Insights Into the Mechanisms of Epilepsy from Structural Biology of LGI1–ADAM22

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Mechanisms of Epilepsy from Structural Biology of LGI1–ADAM22 Cellular and Molecular Life Sciences (2020) 77:267–274 https://doi.org/10.1007/s00018-019-03269-0 Cellular andMolecular Life Sciences REVIEW Insights into the mechanisms of epilepsy from structural biology of LGI1–ADAM22 Atsushi Yamagata1,2,3,4 · Shuya Fukai1,2,3 Received: 20 May 2019 / Revised: 5 August 2019 / Accepted: 9 August 2019 / Published online: 20 August 2019 © Springer Nature Switzerland AG 2019 Abstract Epilepsy is one of the most common brain disorders, which can be caused by abnormal synaptic transmissions. Many epilepsy-related mutations have been identifed in synaptic ion channels, which are main targets for current antiepileptic drugs. One of the novel potential targets for therapy of epilepsy is a class of non-ion channel-type epilepsy-related proteins. The leucine-rich repeat glioma-inactivated protein 1 (LGI1) is a neuronal secreted protein, and has been extensively studied as a product of a causative gene for autosomal dominant lateral temporal lobe epilepsy (ADLTE; also known as autosomal dominant partial epilepsy with auditory features [ADPEAF]). At least 43 mutations of LGI1 have been found in ADLTE families. Additionally, autoantibodies against LGI1 in limbic encephalitis are associated with amnesia, seizures, and cog- nitive dysfunction. Although the relationship of LGI1 with synaptic transmission and synaptic disorders has been studied genetically, biochemically, and clinically, the structural mechanism of LGI1 remained largely unknown until recently. In this review, we introduce insights into pathogenic mechanisms of LGI1 from recent structural studies on LGI1 and its receptor, ADAM22. We also discuss the mechanism for pathogenesis of autoantibodies against LGI1, and the potential of chemical correctors as novel drugs for epilepsy, with structural aspects of LGI1–ADAM22. Keywords Epilepsy · LGI1 · ADAM22 · Synapse · Autoantibody · Chemical corrector Introduction receptor, was found to cause autosomal dominant sleep- related hypermotor epilepsy [3, 4], many mutations in ion About 1–2% of the population is sufered from epilepsy. To channel genes have been identifed as epilepsy-related muta- date, over 900 genes have been reported to be associated tions [5, 6]. Therefore, current antiepileptic drugs mainly with epilepsy, and many genetic mutations on these genes target ion channels. Non-ion-channel-type epilepsy-related are directly related to epilepsy [1, 2]. Since a mutation in proteins are another group of drug target for the development CHRNA4, encoding the α4 subunit of nicotinic acetylcholine of new therapeutic strategies for epilepsy. One of the best-characterized non-ion-channel-type epilepsy-related proteins is the leucine-rich repeat glioma- * Atsushi Yamagata inactivated protein 1 (LGI1), which is a neuronal secreted [email protected] protein [7–9]. To date, at least 43 mutations of LGI1 (29 * Shuya Fukai missense mutations and 14 deletion/truncation mutations) [email protected] have been found in autosomal dominant lateral temporal 1 Institute for Quantitative Biosciences, The University lobe epilepsy (ADLTE; also known as autosomal dominant of Tokyo, Tokyo 113-0032, Japan partial epilepsy with auditory features [ADPEAF]) families 2 Synchrotron Radiation Research Organization, The [7, 10–13]. In addition, autoantibodies against LGI1 in lim- University of Tokyo, Tokyo 113-0032, Japan bic encephalitis are associated with amnesia, seizures, and 3 Department of Computational Biology and Medical cognitive dysfunction [14–16]. LGI1 knockout mice show Sciences, Graduate School of Frontier Sciences, The severe epileptic phenotype [17–19], which is specifcally res- University of Tokyo, Chiba 277-8561, Japan cued by the neuronal expression of the LGI1 transgene [18]. 4 Present Address: Laboratory for Protein Functional Genetic, biochemical, and clinical studies have accumulated and Structural Biology, RIKEN Center for Biosystems the evidences of the strong connection between LGI1 and Dynamics Research, Yokohama, Kanagawa 230-0045, Japan Vol.:(0123456789)1 3 268 A. Yamagata, S. Fukai epilepsy, and LGI1 has been implicated in brain develop- Pathogenic mutations of LGI1 ment [20–22], neuronal excitability [19, 23, 24], and synap- tic transmission [18, 25–27]. However, physiological func- As mentioned above, at least 28 missense mutations have tions of LGI1 still remain elusive. Recent structural studies been reported in patients with familial ADLTE (Table 1). on LGI1 and its receptor, ADAM22 [25], illustrate the trans- Among them, 19 mutations result in secretion-defective synaptic linkage mediated by the higher-order assembly of proteins presumably due to the failure of protein fold- LGI1–ADAM22 and shed light on the relationship between ing [12]. The C42R, C42G, C46R, C46F, C179R, and their mutations and pathogenesis [28]. C200R mutations are mapped onto the cysteine residues forming disulfde bonds in the N- and C-terminal caps of the LRR domain (Fig. 1a) [28], and these mutations LGI1 structure disturb the proper folding. The E383A mutation disrupts the Ca2+ coordination inside of the β-propeller structure LGI1 is a 60-kDa secreted protein, and predominantly (Fig. 1b, c). In addition, the C286R mutation disrupts the expressed in neuronal cells in the brain [7, 25]. LGI1 con- intra-molecular disulfde bond with Cys260 inside the sists of the N-terminal LRR domain and the C-terminal β-propeller structure (Fig. 1b). A recently found muta- epitempin-repeat (EPTP; also known as EAR) domain [28]. tion, P43R, is located in the N-terminal cap and causes a The structure of LGI1 LRR forms the central fve LRR secretion defect [13]. This mutant LGI1 in cortical neurons repeats, fanked by the N- and C-terminal caps (Fig. 1a). causes dysfunctional cortical neuronal migration, which The C-terminal EPTP domain comprises a seven-bladed might be related to the fact that LGI1-related epilepsies β-propeller, in which each blade is composed of a four- involve mainly the temporal lobe. On the other hand, the stranded antiparallel β-sheet (Fig. 1b). The N-terminal S473L and R474Q mutations are secretion competent strand is assembled with the C-terminal three strands to [12]. The S473L mutation substantially reduces the bind- close the propeller. The EPTP β-propeller structure resem- ing to ADAM22 [12]; whereas, the R474Q mutation disa- bles a WD40 domain. Structural alignment of each blade bles the assembly of the tripartite complex of ADAM22, reveals a WD-like motif, though the position of the WD-like ADAM23, and LGI1 [28]. Structural aspects of this com- motif in LGI1 EPTP is shifted by two residues from those plex are described below. in other canonical WD40 proteins. The unique features of LGI1 EPTP are the disulfde bond inside β-propeller and the coordinated Ca 2+, which stabilize the whole β-propeller structure (Fig. 1b, c). (a) (b) (c) V432E R407C S473L E383A E383 R474Q T380A R136W I122K C179R D381 A110D I122T C G493R I82T L154P E336 Ca2+ C46R F226C C46F L373S Ca2+ D334 N V382 P43R C286R N C L214P I298T E123K S145R C200R C260 C42R C42G N-cap LRR C-cap L232P F318C Fig. 1 Domain structures and pathogenic mutations of LGI1. a LGI1 mapped onto the LGI1 EPTP structure. Each blade of the β-propeller LRR structure. Pathogenic mutations are mapped onto the LGI1 LRR is diferently colored. The Ca2+ coordinated inside the β-propeller is structure. The N-cap, LRR, and C-cap regions are colored in light shown as a gray ball. A disulfde bond and N-glycans are shown as gray, light green, and light cyan, respectively. Disulfde bonds are sticks. c The close-up view of the Ca2+ coordination site. Glu383, shown as sticks. b LGI1 EPTP structure. Pathogenic mutations are whose mutation is pathogenic, coordinates Ca2+ via a water molecule 1 3 269 Insights into the mechanisms of epilepsy from structural biology of LGI1–ADAM22 Table 1 Pathogenic missense Domain Mutation Secretion Efects Reference mutations on LGI1 N-cap C42R − Disruption of the disulfde bond with C48 [11, 12, 36] C42G − Disruption of the disulfde bond with C48 [11, 12, 37] P43R − Misfolding [13] C46R − Disruption of the disulfde bond with C55 [11, 12, 38, 39] C46F N.E. Disruption of the disulfde bond with C55 [40] LRR I82T N.E. Misfolding [41] A110D − Misfolding [11, 12, 36] I122K − Misfolding [11, 12, 42] I122T − Misfolding [12, 43] E123K − Misfolding [11, 12, 42, 44] R136W − Misfolding [11, 12, 42, 43] S145R − Misfolding [11, 12, 45] L154P − Misfolding [11, 12, 46] C-cap C179R − Disruption of the disulfde bond with C221 [12, 43] C200R − Disruption of the disulfde bond with C177 [11, 12, 47] L214P N.E. Misfolding [48] EPTP F226C N.E. Misfolding [49] L232P − Misfolding [11, 12, 50] C286R N.E. Disruption of the disulfde bond with C260 [51] I298T − Misfolding [11, 12, 36] F318C − Misfolding [11, 12, 52] L373S N.E. Misfolding [51] T380A − Misfolding [12, 53] E383A − Misfolding [7, 11, 12] R407C + unafected [12, 28, 54] V432E − Misfolding [11, 12, 47] S473L + Disruption of the binding to ADAM22 [11, 12, 37, 49] R474Q + Disruption of LGI1–LGI1 interaction [12, 24, 28, 55] G493R − Misfolding [12, 56] ADAM22 and other ADAM22 family proteins Mechanisms of the interaction between LGI1 and ADAM22 ADAM22 has been identifed as a receptor of LGI1 [25]. The LGI1–ADAM22 complex plays a critical role in The EPTP domain of LGI1 is sufficient for binding AMPA receptor-mediated synaptic transmission [18, 25, to ADAM22 [25]. The crystal structure of the LGI1 29]. ADAM22 belongs to a transmembrane ADAM met- EPTP–ADAM22 complex reveals that LGI1 EPTP binds alloprotease family [30]. However, the histidine residues to the metalloprotease domain of ADAM22 (Fig. 2a) [28]. coordinating the catalytic zinc ion are replaced with other Three aromatic residues in ADAM22 (Trp398, Tyr408, and residues in ADAM22 [31]. To our knowledge, it is likely Tyr409 in human ADAM22) stick into a hydrophobic pocket that ADAM22 solely functions as a receptor for LGI1 [25]. located at the rim of the EPTP propeller (Fig.
Recommended publications
  • Peking University-Juntendo University Joint Symposium on Cancer Research and Treatment ADAM28 (A Disintegrin and Metalloproteinase 28) in Cancer Cell Proliferation and Progression
    Whatʼs New from Juntendo University, Tokyo Juntendo Medical Journal 2017. 63(5), 322-325 Peking University - Juntendo University Joint Symposium on Cancer Research and Treatment ADAM28 (a Disintegrin and Metalloproteinase 28) in Cancer Cell Proliferation and Progression YASUNORI OKADA* *Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan A disintegrinandmetalloproteinase 28 (ADAM28) is overexpressedpredominantlyby carcinoma cells in more than 70% of the non-small cell lung carcinomas, showing positive correlations with carcinoma cell proliferation and metastasis. ADAM28 cleaves insulin-like growth factor binding protein-3 (IGFBP-3) in the IGF-I/IGFBP-3 complex, leading to stimulation of cell proliferation by intact IGF-I released from the complex. ADAM28 also degrades von Willebrand factor (VWF), which induces apoptosis in human carcinoma cell lines with negligible ADAM28 expression, andthe VWF digestionby ADAM28-expressing carcinoma cells facilitates them to escape from VWF-induced apoptosis, resulting in promotion of metastasis. We have developed human antibodies against ADAM28 andshown that one of them significantly inhibits tumor growth andmetastasis using lung adenocarcinoma cells. Our data suggest that ADAM28 may be a new molecular target for therapy of the patients with ADAM28-expressing non-small cell lung carcinoma. Key words: a disintegrin and metalloproteinase 28 (ADAM28), cell proliferation, invasion, metastasis, human antibody inhibitor Introduction human cancers 2). However, development of the synthetic inhibitors of MMPs andtheir application Cancer cell proliferation andprogression are for treatment of the cancer patients failed 3). modulated by proteolytic cleavage of tissue micro- On the other hand, members of the ADAM (a environmental factors such as extracellular matrix disintegrin and metalloproteinase) gene family, (ECM), growth factors andcytokines, receptors another family belonging to the metzincin gene andcell adhesionmolecules.
    [Show full text]
  • Human ADAM12 Quantikine ELISA
    Quantikine® ELISA Human ADAM12 Immunoassay Catalog Number DAD120 For the quantitative determination of A Disintegrin And Metalloproteinase domain- containing protein 12 (ADAM12) concentrations in cell culture supernates, serum, plasma, and urine. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION .....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ...................................................................................................................................................2 LIMITATIONS OF THE PROCEDURE .................................................................................................................................2 TECHNICAL HINTS .................................................................................................................................................................2 MATERIALS PROVIDED & STORAGE CONDITIONS ...................................................................................................3 OTHER SUPPLIES REQUIRED .............................................................................................................................................3 PRECAUTIONS .........................................................................................................................................................................4
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Gene Symbol Category ACAN ECM ADAM10 ECM Remodeling-Related ADAM11 ECM Remodeling-Related ADAM12 ECM Remodeling-Related ADAM15 E
    Supplementary Material (ESI) for Integrative Biology This journal is (c) The Royal Society of Chemistry 2010 Gene symbol Category ACAN ECM ADAM10 ECM remodeling-related ADAM11 ECM remodeling-related ADAM12 ECM remodeling-related ADAM15 ECM remodeling-related ADAM17 ECM remodeling-related ADAM18 ECM remodeling-related ADAM19 ECM remodeling-related ADAM2 ECM remodeling-related ADAM20 ECM remodeling-related ADAM21 ECM remodeling-related ADAM22 ECM remodeling-related ADAM23 ECM remodeling-related ADAM28 ECM remodeling-related ADAM29 ECM remodeling-related ADAM3 ECM remodeling-related ADAM30 ECM remodeling-related ADAM5 ECM remodeling-related ADAM7 ECM remodeling-related ADAM8 ECM remodeling-related ADAM9 ECM remodeling-related ADAMTS1 ECM remodeling-related ADAMTS10 ECM remodeling-related ADAMTS12 ECM remodeling-related ADAMTS13 ECM remodeling-related ADAMTS14 ECM remodeling-related ADAMTS15 ECM remodeling-related ADAMTS16 ECM remodeling-related ADAMTS17 ECM remodeling-related ADAMTS18 ECM remodeling-related ADAMTS19 ECM remodeling-related ADAMTS2 ECM remodeling-related ADAMTS20 ECM remodeling-related ADAMTS3 ECM remodeling-related ADAMTS4 ECM remodeling-related ADAMTS5 ECM remodeling-related ADAMTS6 ECM remodeling-related ADAMTS7 ECM remodeling-related ADAMTS8 ECM remodeling-related ADAMTS9 ECM remodeling-related ADAMTSL1 ECM remodeling-related ADAMTSL2 ECM remodeling-related ADAMTSL3 ECM remodeling-related ADAMTSL4 ECM remodeling-related ADAMTSL5 ECM remodeling-related AGRIN ECM ALCAM Cell-cell adhesion ANGPT1 Soluble factors and receptors
    [Show full text]
  • Conservation and Divergence of ADAM Family Proteins in the Xenopus Genome
    Wei et al. BMC Evolutionary Biology 2010, 10:211 http://www.biomedcentral.com/1471-2148/10/211 RESEARCH ARTICLE Open Access ConservationResearch article and divergence of ADAM family proteins in the Xenopus genome Shuo Wei*1, Charles A Whittaker2, Guofeng Xu1, Lance C Bridges1,3, Anoop Shah1, Judith M White1 and Douglas W DeSimone1 Abstract Background: Members of the disintegrin metalloproteinase (ADAM) family play important roles in cellular and developmental processes through their functions as proteases and/or binding partners for other proteins. The amphibian Xenopus has long been used as a model for early vertebrate development, but genome-wide analyses for large gene families were not possible until the recent completion of the X. tropicalis genome sequence and the availability of large scale expression sequence tag (EST) databases. In this study we carried out a systematic analysis of the X. tropicalis genome and uncovered several interesting features of ADAM genes in this species. Results: Based on the X. tropicalis genome sequence and EST databases, we identified Xenopus orthologues of mammalian ADAMs and obtained full-length cDNA clones for these genes. The deduced protein sequences, synteny and exon-intron boundaries are conserved between most human and X. tropicalis orthologues. The alternative splicing patterns of certain Xenopus ADAM genes, such as adams 22 and 28, are similar to those of their mammalian orthologues. However, we were unable to identify an orthologue for ADAM7 or 8. The Xenopus orthologue of ADAM15, an active metalloproteinase in mammals, does not contain the conserved zinc-binding motif and is hence considered proteolytically inactive. We also found evidence for gain of ADAM genes in Xenopus as compared to other species.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • ADAM11 (NM 002390) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP320941 ADAM11 (NM_002390) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human ADAM metallopeptidase domain 11 (ADAM11) Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 83.2 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_002381 Locus ID: 4185 UniProt ID: O75078 RefSeq Size: 4402 Cytogenetics: 17q21.31 RefSeq ORF: 2307 Synonyms: MDC This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 ADAM11 (NM_002390) Human Recombinant Protein – TP320941 Summary: This gene encodes a member of the ADAM (a disintegrin and metalloprotease) protein family. Members of this family are membrane-anchored proteins structurally related to snake venom disintegrins, and have been implicated in a variety of biological processes involving cell-cell and cell-matrix interactions, including fertilization, muscle development, and neurogenesis. The encoded preproprotein is proteolytically processed to generate the mature protease.
    [Show full text]
  • LGI1–ADAM22–MAGUK Configures Transsynaptic Nanoalignment for Synaptic Transmission and Epilepsy Prevention
    LGI1–ADAM22–MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention Yuko Fukataa,b,1, Xiumin Chenc,d,1, Satomi Chikenb,e, Yoko Hiranoa,f, Atsushi Yamagatag, Hiroki Inahashia, Makoto Sanboh, Hiromi Sanob,e, Teppei Gotoh, Masumi Hirabayashib,h, Hans-Christian Kornaui,j, Harald Prüssi,k, Atsushi Nambub,e, Shuya Fukail, Roger A. Nicollc,d,2, and Masaki Fukataa,b,2 aDivision of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8787, Japan; bDepartment of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Aichi 444-8585, Japan; cDepartment of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158; dDepartment of Physiology, University of California, San Francisco, CA 94158; eDivision of System Neurophysiology, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan; fDepartment of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; gLaboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan; hCenter for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; iGerman Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; jNeuroscience Research Center, Cluster NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; kDepartment of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; and lDepartment of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan Contributed by Roger A. Nicoll, December 1, 2020 (sent for review October 29, 2020; reviewed by David S.
    [Show full text]
  • The Microrna Mir-3174 Suppresses the Expression of ADAM15 and Inhibits the Proliferation of Patient-Derived Bladder Cancer Cells
    OncoTargets and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH The microRNA miR-3174 Suppresses the Expression of ADAM15 and Inhibits the Proliferation of Patient-Derived Bladder Cancer Cells This article was published in the following Dove Press journal: OncoTargets and Therapy Chunhu Yu1 Background: Bladder cancer is a major urinary system cancer, and its mechanism of action Ying Wang1 regarding its progression is unclear. The goal of this study was to examine the expression of ADAM Tiejun Liu1 panel in the clinical specimens of bladder cancer and to investigate the role of miR-3174/ADAM15 Kefu Sha1 (a disintegrin and metalloprotease 15) axis in the regulation of bladder cancer cell proliferation. Zhaoxia Song1 Methods: The expression of an ADAM gene panel (including ADAM8, 9, 10, 11, 12, 15, 17, 19, 22, 23, 28, and 33), including 30 pairs of bladder tumor and non-tumor specimens, was Mingjun Zhao1 examined by Ion AmpliSeq Targeted Sequencing. A microRNA (miRNA) that could potentially Xiaolin Wang 2 target the ADAM with the highest expression level in the tumor tissue was identified using the 1Department of Urinary Surgery, Beijing online tool miRDB. Next, the interaction between the miRNA and ADAM15 was identified by Rehabilitation Hospital of Capital Medical Western blot. Finally, the proliferation of bladder cancer cells was examined using MTT University, Beijing 100144, People’s Republic of China; 2The Third District of (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) experiments (cell prolif- Airforce Special Service Sanatorium, eration examining) and subcutaneous tumor models by using nude mice.
    [Show full text]
  • Adam22 Is a Major Neuronal Receptor for Lgi4-Mediated Schwann Cell Signaling
    The Journal of Neuroscience, March 10, 2010 • 30(10):3857–3864 • 3857 Cellular/Molecular Adam22 Is a Major Neuronal Receptor for Lgi4-Mediated Schwann Cell Signaling Ekim O¨zkaynak,1* Gina Abello,1* Martine Jaegle,1 Laura van Berge,1 Diana Hamer,1 Linde Kegel,1 Siska Driegen,1 Koji Sagane,2 John R. Bermingham Jr,3 and Dies Meijer1 1Department of Cell Biology and Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands, 2Tsukuba Research Laboratories, Eisai Co. Ltd., Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan, and 3McLaughlin Research Institute, Great Falls, Montana 59405 The segregation and myelination of axons in the developing PNS, results from a complex series of cellular and molecular interactions between Schwann cells and axons. Previously we identified the Lgi4 gene (leucine-rich glioma-inactivated4) as an important regulator of myelination in the PNS, and its dysfunction results in arthrogryposis as observed in claw paw mice. Lgi4 is a secreted protein and a member of a small family of proteins that are predominantly expressed in the nervous system. Their mechanism of action is unknown but may involve binding to members of the Adam (A disintegrin and metalloprotease) family of transmembrane proteins, in particular Adam22. We found that Lgi4 and Adam22 are both expressed in Schwann cells as well as in sensory neurons and that Lgi4 binds directly to Adam22 without a requirement for additional membrane associated factors. To determine whether Lgi4-Adam22 function involves a paracrine and/or an autocrine mechanism of action we performed heterotypic Schwann cell sensory neuron cultures and cell type- specific ablation of Lgi4 and Adam22 in mice.
    [Show full text]
  • The Expression of ADAM12 (Meltrin Α) in Human Giant Cell Tumours of Bone B L Tian, J M Wen, M Zhang, D Xie,Rbxu,Cjluo
    394 SHORT REPORT Mol Path: first published as 10.1136/mp.55.6.394 on 1 December 2002. Downloaded from The expression of ADAM12 (meltrin α) in human giant cell tumours of bone B L Tian, J M Wen, M Zhang, D Xie,RBXu,CJLuo ............................................................................................................................. J Clin Pathol: Mol Pathol 2002;55:394–397 lian spermatocytes. They are thought to mediate sperm–egg α Aims: To examine the expression of ADAM12 (meltrin ), binding and fusion by interacting with integrin α6β1onthe a member of the disintegrin and metalloprotease (ADAM) egg surface,2 16–18 although human fertilin α is thought to be family, in human giant cell tumours of the bone, skeletal non-functional.19 20 muscle tissue from human embryos, and human adult skel- In addition to sperm–egg binding and fusion in fertilisa- etal muscle tissue. tion, the process of cell fusion occurs in myotube formation, Methods: ADAM12 mRNA was detected by reverse tran- multinucleated giant cell formation, and placenta syncytiotro- scription polymerase chain reaction and in situ hybridisa- phoblast formation. All these processes of cell fusion appear to tion. be similar. Yagami-Hiromasa et al identified meltrin α Results: ADAM12 mRNA was detected in 14 of the 20 (ADAM12) when they searched for homologues of fertilin in a giant cell tumours of bone and in three of the six tumour mouse myogenic cell line in 1995.21 Gilpin et al identified cell cultures. The expression of ADAM12 in cells cultured human ADAM12 in 1998.22 The human ADAM12 gene is from the tumour was linked to the presence of located at 10q26.3 and has typical ADAM family structure multinucleated giant cells.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]