Trs313 Web.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Trs313 Web.Pdf MANUAL ON LABORATORY TESTING FOR URANIUM ORE PROCESSING The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HAITI PARAGUAY ALBANIA HOLY SEE PERU ALGERIA HUNGARY PHILIPPINES ARGENTINA ICELAND POLAND AUSTRALIA INDIA PORTUGAL AUSTRIA INDONESIA QATAR BANGLADESH IRAN, ISLAMIC REPUBLIC OF ROMANIA BELGIUM IRAQ SAUDI ARABIA BOLIVIA IRELAND SENEGAL BRAZIL ISRAEL SIERRA LEONE BULGARIA ITALY SINGAPORE BYELORUSSIAN SOVIET JAMAICA SOUTH AFRICA SOCIALIST REPUBLIC JAPAN SPAIN CAMEROON JORDAN SRI LANKA CANADA KENYA SUDAN CHILE KOREA, REPUBLIC OF SWEDEN CHINA KUWAIT SWITZERLAND COLOMBIA LEBANON SYRIAN ARAB REPUBLIC COSTA RICA LIBERIA THAILAND COTE DTVOIRE LIBYAN ARAB JAMAHIRIYA TUNISIA CUBA LIECHTENSTEIN TURKEY CYPRUS LUXEMBOURG UGANDA CZECHOSLOVAKIA MADAGASCAR UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA MALAYSIA REPUBLIC DEMOCRATIC PEOPLE'S MALI UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MAURITIUS REPUBLICS DENMARK MEXICO UNITED ARAB EMIRATES DOMINICAN REPUBLIC MONACO UNITED KINGDOM OF GREAT ECUADOR MONGOLIA BRITAIN AND NORTHERN EGYPT MOROCCO IRELAND EL SALVADOR MYANMAR UNITED REPUBLIC OF ETHIOPIA NAMIBIA TANZANIA FINLAND NETHERLANDS UNITED STATES OF AMERICA FRANCE NEW ZEALAND URUGUAY GABON NICARAGUA VENEZUELA GERMAN DEMOCRATIC REPUBLIC NIGER VIET NAM GERMANY, FEDERAL REPUBLIC OF NIGERIA YUGOSLAVIA GHANA NORWAY ZAIRE GREECE PAKISTAN ZAMBIA GUATEMALA PANAMA ZIMBABWE The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Head- quarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1990 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria June 1990 TECHNICAL REPORTS SERIES No.313 MANUAL ON LABORATORY TESTING FOR URANIUM ORE PROCESSING INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1990 MANUAL ON LABORATORY TESTING FOR URANIUM ORE PROCESSING IAEA, VIENNA, 1990 STI/DOC/10/313 ISBN 92-0-145190-3 ISSN 0074-1914 FOREWORD Laboratory testing of uranium ores is an essential step in the economic evalua- tion of uranium occurrences and in the development of a project for the production of uranium concentrates. Although these tests represent only a small proportion of the total cost of a project, their proper planning, execution and interpretation are of crucial importance. The main purposes of this manual are to discuss the objectives of metallurgical laboratory ore testing, to show the specific role of these tests in the development of a project, and to provide practical instructions for performing the tests and for inter- preting their results. Guidelines on the design of a metallurgical laboratory, on the equipment required to perform the tests and on laboratory safety are also given. This manual is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Manage- ment. A report on the Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores (Technical Reports Series No. 196, 1980) and an instruction manual on Methods for the Estimation of Uranium Ore Reserves (No. 255, 1985) have already been published. The IAEA wishes to thank the consultants who took part in the preparation of this report for their valuable contributions: E.G. Joe (Canada Centre for Mineral and Energy Technology), T.K.S. Murthy (Bhabha Atomic Research Centre, India), D.C. Seidel (Bureau of Mines, United States of America) and A. Stergarsek (Jozef Stefan Institute, Yugoslavia). A significant portion of the section on acid leaching was adapted from a paper by R. Ring and D.M'. Levins (Australia). Thanks are also due to the consultants' Member States and organizations for their generous support in providing experts to assist in this work. The IAEA officer responsible for this work was S. Ajuria of the Division of Nuclear Fuel Cycle and Waste Management, who contributed much original material to the manual. EDITORIAL NOTE The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS 1. INTRODUCTION 1 1.1. Summary review of uranium ore processing technology 1 1.2. Development of a metallurgical project 3 1.3. Objectives of laboratory testing of uranium ores 8 1.4. Objectives of pilot plant testing 9 2. SAMPLING AND CHARACTERIZATION 10 2.1. Sample selection and compositing 10 2.2. Sample identification 11 2.3. Sample preparation 12 2.3.1. Coning and quartering 13 2.3.2. Splitting 15 2.3.3. Sampling test products 19 2.4. Mineralogical characterization 20 2.5. Instrumental and chemical analysis 25 3. SIZE REDUCTION 26 3.1. Grinding tests 26 3.2. Power consumption 27 3.3. Screening and sizing 28 3.3.1. Preparations for screening 29 3.3.2. Dry screening 31 3.3.3. Wet screening 31 3.4. Size analysis 34 4. LEACHING 35 4.1. Introduction 35 4.2. Sample requirements 35 4.3. Leaching variables 36 4.3.1. Grind size 36 4.3.2. Slurry density 36 4.3.3. Degree of agitation 37 4.3.4. Acid concentration 37 4.3.5. Oxidation potential 38 4.3.6. Temperature 39 4.3.7. Leaching time 40 4.4. Experimental techniques for acid leach tests 42 4.5. Alkaline leaching 45 4.6. Preliminary testing 46 4.7. Alkaline test procedure 46 5. SOLID-LIQUID SEPARATION AND WASHING 48 5.1. Thickening 49 5.1.1. Conventional thickeners 49 5.1.2. High rate thickeners 50 5.2. Filtration 50 5.2.1. Introduction 50 5.2.2. Filtration parameters 51 5.2.2.1. Type and amount of flocculant 5.2.2.2. Cake formation rate 5.2.2.3. Cake moisture rate 5.2.2.4. Cake washing rate 5.2.2.5. Cake thickness 5.2.2.6. Wash solution consumption and washing efficiency 5.2.2.7. Type of filter cloth 5.2.3. Filtration test procedures 54 5.2.3.1. Slurry samples 5.2.3.2. Apparatus 5.2.3.3. Flocculation tests 5.2.3.4. Drum filtration 5.2.3.5. Belt filtration 5.2.3.6. Test data recording 6. URANIUM RECOVERY FROM LEACH SOLUTIONS 61 6.1. Solution characterization 62 6.2. Direct precipitation 62 6.3. Ion exchange 63 6.3.1. Characteristics of resins used for uranium recovery 64 6.3.2. Factors affecting uranium adsorption capacity 64 6.4. Solvent extraction 67 6.4.1. Uranium extraction by amines 67 6.4.2. Mechanism of extraction and stripping 68 7. URANIUM RECOVERY BY ION EXCHANGE 69 7.1. Aims of laboratory tests 69 7.2. Changes in effluent composition in the adsorption-elution cycle.. 71 7.3. Changes in resin composition in the adsorption-elution cycle .... 73 7.4. Ion exchange tests with a single column 74 7.4.1. Resin loading tests 74 7.4.2. Resin poisoning tests 78 7.5. Multicolumn ion exchange operation 78 7.5.1. Description of set-up 80 7.5.2. Sequence of three column operation 83 8. URANIUM RECOVERY BY SOLVENT EXTRACTION 85 8.1. Laboratory tests 85 8.1.1. Scope of tests 85 8.1.2. Preparation of solvent and determination of loading capacity 85 8.1.2.1. Determination of maximum loading capacity 8.1.2.2. Determination of effective maximum loading capacity 8.1.3. Rate of extraction 86 8.1.4. Extraction isotherm 87 8.1.5. Stage calculations (McCabe-Thiele diagram) 89 8.2. Batch counter-current extraction tests 91 8.2.1. Extraction 91 8.2.2. Stripping of uranium from loaded solvent 94 8.3. Continuous extraction tests 94 8.3.1. Determination of coalescence rate and settler area 97 8.3.1.1. Static method 8.3.1.2. Dynamic method 8.3.2. Characterization of dispersion 97 8.3.3. Solvent loss 100 9. PRECIPITATION 100 9.1. Solution characterization 100 9.2. Precipitation from acidic solutions 102 9.2.1. Polyuranates 102 9.2.2. Uranium peroxide 102 9.2.3. Other methods 104 9.3. Precipitation from carbonate solutions 104 10. ALTERNATIVE TECHNIQUES 105 10.1. Physical beneficiation 105 10.1.1. Gravity concentration 106 10.1.2. Flotation 107 10.1.3. Radiometric sorting 107 10.2. Roasting 108 10.3. Static bed leaching 110 10.4. Bacterially assisted leaching Ill 10.5. Acid pugging 112 10.6. Acidic pressure leaching 113 11. FLOW SHEETS AND MATERIAL BALANCES 114 11.1. Flow sheets 114 11.2. Material balances 117 12. REPORT WRITING 120 12.1. Initial research 121 12.2. Laboratory notebooks and other supporting documentation 121 12.3. Contents of test report 121 APPENDIX I: LABORATORY SAFETY 125 1.1. General safety precautions 125 1.2. Radiological safety 125 1.3. Safety rules 126 APPENDIX II: GUIDELINES FOR LABORATORY DESIGN 127 APPENDIX III: SUGGESTED LABORATORY EQUIPMENT AND SUPPLIES 130 III.l. Equipment for specific operations 130 HI.2. Glassware 132 111.3. Instrumentation 134 111.4. Safety equipment 134 111.5. Additional equipment 134 111.6. Reagents 134 111.7. Assorted supplies 135 REFERENCES 137 BIBLIOGRAPHY 138 CONTRIBUTORS TO DRAFTING AND REVIEW 147 IAEA PUBLICATIONS ON URANIUM ORE PROCESSING 149 1. INTRODUCTION Laboratory testing of ores is an important step in the development of a metal- lurgical project. Its main purpose is to study the behaviour of a particular ore in selected process environments and to provide information needed, first, to make a preliminary assessment of the economic feasibility of a proposed project and later, if the project is viable, as the basis for further development of a suitable metallurgical process and for the design of an industrial plant.
Recommended publications
  • 1 a Raman Spectroscopic Study of the Uranyl Sulphate Mineral Johannite
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queensland University of Technology ePrints Archive This is the authors’ version of a paper that was later published as: Frost, Ray and Erickson, Kristy and Cejka, Jiri and Reddy, Jagannadha (2005) A Raman spectroscopic study of the uranyl sulphate mineral johannite . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61(11):2702-2707. Copyright 2005 Elsevier. A Raman spectroscopic study of the uranyl sulphate mineral johannite Ray L. Frost•, Kristy L. Erickson, Jiří Čejka +) and B. Jagannadha Reddy Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. +) National Museum, Václavské náměstí 68, CZ-115 79 Praha 1, Czech Republic. Abstract Raman spectroscopy at 298 and 77 K has been used to study the secondary uranyl mineral johannite of formula (Cu(UO2)2(SO4)2(OH)2.8H2O). Four Raman bands are observed at 3593, 3523, 3387 and 3234 cm-1 and four infrared bands at 3589, 3518, 3389 and 3205 cm- 1. The first two bands are assigned to OH- units (hydroxyls) and the second two bands to water units. Estimations of the hydrogen bond distances for these four bands are 3.35, 2.92, -1 2- 2.79 and 2.70 Å. A sharp intense band at 1042 cm is attributed to the (SO4) symmetric -1 2- stretching vibration and the three Raman bands at 1147, 1100 and 1090 cm to the (SO4) -1 antisymmetric stretching vibrations. The ν2 bending modes were at 469, 425 and 388 cm at 2- 77 K confirming the reduction in symmetry of the (SO4) units.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Uraninite Alteration in an Oxidizing Environment and Its Relevance to the Disposal of Spent Nuclear Fuel
    TECHNICAL REPORT 91-15 Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 original contains color illustrations URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author (s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB. URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch Rodney Ewing Department of Geology University of New Mexico Submitted to Svensk Kämbränslehantering AB (SKB) December 21,1990 ABSTRACT Uraninite is a natural analogue for spent nuclear fuel because of similarities in structure (both are fluorite structure types) and chemistry (both are nominally UOJ. Effective assessment of the long-term behavior of spent fuel in a geologic repository requires a knowledge of the corrosion products produced in that environment.
    [Show full text]
  • Metallurgical Laboratory (HWMF)
    WSRC-TR-94-0615 Unclassified METALLURGICAL LABORATORY HAZARDOUS WASTE MANAGEMENT FACILITY GROUNDWATER MONITORING REPORT (U) FOURTH QUARTER 1994 AND 1994 SUMMARY Publication Date: March 1995 Authorized Derivative Classifier and Reviewing Official: 3-2?-?S UNCLASSIFIED Does Not Contain Unclassified Controlled Nuclear Information Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U.S. Department of Energy under Control Contract No. DE-AC09-89SR18035 WSRC-TR-94-0615 Unclassified METALLURGICAL LABORATORY HAZARDOUS WASTE MANAGEMENT FACILITY GROUNDWATER MONITORING REPORT (U) FOURTH QUARTER 1994 AND 1994 SUMMARY Publication Date: March 1995 Authorized Derivative Classifier and Reviewing Official: UNCLASSIFIED Does Not Contain Unclassified Controlled Nuclear Information Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808 DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED'&c Prepared for the U.S. Department of Energy under Control Contract No. DE-AC09-89SR18035 MASTER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or .assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States * Government or any agency thereof.
    [Show full text]
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]
  • Enrico Fermi: Genius
    ANNIVERSARY Enrico Fermi: genius This year marks the centenary of the birth of Enrico Fermi, one of the giants of 20th- • century science, and one of the last physicists to be both an accomplished experimentalist and an influential theorist. Here, Gianni Battimelli of the University of Rome "La Sapienza" traces the life of a genius. Enrico Fermi was born on 29 September 1901 in Rome to a family with no scientific traditions. His passion for natural sciences, and in particular for physics, was stimulated and guided in his school years by an engineer and family friend, Adolph Amidei, who recognized Fermi's exceptional intellectual abilities and suggested admission to Pisa's Scuola Normale Superiore. After finishing high-school studies in Rome, in 1918 Fermi progressed to the prestigious Pisa Institute, after producing for the admission exam an essay on the characteristics of the propagation of sound, the authenticity of which the commissioners initially refused to believe. Studies at Pisa did not pose any particular difficulties for the young Fermi, despite his having to be largely self-taught using mate­ rial in foreign languages because nothing existed at the time in Fermi's group discovered the Italian on the new physics emerging around relativity and quantum radioactivity induced by theory. In those years in Italy, these new theories were absent from university teaching, and only mathematicians likeTullio Levi-Civita neutrons, instead of the had the knowledge and insight to see their implications. alpha particles used in the Working alone, between 1919 and 1922, Fermi built up a solid competence in relativity, statistical mechanics and the applications Paris experiments.
    [Show full text]
  • Plášilite Na(UO2)(SO4)(OH)·2H2O
    Plášilite Na(UO2)(SO4)(OH)·2H2O Crystal Data: Monoclinic. Point Group: 2/m. As thin bladed crystals exhibiting {100}, {010}, and {011}, elongated on [001], flattened on {100}, to ~ 0.5 mm. Twinning: Polysynthetic on {100}. Physical Properties: Cleavage: Perfect on {010} and {001}. Fracture: Even. Tenacity: Brittle. Hardness = ~ 2-3 D(meas.) = n.d. D(calc.) = 3.726 Soluble in water. Optical Properties: Transparent. Color: Greenish yellow. Streak: White. Luster: Vitreous. Bluish white fluorescence under SW and LW UV. Optical Class: Biaxial (+). α = 1.556 β = 1.581 γ = 1.608 2V(meas.) = 88(1)° 2V(calc.) = 89° Orientation: X = b, Y ^ c = 4° (in obtuse β). Dispersion: Moderate, r < v. Pleochroism: X = nearly colorless; Y = very pale yellow; Z = pale yellow. Absorption: X < Y < Z. Cell Data: Space Group: P21/c. a = 8.7122(6) b = 13.8368(4) c = 7.0465(2) β = 112.126(8)° Z = 4 X-ray Powder Pattern: Blue Lizard mine, White Canyon District, San Juan County, Utah, USA. 6.90 (100), 5.85 (99), 3.492 (82), 4.024 (57), 3.136 (40), 2.618 (34), 1.921 (30) Chemistry: (1) (2) Na2O 6.61 7.01 UO3 65.15 64.70 SO3 18.33 18.11 H2O [10.24] 10.19 Total 100.33 100.00 (1) Blue Lizard mine, San Juan County, Utah, USA; average of 9 EDS analyses supplemented by Raman spectroscopy, H2O calculated; corresponds to Na0.94(UO2)(S1.01O4)(OH)(H2O)2. (2) Na(UO2)(SO4)(OH)·2H2O. Occurrence: Of low-temperature secondary origin related to the post-mining oxidation of uraninite, pyrite, chalcopyrite, bornite, and covellite disseminated in lenses of organic matter in sandstone.
    [Show full text]
  • Thn Auertcan M Rlueralocrsr
    THn AUERTcANM rluERALocrsr JOURNAL OF TIIE MINDRALOGICAL SOCIETY OF ANIERICA vbl.41 JULY-AUGUST, 1956 Nos. 7 and 8 MTNERAL COMPOSTTTON OF G'UMMTTE*f Crrllonl FnoNonr, H artard Llniaersity,Cambrid,ge, M ass., and. U. S. GeologicalSurwy, Washington, D.C. ABSTRACT The name gummite has been wideiy used for more than 100 years as a generic term to designate fine-grained yellow to orange-red alteration products of uraninite whose true identity is unknown. A study of about 100 specimens of gummite from world-wide localities has been made by r-ray, optical, and chemical methods. rt proved possible to identify almost all of the specimens with already known uranium minerals. Gummite typicalty occurs as an alteration product of uraninite crystals in pegmatite. Such specimensshow a characteristic sequenceof alteration products: (1) A central core of black or brownish-black uraninite. (2) A surrounding zone, yellow to orange-red, composed chiefly of hydrated lead uranyl oxides. This zone constitutes the traditional gummite. It is principally composed of fourmarierite, vandendriesscheite and two unidentified phases (Mineral -4 and Mineral c). Less common constituents are clarkeite, becquerelite, curite, and schoepite. (3) An outer silicate zone. This usually is dense with a greenish-yellow color and is composed of uranophane or beta-uranophane; it is sometimes soft and earthy with a straw-yellow to pale-brown color and is then usually composed of kasolite or an unidenti- fied phase (Minerat B). Soddyite and sklodowskite occur rarely. There are minor variations in the above general sequence. rt some specimens the core may be orange-red gummite without residual uraninite or the original uraninite crystal may be wholly converted to silicates.
    [Show full text]
  • Physical and Chemical Interactions Affecting U and V Transport from Mine Wastes Sumant Avasarala
    University of New Mexico UNM Digital Repository Civil Engineering ETDs Engineering ETDs Spring 3-2-2018 Physical and Chemical Interactions Affecting U and V Transport from Mine Wastes Sumant Avasarala Follow this and additional works at: https://digitalrepository.unm.edu/ce_etds Part of the Environmental Engineering Commons Recommended Citation Avasarala, Sumant. "Physical and Chemical Interactions Affecting U and V Transport from Mine Wastes." (2018). https://digitalrepository.unm.edu/ce_etds/205 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Civil Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Sumant Avasarala Candidate Civil Engineering Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Jose M. Cerrato , Chairperson Dr. Ricardo Gonzalez Pinzon Dr. Bruce Thomson Dr. Adrian Brearley Dr. Mehdi Ali i Sumant Avasarala B.S., Chemical Engineering, Anna University 2009, India M.S., Chemical Engineering, Wayne State University, 2012, U.S. DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Engineering The University of New Mexico Albuquerque, New Mexico May 2018 ii Dedication I would like to dedicate my PhD to my parents (Seshargiri Rao and Radha), my brother (Ashwin Avsasarala), my friends, and my grandfathers (V.V. Rao and Late Chalapathi Rao) without whose blessings, prayers, and support this journey would have never been possible. Special dedication to my best friend, Dr. Sriraam Ramanathan Chandrasekaran, who guided me and supported me through my rough times.
    [Show full text]
  • Argonne National Laboratory Was Founded As a Chemistry, Materials
    Physical Sciences and Engineering (PSE) Associate Laboratory Director Requisition 403294 Argonne National Laboratory Lemont, Illinois (Suburb of Chicago) Argonne National Laboratory was founded as a chemistry, materials and nuclear engineering laboratory in 1946, as the successor to the Manhattan Project’s Metallurgical Laboratory. Since then, as part of the Department of Energy (DOE) network of national laboratories, Argonne has built on its original strengths and expanded its mission in response to national needs. Today, Argonne serves America as a leading science and energy laboratory distinguished by the breadth of its research and development (R&D) capabilities combined with a unique portfolio of experimental and computational user facilities. Located just outside Chicago, Argonne has been managed since its founding by The University of Chicago (UChicago), one of the world’s preeminent research universities. Argonne’s workforce of over 3200 includes over 1500 scientists and engineers. The Laboratory operates five world-renowned scientific user facilities, which together support nearly 8,000 researchers annually. Argonne is currently inviting applications for the position of Associate Laboratory Director (ALD) of the Physical Sciences and Engineering (PSE) Directorate, which employs approximately 700 people including scientists, technical and administrative staff, postdocs, fellows, students, visiting scholars and joint appointments and has an annual budget in excess of $200 million. The directorate’s R&D programs have produced a wide range of groundbreaking, internationally recognized discoveries and inventions throughout Argonne’s history. The scope of PSE’s research encompasses materials science, condensed matter physics, chemistry and chemical engineering, and nuclear and particle physics. This work is carried out through five discipline-based operating divisions and is funded primarily by DOE’s Office of Science and Office of Energy Efficiency and Renewable Energy.
    [Show full text]
  • Vol. 6 No. 14 ... Enrico Fermi, Distinguished Physicist, Whose Name Will Head Illinois Research Laboratory ••• ... H. Ande
    Vol. 6 No. 14 April11, 1974 The National Accelerator Laboratory will become the Fermi National Accelerator Laboratory at a dedication cere­ mony to be held at the Laboratory on Saturday, May 11, 1974. The plan to change the name of the Laboratory was announced on April 29, 1969 by Glenn T. Seaborg, then chair­ man of the U. S. Atomic Energy Commission. It was understood then that the dedication and the changing of the name would take place when construction was complete. May of 1974 will find the Laboratory close to completion and running strongly in all areas. In announcing the AEC's plans, Seaborg said in 1969: ... Enrico Fermi, distinguished "It is particularly fitting that we honor Dr. Fermi in this physicist, whose name will head manner, for in so doing we further acknowledge his many con­ Illinois research laboratory ••• tributions to the progress of nuclear science, particularly his work on nuclear processes. Enrico Fermi was a physicist of great renown who contributed in a most significant way to the defense and welfare of his adopted land and to the enhancement of its intellectual well-being. His greatest achievement, the first sustained nuclear chain reaction, took place in a small laboratory in Chicago. It seems sin­ gularly appropriate, therefore, that the Federal Government recognize the memory of a man who was at the forefront of science in his day by naming in his honor a laboratory near Chicago -- a laboratory which will have a major internationa: impact on our understanding of the basic structure of matter." ... H. Anderson, student and long-time Enrico Fermi was born in Rome, Italy, on September 29, colleague of Fermi, on visit to NAL 1901.
    [Show full text]
  • Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    SpColl £2' 1 Energy I TEl 334 Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus ~ By A. D. Weeks and M. E. Thompson ~ I"\ ~ ~ Trace Elements Investigations Report 334 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25, D. C. AUG 12 1953 Dr. PhilUp L. Merritt, Assistant Director Division of Ra1'r Materials U. S. AtoTILic Energy Commission. P. 0. Box 30, Ansonia Station New· York 23, Nei< York Dear Phil~ Transmitted herewith are six copies oi' TEI-334, "Identification and occurrence oi' uranium and vanadium minerals i'rom the Colorado Plateaus," by A , D. Weeks and M. E. Thompson, April 1953 • We are asking !41'. Hosted to approve our plan to publish this re:por t as a C.i.rcular .. Sincerely yours, Ak~f777.~ W. H. ~radley Chief' Geologist UNCLASSIFIED Geology and Mineralogy This document consists or 69 pages. Series A. UNITED STATES DEPARTMENT OF TEE INTERIOR GEOLOGICAL SURVEY IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM TEE COLORADO PLATEAUS* By A• D. Weeks and M. E. Thompson April 1953 Trace Elements Investigations Report 334 This preliminary report is distributed without editorial and technical review for conformity with ofricial standards and nomenclature. It is not for public inspection or guotation. *This report concerns work done on behalf of the Division of Raw Materials of the u. s. Atomic Energy Commission 2 USGS GEOLOGY AllU MINEFALOGY Distribution (Series A) No. of copies American Cyanamid Company, Winchester 1 Argulllle National La:boratory ., ., .......
    [Show full text]