Review Article from Genetics to Genomics of Epilepsy

Total Page:16

File Type:pdf, Size:1020Kb

Review Article from Genetics to Genomics of Epilepsy Hindawi Publishing Corporation Neurology Research International Volume 2012, Article ID 876234, 18 pages doi:10.1155/2012/876234 Review Article From Genetics to Genomics of Epilepsy Silvio Garofalo, Marisa Cornacchione, and Alfonso Di Costanzo Dipartimento di Medicina e Scienze per la Salute (Me.S.pe.S.), Universita` del Molise, Via De Sanctis snc, 86100 Campobasso, Italy Correspondence should be addressed to Silvio Garofalo, [email protected] Received 13 December 2011; Accepted 17 February 2012 Academic Editor: Alexander Rotenberg Copyright © 2012 Silvio Garofalo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The introduction of DNA microarrays and DNA sequencing technologies in medical genetics and diagnostics has been a challenge that has significantly transformed medical practice and patient management. Because of the great advancements in molecular genetics and the development of simple laboratory technology to identify the mutations in the causative genes, also the diagnostic approach to epilepsy has significantly changed. However, the clinical use of molecular cytogenetics and high-throughput DNA sequencing technologies, which are able to test an entire genome for genetic variants that are associated with the disease, is preparing a further revolution in the near future. Molecular Karyotype and Next-Generation Sequencing have the potential to identify causative genes or loci also in sporadic or non-familial epilepsy cases and may well represent the transition from a genetic to a genomic approach to epilepsy. 1. Introduction these discoveries have been great advances in the field; how- ever, their impact on the management of epileptic patients In the last decades a large number of gene discoveries have was limited because of the failure to collect significant gen- changed our views of idiopathic and symptomatic epilepsy etic information from each patient to distinguish the large [1]. Indeed, idiopathic epilepsy has the considerable genetic number of genetic defects that can lead to the disease. There- advantage to be found very often in informative autosomal fore, genetic testing was possible only for few or selected fam- dominant families that have been of great relevance to map ily cases. and to positional clone the causative gene, opening insight Technical improvements in human chromosomes recog- into the biology and molecular pathology of this condition nition and better definition of chromosome regions realized [2, 3]. by increasing the number of detectable chromosome bands The search of epilepsy genes has allowed the identifi- have provided higher resolution of normal and pathological cation of several genes in idiopathic generalized epilepsy karyotype. It is today well established an association between epileptic seizures and chromosome abnormalities recognized (Table 1), the vast majority of which are channelopathies [4, by high-resolution chromosome banding [14, 15]. However, 5]oraffect the activity of excitatory or inhibitory neurotrans- the type and the size of the chromosome defects are not mitters in central nervous system [6]. It is possible that the always easy to detect even by the highest-resolution cytoge- dominant nature of these genes due to the multisubunit com- netic techniques available for light microscopes. position of the molecules have greatly overestimated the role The identification of the specific genetic defect in a pa- of their mutations in the disease. tient with epilepsy may clarify the diagnosis (diagnostic test- Other important insights came from the discoveries of ing), suggest the prognosis, assist with treatment and mana- causative genes of syndromic epilepsy (Table 2)[7] and other gement (e.g., the use of a ketogenic diet in glucose transpor- disorders where epilepsy is associated with encephalopathies ter type 1 deficiency syndrome or the avoidance of lamotrig- (Table 3)[8], mental retardation with brain malformation ine, phenytoin, and carbamazepine in Dravet syndrome), (Table 4)[9, 10], other neurologic conditions including neu- elucidate the risk of a disease in family members and fu- ronal migration disorders (Table 5)[11], and inborn errors ture children, and save the patient from further diagnostic of metabolism (Tables 6 and 7)[12, 13]. Without any doubt, evaluation and potentially invasive testing. 2 Neurology Research International Table 1: Disease genes identified in generalized myoclonic epilepsy, febrile seizures, absences (37 genes). Gene Symbol Gene name and description ALDH7A1 Aldehyde dehydrogenase 7 family, member A1 BRD2 Bromodomain containing 2 CACNA1A Calcium channel, voltage-dependent, P/Q type, alpha 1A subunit CACNA1H Calcium channel, voltage-dependent, T type, alpha 1H subunit CACNB4 Calcium channel, voltage-dependent, beta 4 subunit CASR Calcium-sensing receptor CHRNA2 Cholinergic receptor, nicotinic, alpha 2 (neuronal) CHRNA4 Cholinergic receptor, nicotinic, alpha 4 CHRNB2 Cholinergic receptor, nicotinic, beta 2 (neuronal) CLCN2 Chloride channel 2 CSTB Cystatin B (stefin B) EFHC1 EF-hand domain (C-terminal) containing 1 EPM2A Epilepsy, progressive myoclonus type 2A, Lafora disease (laforin) GABRA1 Gamma-aminobutyric acid (GABA) A receptor, alpha 1 GABRB3 Gamma-aminobutyric acid (GABA) A receptor, beta 3 GABRD Gamma-aminobutyric acid (GABA) A receptor, delta GABRG2 Gamma-aminobutyric acid (GABA) A receptor, gamma 2 GPR98 G protein-coupled receptor 98 GRIN2A Glutamate receptor, ionotropic, N-methyl D-aspartate 2A GRIN2B Glutamate receptor, ionotropic, N-methyl D-aspartate 2B KCNMA1 Potassium large conductance calcium-activated channel, subfamily M, alpha member 1 KCNQ2 Potassium voltage-gated channel, KQT-like subfamily, member 2 KCNQ3 Potassium voltage-gated channel, KQT-like subfamily, member 3 KCTD7 Potassium channel tetramerisation domain containing 7 MBD5 Methyl-CpG-binding domain protein 5 ME2 Malic enzyme 2, NAD(+)-dependent, mitochondrial NHLRC1 NHL repeat containing 1 PCDH19 Protocadherin 19 PRICKLE1 Prickle homolog 1 (Drosophila) PRICKLE2 Prickle homolog 2 (Drosophila) SCARB2 Scavenger receptor class B, member 2 SCN1A Sodium channel, voltage-gated, type I, alpha subunit SCN1B Sodium channel, voltage-gated, type I, beta subunit SCN2A Sodium channel, voltage-gated, type II, alpha subunit SCN9A Sodium channel, voltage-gated, type IX, alpha subunit SLC2A1 Solute carrier family 2 (facilitated glucose transporter), member 1 TBC1D24 TBC1 domain family, member 24 In asymptomatic subjects with increased risk of seizures The International League Against Epilepsy (ILAE) Genet- because of a family history, genetic test may predict onset of ic Commission presented a tool in the approach to specific epilepsy (predictive testing) [16, 17]. Despite such potential tests for epilepsy [16]. According to ILAE report, the diag- benefits, genetic testing has also potential harms, such as nostic genetic testing is “very useful” in individual affected its ethical, legal, and social implications, and the potential by early-onset spasms, X-linked infantile spasms, Dravet and for stigma, distress, adverse labeling, and nonconfidentiality related syndromes, Ohtahara syndrome, epilepsy and mental that exists in the setting of inadequate safeguards against retardation limited to females, early-onset absence epilepsy, discrimination [18]. Considering that our understanding of autosomal dominant nocturnal frontal lobe epilepsy, and the epidemiology and clinical utility of genetic testing in the epilepsy with paroxysmal exercise-induced dyskinesia; the epilepsies is incomplete, the assessment of these potential be- predictive testing is “very useful” in unaffected relatives of in- nefits and harms is particularly complex and is closely linked dividuals affected by Dravet syndrome and epilepsy and to the clinical scenario. mental retardation limited to females [16]. Considering Neurology Research International Table 2: Disease genes identified in syndromic epilepsy (47 genes). Gene symbol Gene name and description Syndrome ARFGEF2 ADP-ribosylation factor GEF2 Periventricular heterotopia ARHGEF9 Cdc42 GEF 9 Hyperekplexia with epilepsy A2BP1 Ataxin 2-binding protein 1 (RNA binding protein fox-1 homolog 1) Mental retardation and epilepsy ASPA Aspartoacylase Canavan syndrome ATP1A2 ATPase, Na/K transporting, alpha 2 polypeptide Familial hemiplegic migraine ATP2A2 ATPase, Ca transporting, cardiac muscle, slow twitch 2 Darier-White syndrome ATP6V0A2 ATPase, H+ transporting, lysosomal V0 subunit a2 Cutis laxa with epilepsy and mental retardation CACNA1A Calcium channel, voltage-dependent, P/Q type, alpha 1A subunit Familial hemiplegic migraine CCDC88C Coiled-coil domain containing 88C Hydrocephalus with medial diverticulum CLCNKA Chloride channel Ka Bartter syndrome CLCNKB Chloride channel Kb Bartter syndrome COH1 Cohen syndrome protein 1—vacuolar protein sorting 13 homolog B Cohen syndrome DLGAP2 Discs, large (Drosophila) homolog-associated protein 2 Progressive epilepsy with mental retardation GFAP Glial fibrillary acidic protein Alexander disease GLI3 GLI family zinc finger 3 Pallister-hall syndrome GLRA1 Glycine receptor, alpha 1 Hyperekplexia GLRB Glycine receptor, beta Hyperekplexia GPHN Gephyrin Hyperekplexia KCNA1 Potassium voltage-gated channel, shaker-related Episodic ataxia KCNJ1 Potassium inwardly rectifying channel, subfamily J, member 1 Bartter syndrome KCNJ10 Potassium inwardly rectifying channel, subfamily
Recommended publications
  • Analysis of Gene–Environment Interactions in Postnatal
    – Analysis of gene environment interactions in postnatal INAUGURAL ARTICLE development of the mammalian intestine Seth Rakoff-Nahouma,b,c,1, Yong Kongd, Steven H. Kleinsteine, Sathish Subramanianf, Philip P. Ahernf, Jeffrey I. Gordonf, and Ruslan Medzhitova,b,1 aHoward Hughes Medical Institute, bDepartment of Immunobiology, dDepartment of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, and eInterdepartmental Program in Computational Biology and Bioinformatics and Department of Pathology, Yale University School of Medicine, New Haven, CT 06510; fCenter for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108; and cDivision of Infectious Diseases, Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2010. Contributed by Ruslan Medzhitov, December 31, 2014 (sent for review December 25, 2014; reviewed by Alexander V. Chervonsky and Alexander Y. Rudensky) Unlike mammalian embryogenesis, which takes place in the relatively immediately after birth, the intestine is exposed to mother’s milk predictable and stable environment of the uterus, postnatal develop- and undergoes initial colonization with microorganisms. Second, ment can be affected by a multitude of highly variable environmental after weaning, the intestinal tract becomes exposed to solid foods factors, including diet, exposure to noxious substances, and micro- and is no longer exposed to mother’s milk components, the host organisms. Microbial colonization of the intestine is thought to play a immune system matures, and the microbiota shifts. particularly important role in postnatal development of the gastroin- Although it is widely recognized that these transitions have testinal, metabolic, and immune systems.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Mechanisms of HIV-1 Restriction by the Host Protein SAMHD1
    Mechanisms of HIV-1 Restriction by the Host Protein SAMHD1 Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jenna Marie Antonucci Graduate Program in Microbiology The Ohio State University 2018 Dissertation Committee Li Wu, Ph.D., Advisor Irina Artsimovitch, Ph.D. Jesse Kwiek, Ph.D. Karin Musier-Forsyth, Ph.D. Copyrighted by Jenna Marie Antonucci 2018 Abstract Human immunodeficiency virus type 1 (HIV-1) is a human retrovirus that replicates in cells via a well-characterized viral lifecycle. Inhibition at any step in the viral lifecycle results in downstream effects that can impair HIV-1 replication and restrict infection. For decades, researchers have been unable to determine the cause of myeloid-cell specific block in HIV-1 infection. In 2011, the discovery of the first mammalian deoxynucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase) sterile alpha motif and HD domain containing protein 1 (SAMHD1) answered that question and introduced an entirely novel field of study focused on determining the mechanism and control of SAMHD1-mediated restriction of HIV-1 replication. Since then, the research on SAMHD1 has become a timely and imperative topic of virology. The following body of work includes studies furthering the field by confirming the established model and introducing a novel mechanism of SAMHD1-mediated suppression of HIV-1 replication. SAMHD1 was originally identified as a dGTP-dependent dNTPase that restricts HIV-1 infection by hydrolyzing intracellular dNTPs to a level that inhibits efficient reverse transcription of HIV-1 genomic RNA into complementary DNA (cDNA).
    [Show full text]
  • Original Article TREX1 Suppression Imparts Cancer-Stem-Cell-Like Characteristics to CD133- Osteosarcoma Cells Through the Activation of E2F4 Signaling
    Int J Clin Exp Pathol 2019;12(4):1134-1153 www.ijcep.com /ISSN:1936-2625/IJCEP0089465 Original Article TREX1 suppression imparts cancer-stem-cell-like characteristics to CD133- osteosarcoma cells through the activation of E2F4 signaling Jinyi Feng1,2*, Ruilong Lan2*, Guanxiong Cai2, Jianhua Lin3 1Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China; Departments of 2Central Laboratory, 3Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China. *Equal contributors. Received December 5, 2018; Accepted January 22, 2019; Epub April 1, 2019; Published April 15, 2019 Abstract: There is ongoing debate whether cancer stem cells (CSCs) could arise from the transformation of non- CSCs under specific conditions. In the present study, the role of the three prime repair exonuclease 1 (TREX1) in regulating CSC generation form human osteosarcoma cells was investigated. High, intermediate and low levels of TREX1 expression were respectively observed in low-grade, high-grade and metastatic human osteosarcoma samples, while the opposite tendency was observed for E2F4, a transcription factor associated with G2 arrest. Luciferase assay proved that TREX1 had a negative impact on the activity of E2F4 promoter. TREX1 was highly ex- pressed in CD133- HOS cells (non-CSC osteosarcoma cells) compared to CD133+ ones; whereas TREX1 knockdown endowed the CD133- non-CSCs with CSC-like characteristics in vitro relying on E2F4 activation, as demonstrated by enlarged proportion of the subset expressing CSC markers in flow cytometry analysis, enhanced self-renewal abil- ity in osteosphere formation assay, increased metastasis capacity in migration and invasion assays, together with improved chemoresistance to cisplatin.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Pancreatic Cancer and Its Microenvironment—Recent Advances and Current Controversies
    International Journal of Molecular Sciences Review Pancreatic Cancer and Its Microenvironment—Recent Advances and Current Controversies 1, 2, 2 2, Kinga B. Stopa y , Agnieszka A. Kusiak y, Mateusz D. Szopa , Pawel E. Ferdek * and Monika A. Jakubowska 1,* 1 Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland; [email protected] 2 Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; [email protected] (A.A.K.); [email protected] (M.D.S.) * Correspondence: [email protected] (P.E.F.); [email protected] (M.A.J.) These authors contributed equally to this work. y Received: 9 April 2020; Accepted: 29 April 2020; Published: 1 May 2020 Abstract: Pancreatic ductal adenocarcinoma (PDAC) causes annually well over 400,000 deaths world-wide and remains one of the major unresolved health problems. This exocrine pancreatic cancer originates from the mutated epithelial cells: acinar and ductal cells. However, the epithelia-derived cancer component forms only a relatively small fraction of the tumor mass. The majority of the tumor consists of acellular fibrous stroma and diverse populations of the non-neoplastic cancer-associated cells. Importantly, the tumor microenvironment is maintained by dynamic cell-cell and cell-matrix interactions. In this article, we aim to review the most common drivers of PDAC. Then we summarize the current knowledge on PDAC microenvironment, particularly in relation to pancreatic cancer therapy. The focus is placed on the acellular stroma as well as cell populations that inhabit the matrix.
    [Show full text]
  • Figure S1. Basic Information of RNA-Seq Results. (A) Bar Plot of Reads Component for Each Sample
    Figure S1. Basic information of RNA-seq results. (A) Bar plot of reads component for each sample. (B) Dot plot shows the principal component analysis (PCA) of each sample. (C) Venn diagram of DEGs for three time points, the overlap part of the circles represents common differentially expressed genes between combinations. Figure S2. Scatter plot of DEGs for each time point. The X and Y axes represent the logarithmic value of gene expression. Red represents up-regulated DEG, blue represents down-regulated DEG, and gray represents non-DEG. Table S1. Primers used for quantitative real-time PCR analysis of DEGs. Gene Primer Sequence Forward 5’-CTACGAGTGGATGGTCAAGAGC-3’ FOXO1 Reverse 5’-CCAGTTCCTTCATTCTGCACACG-3’ Forward 5’-GACGTCCGGCATCAGAGAAA-3’ IRS2 Reverse 5’-TCCACGGCTAATCGTCACAG-3’ Forward 5’-CACAACCAGGACCTCACACC-3’ IRS1 Reverse 5’-CTTGGCACGATAGAGAGCGT-3’ Forward 5’-AGGATACCACTCCCAACAGACCT-3’ IL6 Reverse 5’-CAAGTGCATCATCGTTGTTCATAC-3’ Forward 5’-TCACGTTGTACGCAGCTACC-3’ CCL5 Reverse 5’-CAGTCCTCTTACAGCCTTTGG-3’ Forward 5’-CTGTGCAGCCGCAGTGCCTACC-3’ BMP7 Reverse 5’-ATCCCTCCCCACCCCACCATCT-3’ Forward 5’-CTCTCCCCCTCGACTTCTGA-3’ BCL2 Reverse 5’-AGTCACGCGGAACACTTGAT-3’ Forward 5’-CTGTCGAACACAGTGGTACCTG-3’ FGF7 Reverse 5’-CCAACTGCCACTGTCCTGATTTC-3’ Forward 5’-GGGAGCCAAAAGGGTCATCA-3’ GAPDH Reverse 5’-CGTGGACTGTGGTCATGAGT-3’ Supplementary material: Differentially expressed genes log2(SADS-CoV_12h/ Qvalue (SADS-CoV _12h/ Gene Symbol Control_12h) Control_12h) PTGER4 -1.03693 6.79E-04 TMEM72 -3.08132 3.66E-04 IFIT2 -1.02918 2.11E-07 FRAT2 -1.09282 4.66E-05
    [Show full text]
  • Metabolic Signatures Differentiate Ovarian from Colon Cancer Cell Lines
    Halama et al. J Transl Med (2015) 13:223 DOI 10.1186/s12967-015-0576-z RESEARCH Open Access Metabolic signatures differentiate ovarian from colon cancer cell lines Anna Halama1†, Bella S Guerrouahen2,3,4†, Jennifer Pasquier2,3, Ilhem Diboun1, Edward D Karoly5, Karsten Suhre1,6 and Arash Rafii2,3,7* Abstract Background: In this era of precision medicine, the deep and comprehensive characterization of tumor phenotypes will lead to therapeutic strategies beyond classical factors such as primary sites or anatomical staging. Recently, “-omics” approached have enlightened our knowledge of tumor biology. Such approaches have been extensively implemented in order to provide biomarkers for monitoring of the disease as well as to improve readouts of thera- peutic impact. The application of metabolomics to the study of cancer is especially beneficial, since it reflects the bio- chemical consequences of many cancer type-specific pathophysiological processes. Here, we characterize metabolic profiles of colon and ovarian cancer cell lines to provide broader insight into differentiating metabolic processes for prospective drug development and clinical screening. Methods: We applied non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography and gas chromatography for the metabolic phenotyping of four cancer cell lines: two from colon cancer (HCT15, HCT116) and two from ovarian cancer (OVCAR3, SKOV3). We used the MetaP server for statistical data analysis. Results: A total of 225 metabolites were detected in all four cell lines; 67 of these molecules significantly discrimi- nated colon cancer from ovarian cancer cells. Metabolic signatures revealed in our study suggest elevated tricar- boxylic acid cycle and lipid metabolism in ovarian cancer cell lines, as well as increased β-oxidation and urea cycle metabolism in colon cancer cell lines.
    [Show full text]
  • Membrane Proteomic Analysis of Pancreatic Cancer Cells Xiaojun Liu1, Min Zhang1, Vay Liang W Go2, Shen Hu1,3*
    Liu et al. Journal of Biomedical Science 2010, 17:74 http://www.jbiomedsci.com/content/17/1/74 RESEARCH Open Access Membrane proteomic analysis of pancreatic cancer cells Xiaojun Liu1, Min Zhang1, Vay Liang W Go2, Shen Hu1,3* Abstract Background: Pancreatic cancer is one of the most aggressive human tumors due to its high potential of local invasion and metastasis. The aim of this study was to characterize the membrane proteomes of pancreatic ductal adenocarcinoma (PDAC) cells of primary and metastatic origins, and to identify potential target proteins related to metastasis of pancreatic cancer. Methods: Membrane/membrane-associated proteins were isolated from AsPC-1 and BxPC-3 cells and identified with a proteomic approach based on SDS-PAGE, in-gel tryptic digestion and liquid chromatography with tandem mass spectrometry (LC-MS/MS). X! Tandem was used for database searching against the SwissProt human protein database. Results: We identified 221 & 208 proteins from AsPC-1 and BxPC-3 cells, respectively, most of which are membrane or membrane-associated proteins. A hundred and nine proteins were found in both cell lines while the others were present in either AsPC-1 or BxPC-3 cells. Differentially expressed proteins between two cell lines include modulators of cell adhesion, cell motility or tumor invasion as well as metabolic enzymes involved in glycolysis, tricarboxylic acid cycle, or nucleotide/lipid metabolism. Conclusion: Membrane proteomes of AsPC-1 (metastatic) and BxPC-3 (primary) cells are remarkably different. The differentially expressed membrane proteins may serve as potential targets for diagnostic and therapeutic interventions. Introduction different regions of the same organ and in distant Pancreatic cancer is one of the most aggressive human organs [2,3].
    [Show full text]
  • Expression Gene IFNG Positive Regulator of Human Activating
    Activating Transcription Factor 3 Is a Positive Regulator of Human IFNG Gene Expression This information is current as Sanna Filén, Emmi Ylikoski, Subhash Tripathi, Anne West, of October 1, 2021. Mari Björkman, Joel Nyström, Helena Ahlfors, Eleanor Coffey, Kanury V. S. Rao, Omid Rasool and Riitta Lahesmaa J Immunol 2010; 184:4990-4999; Prepublished online 19 March 2010; doi: 10.4049/jimmunol.0903106 Downloaded from http://www.jimmunol.org/content/184/9/4990 Supplementary http://www.jimmunol.org/content/suppl/2010/03/19/jimmunol.090310 http://www.jimmunol.org/ Material 6.DC1 References This article cites 63 articles, 33 of which you can access for free at: http://www.jimmunol.org/content/184/9/4990.full#ref-list-1 Why The JI? Submit online. by guest on October 1, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Activating Transcription Factor 3 Is a Positive Regulator of Human IFNG Gene Expression Sanna File´n,*,† Emmi Ylikoski,*,‡ Subhash Tripathi,* Anne West,* Mari Bjo¨rkman,* Joel Nystro¨m,* Helena Ahlfors,*,x Eleanor Coffey,* Kanury V.
    [Show full text]