FEMALE REPRODUCTIVE SYSTEM Objectives by the End If This Lesson You Should Be Able To: 1

Total Page:16

File Type:pdf, Size:1020Kb

FEMALE REPRODUCTIVE SYSTEM Objectives by the End If This Lesson You Should Be Able To: 1 FEMALE REPRODUCTIVE SYSTEM Objectives By the end if this lesson you should be able to: 1. Describe the role of the reproductive system 2. Describe the structural organization of the female reproductive system 3. Describe the gross anatomy of the ovaries, uterus, fallopian tubes, vagina and the perineum Role of the Female Reproductive System The female reproductive system produces gametes that may unite with a male gamete to form the first cell of the offspring. Provides protection and nutrition to the developing offspring. Structural Plan of the Female Reproductive System Reproductive organs can be classified as essential organs and accessory organs, depending on how directly they are involved in producing offspring. The essential organs of reproduction in women, the gonads, are the paired ovaries. The female gametes, or ova, are produced by the ovaries. Cont,d The accessory organs of reproduction in women consist of the following structures: • Uterine tubes, uterus, and vagina. Along with the ovaries, these organs are sometimes collectively called the “internal genitalia.” • The vulva, or external reproductive organs. These organs are often called the “external genitalia.” • Additional sex glands, including the mammary glands. OVARIES Location of the ovaries The ovaries are nodular glands located on each side of the uterus, below and behind the uterine tubes, weigh approximately 3 g. Microscopic structure of the ovaries Ovary is covered by squamous-shaped epithelial cells called the germinal epithelium. Ovarian follicles contain the developing female sex Cells. Ovum — an oocyte released from the ovary. Microscopic Structure of the Ovaries Ovary consists of two major layers of tissue—an outer cortex and inner medulla. Below the epithelial cells is a tough gray-white connective tissue layer called the tunica albuginea that covers the ovarian cortex. Embedded in the connective tissue matrix of the cortex are thousands of microscopic structures called ovarian follicles which contain the immature female sex cells, or oocytes, and their surrounding cells. The ovarian medulla contains supportive connective tissue cells, blood vessels, nerves, and lymphatics. Functions of the ovaries 1. Ovaries produce ova — the female gametes 2. Oogenesis — process that results in formation of a mature egg 3. The ovaries are endocrine organs that secrete the female sex hormones (estrogens and progesterone) UTERUS Structure of the uterus The uterus is pear shaped and has two main parts—the cervix and the body. The wall of the uterus is composed of three layers—the inner endometrium, the middle myometrium, and the outer incomplete layer of parietal peritoneum. Cavities of the uterus—the cavities are small because of the thickness of the uterine walls. The body cavity's apex constitutes the internal os and opens into the cervical canal, which is constricted at its lower end and forms the external os that opens into the vagina. The blood to the uterus is supplied by uterine arteries. Location of the uterus 1. The uterus is located in the pelvic cavity between the urinary bladder and the rectum. 2. The position of the uterus is altered by age, pregnancy, and distention of related pelvic viscera. 3. The uterus descends, between birth and puberty, from the lower abdomen to the true pelvis. 4. The uterus begins to decrease in size at menopause. Position of the uterus 1.Body lies flexed over the bladder. 2.Cervix points downward and backward, joining the vagina at a right angle. 3. Several ligaments hold the uterus in place but allow some movement. Functions of the uterus 1.Permits sperm to ascend toward the uterine tubes. 2. If conception occurs, an offspring develops in the uterus a. The embryo is supplied with nutrients by endometrial glands until the production of the placenta. b. The placenta is an organ that permits the exchange of materials between the mother's blood and the fetal blood but keeps the two circulations separate. Cont,d c. Myometrial contractions occur during labor and help push the offspring out of the mother's body. 3. If conception does not occur, outer layers of endometrium are shed during menstruation a. Menstruation is a cyclical event that allows the endometrium to renew itself. UTERINE TUBES Uterine tubes are also called fallopian tubes, or oviducts Uterine tubes are attached to the uterus at its upper outer angles and extend upward and outward toward the sides of the pelvis. Structure of the uterine tubes 1. Uterine tubes consist of mucous, smooth muscle, and serous lining. 2. Mucosal lining is directly continuous with the peritoneum lining of the pelvic cavity. a. Tubal mucosa is continuous with that of the vagina and uterus, which means it may become infected with organisms introduced into the vagina. 3. Each uterine tube has three divisions: isthmus, ampulla, and Infundibulum. Function of the uterine tubes Uterine tubes serve as transport channels for ova. The site of fertilization at the ampulla. VAGINA The vagina is a tubular organ located between the rectum, urethra, and bladder Structure of the vagina 1. The vagina is a collapsible tube capable of distention, composed of smooth muscle, and lined with mucous membrane arranged in rugae. 2. The anterior wall is shorter than the posterior wall because the cervix protrudes into its uppermost portion. 3. Hymen—a mucous membrane that typically forms a border around the vagina. It is normally incomplete to allow for passage of menstrual flow. Functions of the vagina . The lining of the vagina lubricates and stimulates the penis during sexual intercourse and acts as a receptacle for semen. The vagina transports tissue and blood shed during menstruation to the exterior. Provides an elastic passageway through which the baby passes during childbirth. VULVA The vulva consists of the female external genitalia: Mon pubis, labia majora, labia minora, clitoris, urinary meatus, vaginal orifice, and greater vestibular glands. Functions of the vulva 1.Mon pubis, Labia protect the clitoris and Vestibular glands. 2.The clitoris contains sensory receptors that send information to the sexual response area of the brain. 3.The vaginal orifice is the boundary between the internal and external genitalia. BREASTS Location and size 1. The breasts lie over the pectoral muscles. 2. Estrogens and progesterone control breast development. 3. Breast size is determined by the amount of fat around glandular tissue. Function of the breasts 1. Lactation Mechanism of lactation a. The ovarian hormones make the breasts structurally ready to produce milk. b. Shedding of the placenta results in a decrease of estrogens and thus stimulates Prolactin. c. Prolactin stimulates production of milk and oxytocin stimulates the release of milk. FEMALE REPRODUCTIVE CYCLES The female reproductive system has many cyclical changes that start with the beginning of menses. 1. Ovarian cycle 2. Menstrual cycle (endometrial cycle) 3. Myometrial phase 4. Gonadotropic cycle Menstrual cycle Cont,d • It is commonly divided into three phases: the follicular phase, ovulation, and the luteal phase; although some sources use a different set of phases: menstruation, proliferative phase, and secretory phase. Menstrual cycle. • Stimulated by gradually increasing amounts of estrogen in the follicular phase, discharges of blood (menses) slow then stop, and the lining of the uterus thickens. Follicles in the ovary begin developing under the influence of a complex interplay of hormones. Approximately mid-cycle, 24–36 hours after the Luteinizing Hormone (LH) surges, the dominant follicle releases an ovum, or egg in an event called ovulation. After ovulation, the egg only lives for 24 hours or less without fertilization while the remains of the dominant follicle in the ovary become a corpus luteum; this body has a primary function of producing large amounts of progesterone. Cont,d • Under the influence of progesterone, the endometrium (uterine lining) changes to prepare for potential implantation of an embryo to establish a pregnancy. If implantation does not occur within approximately two weeks, the corpus luteum will involute, causing sharp drops in levels of both progesterone and estrogen. These hormone drops cause the uterus to shed its lining and egg in a process termed menstruation. • In the menstrual cycle, changes occur in the female reproductive system as well as other systems (which lead to breast tenderness or mood changes, for example). Menstruation • Menstruation is also called menstrual bleeding, menses, catamenia or a period. • High circulating levels of progesterone and estrogen prevent maturation and the release of another ovum should the pregnancy occur. • Eumenorrhea denotes normal, regular menstruation that lasts for a few days (usually 3 to 5 days, but anywhere from 2 to 7 days is considered normal). The average blood loss during menstruation is 35 milliliters with 10–80 ml considered normal Follicular phase • This phase is also called the proliferative phase. • Through the influence of a rise in follicle stimulating hormone (FSH) during the first days of the cycle, a few ovarian follicles are stimulated. • As they mature, the follicles secrete increasing amounts of estrogen. The estrogens initiate the formation of a new layer of endometrium in the uterus, identified as the proliferative endometrium. The estrogen also stimulates crypts in the cervix to produce fertile cervical mucus, which may be noticed by women practicing fertility awareness. Ovulation • During the follicular phase, estrogen suppresses production of luteinizing hormone (LH) from the anterior pituitary gland. When the egg has nearly matured, levels of estrogen reach a threshold above which they stimulate production of LH. In the average cycle this LH surge starts around cycle day 12 and may last 48 hours. • The release of LH matures the egg and weakens the wall of the follicle in the ovary, causing the fully developed follicle to release its secondary oocyte. The secondary oocyte promptly matures into an ootid and then becomes a mature ovum. • After being released from the ovary and into the peritoneal space, the egg is swept into the fallopian tube by the fimbria.
Recommended publications
  • GROSS and HISTOMORPHOLOGY of the OVARY of BLACK BENGAL GOAT (Capra Hircus)
    VOLUME 7 NO. 1 JANUARY 2016 • pages 37-42 MALAYSIAN JOURNAL OF VETERINARY RESEARCH RE# MJVR – 0006-2015 GROSS AND HISTOMORPHOLOGY OF THE OVARY OF BLACK BENGAL GOAT (Capra hircus) HAQUE Z.1*, HAQUE A.2, PARVEZ M.N.H.3 AND QUASEM M.A.1 1 Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh 2 Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 3 Department of Anatomy and Histology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Basherhat, Dinajpur * Corresponding author: [email protected] ABSTRACT. Ovary plays a vital 130.07 ± 12.53 µm and the oocyte diameter role in the reproductive biology and was 109.8 ± 5.75 µm. These results will be biotechnology of female animals. In this helpful to manipulate ovarian functions in study, both the right and left ovaries of small ruminants. the Black Bengal goat were collected from Keywords: Morphometry, ovarian the slaughter houses of different Thanas follicles, cortex, medulla, oocyte. in the Mymensingh district. For each of the specimens, gross parameters such as INTRODUCTION weight, length and width were recorded. Then they were processed and stained with Black Bengal goat is the national pride of H&E for histomorphometry. This study Bangladesh. The most promising prospect revealed that the right ovary (0.53 ± 0.02 of Black Bengal goat in Bangladesh is g) was heavier than the left (0.52 ± 0.02 g). that this dwarf breed is a prolific breed, The length of the right ovary (1.26 ± 0.04 requiring only a small area to breed and cm) was lower than the left (1.28 ± 0.02 with the advantage of their selective cm) but the width of the right (0.94 ± 0.02 feeding habit with a broader feed range.
    [Show full text]
  • Morphometric and Gene Expression Analyses of Stromal Expansion During Development of the Bovine Fetal Ovary', Reproduction, Fertility and Development
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Edinburgh Research Explorer Edinburgh Research Explorer Morphometric and gene expression analyses of stromal expansion during development of the bovine fetal ovary Citation for published version: Hartanti, MD, Hummitzsch, K, Irving-rodgers, HF, Bonner, WM, Copping, KJ, Anderson, RA, Mcmillen, IC, Perry, VEA & Rodgers, RJ 2018, 'Morphometric and gene expression analyses of stromal expansion during development of the bovine fetal ovary', Reproduction, Fertility and Development. https://doi.org/10.1071/RD18218 Digital Object Identifier (DOI): 10.1071/RD18218 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Reproduction, Fertility and Development General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 11. May. 2020 CSIRO PUBLISHING Reproduction, Fertility and Development https://doi.org/10.1071/RD18218 Morphometric and gene expression analyses of stromal expansion during development of the bovine fetal ovary M. D. HartantiA, K. HummitzschA, H.
    [Show full text]
  • Development of Mammalian Ovary
    P SMITH and others Development of mammalian 221:3 R145–R161 Review ovary Development of mammalian ovary Peter Smith1,2, Dagmar Wilhelm3 and Raymond J Rodgers4 1AgResearch Invermay, Puddle Alley, Mosgiel 9053, New Zealand Correspondence 2Department of Anatomy, University of Otago, Dunedin 9054, New Zealand should be addressed 3Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia to P Smith 4Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Email Health, University of Adelaide, Adelaide, South Australia 5005, Australia [email protected] Abstract Pre-natal and early post-natal ovarian development has become a field of increasing Key Words importance over recent years. The full effects of perturbations of ovarian development on " ovary adult fertility, through environmental changes or genetic anomalies, are only now being " fetus truly appreciated. Mitigation of these perturbations requires an understanding of the " development processes involved in the development of the ovary. Herein, we review some recent findings " polycystic ovary syndrome from mice, sheep, and cattle on the key events involved in ovarian development. We discuss " premature ovary failure the key process of germ cell migration, ovigerous cord formation, meiosis, and follicle formation and activation. We also review the key contributions of mesonephric cells to ovarian development and propose roles for these cells. Finally, we discuss polycystic ovary syndrome, premature ovarian failure, and pre-natal undernutrition; three key areas in which perturbations to ovarian development appear to have major effects on post-natal fertility. Journal of Endocrinology (2014) 221, R145–R161 Journal of Endocrinology Introduction The developmental origins of health and disease are an development, bringing together the commonly accepted area of increasing research.
    [Show full text]
  • Female Reproductive System & Regulation of Ovarian Function
    1 ONPRC Module 1B: Female Reproductive System & Regulation of Ovarian Function Guiding Question: How does the female reproductive system work? Module Question Laboratory Questions • How does a scientist obtain ovaries for a study? What are the important • How do researchers look at follicle morphology? parts of the female • How does female reproductive anatomy differ between reproductive system, mammalian species (mice, humans, monkeys, sheep, and how does the horses, cats, dogs)? • What can female reproductive anatomy tell us about menstrual cycle work? pregnancy in the different species? Learning Outcomes: Identify female reproductive anatomical structures of different species (mice, humans, monkeys, sheep, horses, cats, dogs). Explain the ovarian cycle (process of follicular development, ovulation, corpus luteum formation). Explain the menstrual cycle (changes that occur in the uterus under the influence of ovarian hormones). Define the source and function of hormones involved in the female reproductive system. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 2 Additional Reproductive Vocabulary Gamete: a haploid sex cell called the oocyte in females and a sperm in males Gametogenesis – one of the two major functions of the follicle in the ovary and the stem cells in the testes and the process by which precursor cells undergo meiotic cell division and differentiation to form the mature haploid gametes. In the ovary the oocyte and in the testes the sperm form as a result of gametogenesis. Zygote: diploid cell formed by the union of sperm and oocyte; the product of fertilization Hormone – a chemical messenger that carries information from one cell to another via the bloodstream.
    [Show full text]
  • Morphological and Histological of Ovary in Domestic Iraqi Sheep Ovis Aries
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Morphological and Histological of Ovary in Domestic Iraqi Sheep Ovis aries Nadhem A. Shehan1, Dhuha Adel Kareem2, Swsen Abas Ali3 Department of Anatomy and Histology, College of Veterinary Medicine, University of Basra, Iraq Abstract: Present study were carried out on Twenty adult local sheep (ewes).The results were showed that the ovaries of adult sheep are small, oval to almond shaped. They are paired organs located on either side of the uterus within the broad ligament below the uterine (fallopian) tubes, the statistical analysis results revealed no significant differences at level P0.05 between each of the length and width of the ovaries left and right while the thicknesses showed a significant difference between the ovaries.. Histological structure consist of epithelium – surface layer, tunica albuginea, connective tissue covering the entire ovary cortex beneath tunica albuginea, the cortex contains follicles in various stages of development (primordial follicles – contain a single oocyte surrounded by a single layer of granulosa cells most immature follicle found in the ovarian cortex, Primary follicle surrounded by a single layer of granulosa cells, Secondary follicle, contain two or more layers of granulosa cells. Tertiary follicle (n) fluid filled follicle visible on surface of the ovary in most species. Typically have an antrum, which is a fluid filled cavity., growing follicles, vesicular follicles and atretic follicles. The medulla has loose connective tissue and blood vessels. Keywords: Infection; Intestinal parasites; prevalence; Stool; Giardia Lamblia; Riyadh Saudi Arabia 1.
    [Show full text]
  • The Reproductive System
    C h a p t e r 19 The Reproductive System PowerPoint® Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Copyright © 2010 Pearson Education, Inc. Copyright © 2010 Pearson Education, Inc. 19-1 Basic reproductive system structures are gonads, ducts, accessory glands and organs, and external genitalia Copyright © 2010 Pearson Education, Inc. Structures of the Reproductive System • Gonads: organs that produce gametes and hormones • Ducts: receive and transport gametes • Accessory glands: secrete fluids into ducts • Perineal structures: collectively known as external genitalia Copyright © 2010 Pearson Education, Inc. Structures of the Reproductive System • The Reproductive Tract – Includes all chambers and passageways that connect ducts to the exterior of the body Copyright © 2010 Pearson Education, Inc. Structures of the Reproductive System • Male and Female Reproductive Systems – Are functionally different – Female produces one gamete per month: • Retains and nurtures zygote – Male disseminates large quantities of gametes: • Produces 1/2 billion sperm per day Copyright © 2010 Pearson Education, Inc. Structures of the Reproductive System • The Male Reproductive System – Testes or male gonads: • Secrete male sex hormones (androgens) • Produce male gametes (spermatozoa or sperm) Copyright © 2010 Pearson Education, Inc. Structures of the Reproductive System • The Female Reproductive System – Ovaries or female gonads: • Release one immature gamete (oocyte) per month • Produce hormones – Uterine tubes: • Carry oocytes to uterus: – if sperm reaches oocyte, fertilization is initiated and oocyte matures into ovum – Uterus: • Encloses and supports developing embryo – Vagina: • Connects uterus with exterior Copyright © 2010 Pearson Education, Inc. 19-2 Sperm formation (spermatogenesis) occurs in the testes, and hormones from the hypothalamus, pituitary gland, and testes control male reproductive functions Copyright © 2010 Pearson Education, Inc.
    [Show full text]
  • Anatomy-Reproductive-System
    Anatomy of the Female Genital System. Moustafa A. A., MD Prof. Obstet. & Gynecol.; Sohag Faculty of Medicine, Sohag University 2 مساء الورد 3 أهﻻ بح رضاتكم 4إدارة التدريب What is the reproductive system? Consists of: - 1ry sex organs - 2ry sex organs - sex glands. The primary function: perpetuate the species Primary Sex Organs Internal External Genitalia Genitalia (Vulva) Upper Lower Ovaries Uterus Tubes Vagina Primary Sex Organs External Genitalia (Vulva) Vagina Anatomy of Female Genital organs External genitalia (vulve) Definition: Lower end of female genital tract. Parts: A) Mons pubis (mons veneris): Pad of fat on symphysis pubis covered by hairy skin (pubic hair). B) Labia majora: • Definition: 2 thick skin folds forming the lateral boundaries of vulva. • Homologous to: Male scrotum. Anatomy of Female Genital organs Labia majora (continue): Histology: Consist of: 1) Keratinized stratified squamous epithelium e hair follicles (on lateral aspects only) & numerous sebaceous & sweat glands. 2) Thin layer of smooth muscles (tunica Dartos). 3) Fascial layer. 4) Adipose tissue containing numerous nerve endings(for pain, touch & pressure) &, terminal portions of round ligaments. Anatomy of Female Genital organs The 2 labia unit anteriorly below mons pubis to form anterior commissure & posteriorly in front of anus to form posterior commissure. C) Labia minora: • Defnition: 2 delicate skin folds medial to labia majora • Homologus: Penile urethra In male. • Histology: Consist of: 1) Stratified squamous epithelium (keratinized on lateral surface only) with sebaceous & sweat glands (but no hair follicles). 2) Thin layer of smooth muscles continuous with tunica Dartos. Anatomy of Female Genital organs 3) Erectile tissue that becomes turgid & congested with sexual excitement.
    [Show full text]
  • Micro-Architecture of the Female Reproductive System Arbab Sikandar and Muhammad Ali
    Chapter Micro-architecture of the Female Reproductive System Arbab Sikandar and Muhammad Ali Abstract The female reproductive system consists of the ovary, oviduct, uterus, and vagina. This chapter will discuss how these organs look like under the microscope and what types of ultrastructural tissues are present in it, how the shape and physiology of the tissues/cells change with the physiological activities including reproductive cycles, what type of alterations occurs in the ovary during ovulation and how its follicle and epithelium differ, and how the ovulation takes place. The chapter will also elaborate how the lining epithelium and the tract mucosa facilitate the fertilized ovum and conceptus. Also, the chapter is highlighting the architec- tural changes within the mucosa of the uterus during and after pregnancy and type of ovary and spermatozoa that is most suitable for fertilization. Keywords: ovary, reproduction, microstructures, cortex, mucosa, zygote, sperm 1. Introduction It is important to know the microstructure of the female reproductive system. In this chapter those microarchitectures are highlighted which played an important role in theriogenology right from release to fertilization and care of embryo and infants. The micro-architecture of the ovarian cortex, the microscopic structures of the follicles especially the graafian follicle including mature ova, and the histomorphology of the fimbriae and oviduct and its function in ova transportation, zygote transformation, and embryo implantation were highlighted. The micro- structures of various microscopic layers of the uterus and its role in reproduction were addressed. The structure and function of the cervix and vulva and its role in reproduction are mentioned. Also, the most suitable type of ova and sperm for fertilization was also mentioned.
    [Show full text]
  • Endometrium and Released
    FEMALE REPRODUCTIVE SYSTEM The female reproductive system consist of bilateral located ovarium, oviduct, uterus, cervix, vagina and vulva. This system; • Haploid gametes (ovum) produce. • It provides a convenient environment for fertilization. • It secretes hormones necessary for the implantation of the embryo and allows the development until birth. • It secretes hormones that regulate the reproductive cycle. OVARIUM: The ovaries produce and release oocytes into the female reproductive tract and effect on other organs of the reproductive system with hormones secreted and regulate the genital cycle. • Two major groups of steroid hormones, estrogens, and progestogens, are secreted by the ovaries. • The releasing to the genital canal of the ovum is an exocrine function of the ovarium. • Producing its own hormones also constitutes endocrine functions. • Oval or bean-shaped. The hilus which is the place the entry and exit of vessels and nerves hold the pelvic wall and uterus with some ties and connective tissue called mesovarium. • Mesovarium is covered with of visceral peritoneum (mesothelium and connective tissue). • The ovaries of all mammals have a similar basic structure. • It is composed of a cortex and a medulla. • Medulla located in the central portion of the ovary and contains loose connective tissue. • The cortex contains the ovarian follicles embedded in a richly cellular connective tissue. • The surface of the ovarium is covered by a single layer of cuboidal and, in some parts, almost squamous cells. • This cellular layer, known as the germinal epithelium, is continuous with the mesothelium that covers the mesovarium. • The ovarium has two parts: the cortex and the medulla. • The cortex is located outside the ovarium.
    [Show full text]
  • Follicular Development from Ovarian Xenografts in SCID Mice R
    Follicular development from ovarian xenografts in SCID mice R. G. Gosden, M. I. Boulton, K. Grant and R. Webb 1Department of Physiology, University Medical School, Teviot Place, Edinburgh EH8 9AG, UK; and 2AFRC Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK Cortical slices of either cat or sheep ovaries were grafted under the renal capsules of ovariectomized SCID mice. The grafts became vascularized and were still surviving with large follicles present at autopsy up to nine months later. As developing follicles undergo atresia during the period of ischaemia after ovarian grafting, those found in long-term grafts at autopsy had presumably started to grow from the primordial stage after transplantation. Some follicles had reached a diameter of 3 mm with a normal antrum and appeared to be cytologically normal, but the latent period for the emergence of antral follicles was shorter in cat compared with sheep grafts. Oestradiol production from grafts, as indicated by vaginal cornification and plasma measurements collected at autopsy, was not constant and circulating concentrations varied among animals, and were sometimes far in excess of the normal physiological range of the host. The vaginal smears never presented cytological patterns like those of the normal mouse oestrous cycle, and ovulation had not occurred in any of the grafts. These results demonstrate that ovarian xenografts in SCID mice can serve as experimental models for investigating follicle development in species in which follicle growth in vitro and studies of the parent animal are impracticable. Introduction exception of tumour biology, there have been few, if any, attempts to establish ovarian xenografts, although they might Transplantation of ovaries has been widely used for investigat¬ provide useful experimental models for investigating follicular ing reproductive biology in small laboratory animals (Krohn, development in species, such as humans or large or rare species 1977; Gosden, 1992).
    [Show full text]
  • Pdf (888.79 K)
    Journal of Current Veterinary Research ISSN: 2636-4026 Journal homepage: http://www.jcvr.journals.ekb.eg Histological and Histochemical Changes of The Ovary of Goat During Autumn and Summer Seasons Emara S. A.; Hassanin, A. M.A; Hanaa Y. Elnagar Department of Cytology and Histology, Faculty of Veterinary Medicine, University of Sadat City. * Corresponding Author: [email protected] Submitted: 16 Aug. 2019 Accepted: 7 Sept. 2019. ABSTRACT: The present study aimed to study the development and degeneration of ovarian follicles in goat during autumn and summer seasons. Seven ovaries were collected during each season from different popular markets. The ovaries were fixed in 10% neutral buffered formalin for histological examination. In autumn season; the histological examination revealed an increased ovarian activity that represented by presence of all developmental stages of ovarian follicles ( Primordial follicles, primary follicles, secondary follicles, tertiary follicles and mature Graafian follicles), corpus luteum, corpus albicans and corpus heamorrhagicum. In summer season; the histological examination revealed decreased ovarian activity. The mature Graafian follicles contained degenerated oocytes and abnormal arrangement of cumulus oophorus and granulosa cells. Also, presence of persistant corpus luteum where lutein cells became small with pyknotic nuclei, and presence of large number of atretic follicles (degenerated follicles). Key wards: Autumn, Follicles, Goat, Histology Ovary, Summer. INTRODUCTION: Goats as ruminants are multipurpose animals the development of the female's secondary sex provide human with many products including characters such as the development of the meat, milk, and skin for leather industries, mammary gland and promote the heat signs. cashmere, and mohair fibers production (Gall, Progesterone a steroid hormone is secreted by 1996; Simith and Sherman, 2009).
    [Show full text]
  • Case Report: Ovarian Cortex and Stroma on an Endometrial Sampling
    Clinical Case Reports and Reviews Case Report ISSN: 2059-0393 Case report: Ovarian cortex and stroma on an endometrial sampling Suzanne Cao1, Tina Paul2 and Karen Noblett3 1Resident Physician, Riverside University Health System - Medical Center, University of California, Riverside, CA, USA 2Attending Physician, Riverside University Health System - Medical Center, University of California, Riverside, CA, USA 3Department Chair, Riverside University Health System - Medical Center, University of California, Riverside, CA, USA Abstract Background: Ectopic ovarian tissue found within an endometrial sample has not be previously reported. The short and long term implications as well as management of this finding is unknown. Case: We present a 30 year old, nulligravid, with a known history of leiomyomas, who underwent a hysteroscopy, dilation and curettage, and a myomectomy for an endocavitary leiomyoma. Microscopic pathology results of the endometrial sample demonstrated ovarian cortex and stroma. Conclusion: The cause of this ectopic ovarian tissue could not be determined. She does not appear to have suffered any consequence of from this finding so far. However, any long term implications remain unknown. Until more information is known, no definitive management besides observation should be utilized and current guidelines should remain unchanged. Introduction prior. Her vaginal bleeding had improved after the myomectomy, but had progressively worsened over the past six months. She attempted Diagnostic and operative hysteroscopies (HSC) are common oral contraceptives to help control the bleeding, but stated that they gynecologic surgeries. Common indications for this procedure include only made her symptoms worse and stopped the OCP’s two months abnormal uterine bleeding, post-menopausal bleeding, endometrial prior. The patient’s past medical history and social history were non- polyps, submucosal fibroids, retained foreign bodies, and desire for contributory, and her only medication was an iron supplement.
    [Show full text]