in-sea) POSITIVE NEWBORN SCREEN What is a positive newborn screen? Newborn screening is done on tiny samples of blood taken from your baby’s heel 24 to 48 hours after birth. Newborn screening tests for rare, hidden disorders that may affect your baby’s health and development. The newborn screen suggests your baby might have a disorder called 3-MCC. There are many other conditions that can cause a similar positive result on newborn screening. A positive newborn screen does not mean your baby has 3-MCC or any of the other conditions above, but it does mean your baby needs more testing to know for sure. Your baby’s doctor will help arrange for more testing by specialists in disorders like 3-MCC. Sometimes, a baby has a positive newborn screen because the mother has a hidden form of 3-MCC.
    [Show full text]
  • Supporting Information
    Supporting Information Pouryahya et al. SI Text Table S1 presents genes with the highest absolute value of Ricci curvature. We expect these genes to have significant contribution to the network’s robustness. Notably, the top two genes are TP53 (tumor protein 53) and YWHAG gene. TP53, also known as p53, it is a well known tumor suppressor gene known as the "guardian of the genome“ given the essential role it plays in genetic stability and prevention of cancer formation (1, 2). Mutations in this gene play a role in all stages of malignant transformation including tumor initiation, promotion, aggressiveness, and metastasis (3). Mutations of this gene are present in more than 50% of human cancers, making it the most common genetic event in human cancer (4, 5). Namely, p53 mutations play roles in leukemia, breast cancer, CNS cancers, and lung cancers, among many others (6–9). The YWHAG gene encodes the 14-3-3 protein gamma, a member of the 14-3-3 family proteins which are involved in many biological processes including signal transduction regulation, cell cycle pro- gression, apoptosis, cell adhesion and migration (10, 11). Notably, increased expression of 14-3-3 family proteins, including protein gamma, have been observed in a number of human cancers including lung and colorectal cancers, among others, suggesting a potential role as tumor oncogenes (12, 13). Furthermore, there is evidence that loss Fig. S1. The histogram of scalar Ricci curvature of 8240 genes. Most of the genes have negative scalar Ricci curvature (75%). TP53 and YWHAG have notably low of p53 function may result in upregulation of 14-3-3γ in lung cancer Ricci curvatures.
    [Show full text]