J. Bio. & Env. Sci
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences. -
Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name
Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name FERNS & ALLIES Aspleniaceae Asplenium nidus Birds Nest Fern Blechnaceae Stenochlaena palustris Climbing Swamp Fern Dryopteridaceae Coveniella poecilophlebia Marsileaceae Marsilea mutica Smooth Nardoo Polypodiaceae Colysis ampla Platycerium hillii Northern Elkhorn Fern Pteridaceae Acrostichum speciosum Mangrove Fern Schizaeaceae Lygodium microphyllum Climbing Maidenhair Fern Lygodium reticulatum GYMNOSPERMS Araucariaceae Agathis robusta Queensland Kauri Pine Podocarpaceae Podocarpus grayae Weeping Brown Pine FLOWERING PLANTS-DICOTYLEDONS Acanthaceae * Asystasia gangetica subsp. gangetica Chinese Violet Pseuderanthemum variabile Pastel Flower * Sanchezia parvibracteata Sanchezia Amaranthaceae * Alternanthera brasiliana Brasilian Joyweed * Gomphrena celosioides Gomphrena Weed; Soft Khaki Weed Anacardiaceae Blepharocarya involucrigera Rose Butternut * Mangifera indica Mango Tuesday, 31 August 2010 Checklist of Plants for Cattana Wetlands RLJ Page 1 of 12 Class Family Code Taxon Common Name Semecarpus australiensis Tar Tree Annonaceae Cananga odorata Woolly Pine Melodorum leichhardtii Acid Drop Vine Melodorum uhrii Miliusa brahei Raspberry Jelly Tree Polyalthia nitidissima Canary Beech Uvaria concava Calabao Xylopia maccreae Orange Jacket Apocynaceae Alstonia scholaris Milky Pine Alyxia ruscifolia Chain Fruit Hoya pottsii Native Hoya Ichnocarpus frutescens Melodinus acutiflorus Yappa Yappa Tylophora benthamii Wrightia laevis subsp. millgar Millgar -
Use on Riparian and Savanna Vegetation in Northwest Australia
Received: 5 June 2017 | Accepted: 29 October 2017 DOI: 10.1111/jvs.12591 SPECIAL FEATURE: PALAEOECOLOGY Journal of Vegetation Science Forgotten impacts of European land- use on riparian and savanna vegetation in northwest Australia Simon E. Connor1,2 | Larissa Schneider3 | Jessica Trezise3 | Susan Rule3 | Russell L. Barrett4,5 | Atun Zawadzki6 | Simon G. Haberle3 1School of Geography, University of Melbourne, Melbourne, VIC, Australia Abstract 2CIMA-FCT, University of the Algarve, Faro, Questions: Fire and livestock grazing are regarded as current threats to biodiversity Portugal and landscape integrity in northern Australia, yet it remains unclear what biodiversity 3Centre of Excellence in Australian losses and habitat changes occurred in the 19–20th centuries as livestock and novel Biodiversity and Heritage, and Department of Archaeology and Natural History, Australian fire regimes were introduced by Europeans. What baseline is appropriate for assessing National University, Canberra, ACT, Australia current and future environmental change? 4National Herbarium of New South Wales, Royal Botanic Gardens and Domain Location: Australia’s Kimberley region is internationally recognized for its unique bio- Trust, Sydney, NSW, Australia diversity and cultural heritage. The region is home to some of the world’s most exten- 5 College of Medicine, Biology and Environment, sive and ancient rock art galleries, created by Aboriginal peoples since their arrival on Research School of Biology, Australian National University, Canberra, ACT, Australia the continent 65,000 years ago. The Kimberley is considered one of Australia’s most 6Institute for Environmental intact landscapes and its assumed natural vegetation has been mapped in detail. Research, Australian Nuclear Science and Methods: Interpretations are based on a continuous sediment record obtained from a Technology Organisation, Menai, NSW, Australia waterhole on the Mitchell River floodplain. -
Anti-Ulcer Activity of Albizia Procera Leaves in Different Growth Phases
ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor & UGC Approved Journal) Website: www.ijirset.com Vol. 6, Issue 9, September 2017 Anti-Ulcer Activity of Albizia Procera Leaves In Different Growth Phases Ambika K*1, Jegadeesan M2 Research Scholar, Department of Environmental and Herbal science, Faculty of Science, Tamil University, Thanjavur, Tamil Nadu, India. *1 Formerly Head and Professor, Department of Environmental and Herbal science, Faculty of Science, Tamil University, Thanjavur, Tamil Nadu, India. 2 ABSTRACT: Clinical research has confirmed the efficacy of several plants for the treatment of gastroduodenal disease, while basic scientific research has uncovered the mechanisms by which some plants exert their therapeutic effects. Ulcers are lesions on the surface of the skin or a mucous membrane characterized by a superficial loss of tissue. Preliminary photochemical screening of this medicinal plant identified the presence of important secondary metabolites like flavonoids and tannins which are the active principles of antiulcer activity. Present study was conducted to analyze the plant Albizia procera leaves considered as gastroprotective and healing agents on ulcers in medicinal resources and beside that to gather evidence for their effectiveness. The test substances were administered as a single dose by orally. Prior to dosing, animals were kept for 12 h of fasting. Ulceration due to oral administration of ethanol was shown in the stomach section of animal models. The gastric damage as thick red lines and lesions as red areas were observed in the stomach. It was significant to note that increase in the volume, total acidity and free acidity and decreased pH of gastric juice were observed in ulcer treated rats compared to untreated control rats. -
Rapid Creek Species Lists
NATIVE VEGETATION SPECIES The Rapid Creek Landcare Group compiled these lists to inform revegetation work. The habitat based lists include a range of species that are appropriate to be planted in the catchment. The following references were used: • Rapid Creek Management Plan (1994) Prepared for Darwin City Council and Greening Australia by Clouston • Terrestrial Flora and Fauna Surveys of Darwin International Airport (2009) Prepared for NT Airports by EcOz Environmental Services • Rapid Creek Vegetation Survey Prepared by Clark and Brocklehurst in the early 1990’s • Expert botanical advice A focus is placed on tree and shrub species likely to be used in revegetation. It is recommended site specific expert advice be sought before finalising species lists for particular projects. WOODLAND Acacia auriculiformis (black wattle) Acacia difficilis Acacia dimidiata (swamp wattle) Acacia lamprocarpa (hickory wattle) Acacia latescens Acacia mimula Alphitonia excelsa (soap tree) Alstonia actinophylla (milkwood) Ampelocissus acetosa (wild grape) Auranticarpa melanosperma Brachychiton diversifolius (northern kurrajong) Brachychiton megaphyllus (red-flowering kurrajong) Breynia cernua (breynia) Bridelia tomentosa Buchanania obovata (green plum) Calytrix exstipulata (turkey bush) Capparis umbonata (bush orange) Cochlospermum fraseri (kapok tree) Corymbia disjuncta (bloodwood) Corymbia polycarpa (long-fruited bloodwood) Cycas armstrongii (cycad) Denhamia obscura (denhamia) Rapid Creek Corridor Species Lists 1/6 Erythrophleum chlorostachys (ironwood) -
Observations on Themeda Australis-Eucalyptus Savannah 10
Observations on T hemeda australis- Eucalyptus Savannah 10 Papua P. C. H EYLIGERSI SAVANNAHS, vegetation types with a ground Fires are common throughout the dry season, cover dominated by grasses and an open tree at the end of which most of the ground cover storey, are extensive in the coastal lowlands of has been burnt. Regrowth starts after some the Central District, Territory of Papua (Fig. rain has fallen. Areas burnt early in the dry 1) . These lowlands were included in a regional season can have a fair cover at the end of it survey carried out in 1962 by a team of the and are liable to burn off again. At the time of Division of Land Research and Regional Sur our investigation, notwithstanding high rainfall vey, CSIRO. in June, the dry season was already well ad This paper describes the vegetation of savan vanced and fire had destroyed the ground nah near jackson's Airport, about 12 km east vegetation of a part of the area under in of Port Moresby. Emphasis is laid on correla vestigation. tion with edaphic conditions. The field work, Wild life in the area is very scarce and its in cooperation with the geomorphologist and influence on the vegetation is negligible. Graz the pedologist of the team, was done in July ing by cattle is restricted to a few fenced prop and August 1963. ·erties. Th e following data pertinent to this area are Two transects were selected for observations: extracted from the survey report (Mabbutt et transect 1 was located 3 km south of jackson's Airport near the Riga Road ; transect 2 about aI., 1965). -
Albizia Procera 6
Albizia procera (Roxb.) Benth. Siris blanco Leguminosae Familia de las leguminosas Mimosoidea Subfamilia de las mimosas John A. Parrotta Albizia procera (Roxb.) Benth., conocido como el siris Suelos y Topografía blanco, es un árbol caducifolio de tamaño grande y de rápido crecimiento de los bosques tropicales y subtropicales de Asia El siris blanco se puede encontrar en una variedad de (36). Se le usa como un árbol de ornamento y como sombra suelos, aunque crece mejor en condiciones muy húmedas en en plantaciones de té (14, 33). Su madera se considera como suelos arcillosos o margas aluviales y bien drenados (8, 36). adecuada para muchos propósitos, y su pulpa tiene gran Su capacidad para crecer en suelos secos, arenosos, potencial para la manufactura de papel (20, 34). La goma pedregosos y superficiales la hacen una especie muy útil en exudada por el tallo se usa como un substituto para la goma la aforestación de sitios difíciles (27). Se han reportado una arábiga (2, 15) y el alto contenido de proteína de las hojas la muy buena supervivencia y unas tasas de crecimiento hacen una fuente excelente de forraje (17, 36). iniciales rápidas en pruebas de aforestación tanto en suelos salinos como alcalinos en Uttar Pradesh, en la India (18). Sin embargo, los valores de pH del suelo ideales para la especie varían entre 5.0 y 5.5, de acuerdo a estudios HABITAT efectuados en el Bangladesh Tea Research Institute (comunicación personal con A.F.M. Badrul Alam, BTRI, Area de Distribución y de Naturalización Srimangal, Bangladesh). La especie forma una asociación con Rhizobium spp. -
Angiospermic Flora of Gafargaon Upazila of Mymensingh District Focusing on Medicinally Important Species
Bangladesh J. Plant Taxon. 26(2): 269‒283, 2019 (December) © 2019 Bangladesh Association of Plant Taxonomists ANGIOSPERMIC FLORA OF GAFARGAON UPAZILA OF MYMENSINGH DISTRICT FOCUSING ON MEDICINALLY IMPORTANT SPECIES 1 M. OLIUR RAHMAN , NUSRAT JAHAN SAYMA AND MOMTAZ BEGUM Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh Keywords: Angiosperm; Taxonomy; Vegetation analysis; Medicinal Plants; Distribution; Conservation. Abstract Gafargaon upazila has been floristically explored to identify and assess the angiospermic flora that resulted in occurrence of 203 taxa under 174 genera and 75 families. Magnoliopsida is represented by 167 taxa under 140 genera and 62 families, while Liliopsida is constituted by 36 taxa belonging to 34 genera and 13 families. Vegetation analysis shows that herbs are represented by 106 taxa, shrubs 35, trees 54, and climbers by 8 species. In Magnoliopsida, Solanaceae is the largest family possessing 10 species, whereas in Liliopsida, Poaceae is the largest family with 12 species. The study has identified 45 medicinal plants which are used for treatment of over 40 diseases including diabetes, ulcer, diarrhoea, dysentery, fever, cold and cough, menstrual problems, blood pressure and urinary disorders by the local people. Some noticeable medicinal plants used in primary healthcare are Abroma augusta (L.) L.f., Coccinia grandis (L.) Voigt., Commelina benghalensis L., Cynodon dactylon (L.) Pers., Holarrhena antidysenterica Flem., Glycosmis pentaphylla (Retz.) A. DC., Mikania cordata (Burm. f.) Robinson, Ocimum tenuiflorum L. and Rauvolfia serpentina (L.) Benth. A few number of species are also employed in cultural festivals in the study area. Cardamine flexuosa With., Oxystelma secamone (L.) Karst., Phaulopsis imbricata (Forssk.) Sweet, Piper sylvaticum Roxb., Stephania japonica (Thunb.) Miers and Trema orientalis L. -
Albizia Amara - a Potential Medicinal Plant: a Review
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 Albizia amara - A Potential Medicinal Plant: A Review G. Indravathi1, 2, R. Sreekanth Reddy3, Pakala Suresh Babu3 1Department of Biotechnology, K.V.R. Govt. College for Women, Kurnool-518 002, Andhra Pradesh, India 2Department of Biotechnology, Jawaharlal Nehru Technological University, Anantapur-515 001, Andhra Pradesh, India 3Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh-515 001, India Abstract: Albizia amara is an important medicinal plant found throughout India. The entire plant possesses pharmaceutical constituents of great significance. The present article gives an update on bioactive compounds and medicinal importance of Albizia amara. This plant has been used as an important folk medicine for the treatment of several diseases like diarrhea, gonorrhea, skin diseases, poisonous bites and leprosy. Further, phytochemical investigation revealed the presence of wide variety of bioactive compounds such as macrocyclic spermine alkaloids, triterpene saponins, phenols, flavonyl glycosides, tannins, sterols in the plant extract of A. amara. In addition, the plant extract possess the pharmacological properties like anticancer, antihyperlipidimic, antiinflammatory, antimicrobial, analgesic and antioxidant activities. Because of the presence of several phytoconstituents, pharmacological activities and wide distribution, this will be an ideal plant resource for the treatment of several endemic diseases. Keywords: Albizia amara, Medicinal Plant, Bioactive compounds,Pharmacological Properties 1. Introduction is present in the dry regions of Tamil Nadu, Andhra Pradesh and Karnataka (Chakrabarthy T et al., 1996). The genuses Albizia is represented by more than 100 species and are mainly confined to tropical and sub- tropical regions Morphology of Asia, Africa and Australia. -
13. ANTIDESMA Burman Ex Linnaeus, Sp. Pl. 2: 1027. 1753. 五月茶属 Wu Yue Cha Shu Li Bingtao (李秉滔 Li Ping-Tao); Petra Hoffmann Rhytis Loureiro; Stilago Linnaeus
Fl. China 11: 209–215. 2008. 13. ANTIDESMA Burman ex Linnaeus, Sp. Pl. 2: 1027. 1753. 五月茶属 wu yue cha shu Li Bingtao (李秉滔 Li Ping-tao); Petra Hoffmann Rhytis Loureiro; Stilago Linnaeus. Trees or erect shrubs, dioecious; indumentum of simple hairs. Leaves alternate, eglandular; stipules small; petiole usually short; leaf blade simple, margin entire, venation pinnate. Inflorescences axillary, sometimes apparently terminal, or cauline, spikes or ra- cemes, sometimes much branched. Male flowers: calyx 3–5(–8)-lobed, cup-shaped, lobes imbricate; petals absent; disk extrastaminal, annular or cushion-shaped (enclosing bases of stamens and pistillode), or consisting of free lobes; stamens (1–)3–5(– 7), inserted inside/within disk or sinus of disk lobes, incurved in bud, afterward straight; filaments longer than sepals; anthers 2- locular, connectives U-shaped; thecae separate from each other, resembling swollen ends of U, raised at anthesis, dehiscing longitudinally; pistillode usually present. Female flowers: sepals as in male; disk annular surrounding ovary, entire; ovary longer than sepals, usually 1-locular; ovules 2 per locule, pendent; styles 2–4, short, terminal to lateral, apex usually bifid. Fruit a drupe, ovoid, ellipsoid, or lens-shaped, with many areoles when dry, crowned with persistent styles, usually 1-seeded. Seeds small, endosperm fleshy, cotyledon flattened and broad. x = 13. About 100 species: mainly the tropics and subtropics of Asia but also in Africa (8 species), the Pacific islands (5–8 species), and Australia (5–7 species); 11 species (two endemic) in China. Material of species no. 11, Antidesma hontaushanense, described from Taiwan (Lan Yu), has not been seen and the available description is too poor to include this taxon within the key to species. -
A Dictionary of the Plant Names of the Philippine Islands," by Elmer D
4r^ ^\1 J- 1903.—No. 8. DEPARTMEl^T OF THE IE"TEIlIOIi BUREAU OF GOVERNMENT LABORATORIES. A DICTIONARY OF THE PLAIT NAMES PHILIPPINE ISLANDS. By ELMER D, MERRILL, BOTANIST. MANILA: BUREAU OP rUKLIC I'RIN'TING. 8966 1903. 1903.—No. 8. DEPARTMEE^T OF THE USTTERIOR. BUREAU OF GOVEENMENT LABOEATOEIES. r.RARV QaRDON A DICTIONARY OF THE PLANT PHILIPPINE ISLANDS. By ELMER D. MERRILL, BOTANIST. MANILA: BUREAU OF PUBLIC PRINTING. 1903. LETTEE OF TEANSMITTAL. Department of the Interior, Bureau of Government Laboratories, Office of the Superintendent of Laboratories, Manila, P. I. , September 22, 1903. Sir: I have the honor to submit herewith manuscript of a paper entitled "A dictionary of the plant names of the Philippine Islands," by Elmer D. Merrill, Botanist. I am, very respectfully. Paul C. Freer, Superintendent of Government Laboratories. Hon. James F. Smith, Acting Secretary of the Interior, Manila, P. I. 3 A DICTIONARY OF THE NATIVE PUNT NAMES OF THE PHILIPPINE ISLANDS. By Elmer D. ^Ikkrii.i., Botanist. INTRODUCTIOX. The preparation of the present work was undertaken at the request of Capt. G. P. Ahern, Chief of the Forestry Bureau, the objeet being to facihtate the work of the various employees of that Bureau in identifying the tree species of economic importance found in the Arcliipelago. For the interests of the Forestry Bureau the names of the va- rious tree species only are of importance, but in compiling this list all plant names avaliable have been included in order to make the present Avork more generally useful to those Americans resident in the Archipelago who are interested in the vegetation about them. -
Supplementary Materialsupplementary Material
Supplementary Materials 10.1071/RJ16076_AC © CSIRO 2017 Supplementary Material: Rangeland Journal, 2017, 39(1), 85–95. Assessing the invasion threat of non-native plant species in protected areas using Herbarium specimen and ecological survey data. A case study in two rangeland bioregions in Queensland Michael R. NgugiA,B and Victor John NeldnerA AQueensland Herbarium, Department of Science Information Technology and Innovation, Mt Coot- tha Road, Toowong, Qld 4066, Australia. BCorresponding author. Email: [email protected] Table S1. List of native species in Cape York Peninsula and Desert Uplands bioregions Cape York Peninsula native Species Desert Uplands native Species Abelmoschus ficulneus Abelmoschus ficulneus Abelmoschus moschatus subsp. Tuberosus Abildgaardia ovata Abildgaardia ovata Abildgaardia vaginata Abildgaardia vaginata Abutilon arenarium Abrodictyum brassii Abutilon calliphyllum Abrodictyum obscurum Abutilon fraseri Abroma molle Abutilon hannii Abrophyllum ornans Abutilon leucopetalum Abrus precatorius L. subsp. precatorius Abutilon malvifolium Abutilon albescens Abutilon nobile Domin Abutilon auritum Abutilon otocarpum Abutilon micropetalum Abutilon oxycarpum Acacia armillata Abutilon oxycarpum Acacia armitii Abutilon oxycarpum var. incanum Acacia aulacocarpa Abutilon oxycarpum var. subsagittatum Acacia auriculiformis Acacia acradenia Acacia brassii Acacia adsurgens Acacia calyculata Acacia aneura F.Muell. ex Benth. var. aneura Acacia celsa Acacia aneura var. major Pedley Acacia chisholmii Acacia angusta Maiden