Publications of the Astronomical Society of the Pacific 105: 588-594, 1993 June

Total Page:16

File Type:pdf, Size:1020Kb

Publications of the Astronomical Society of the Pacific 105: 588-594, 1993 June Publications of the Astronomical Society of the Pacific 105: 588-594, 1993 June The Frequency of Binary Stars in the Young Cluster Trumpler 14 Laura R. Penny, Douglas R. Gies,1 William I. Hartkopf,1 Brian D. Mason, and Nils H. Turner1 Department of Physics and Astronomy, Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303-3083 Electronic mail: [email protected], [email protected], [email protected], [email protected], nils @ chara.gsu.edu Received 1992 December 1; accepted 1993 March 8 ABSTRACT. We present radial-velocity data for the six brightest members of the open cluster Trumpler 14 based on high-dispersion spectra obtained over a five-night interval. None of these O-type stars appear to be spectroscopic binaries with periods of the order of a week or less, and none are speckle binaries. This binary fraction is low for O-type stars, and we suggest that the lack of primordial hard binaries and their dynamical interactions may explain how the cluster has maintained a high spatial density even after several cluster crossing times. 1. INTRODUCTION and Johnson 1993). In this paper we report on a radial- velocity study of the brighter members of the cluster de- Massive O- and B-type stars are often bom in compact, signed to find the binary content and to determine whether dense clusters (for example, R 136: Elson et al. 1992, Wal- or not conditions favor dynamical ejection. At the outset of bom et al. 1992, Campbell et al. 1992; NGC 3603: Moffat the project, only the brightest star in the cluster, HD 93129 1983, Baier et al. 1985; the Orion Trapezium cluster: Her- A, had been the subject of a significant radial-velocity big and Temdrup 1986). In such environments, dynamical study by Conti et al. (1979) who found no evidence of interactions between the stars assume a new importance, orbital variability. Subsequently, a preliminary search for and Gies and Bolton (1986) argued that gravitational en- spectroscopic binaries was conducted by Levato et al. counters between binaries could produce high-speed escap- (1991), and these authors estimated the binary frequency ees, the so-called OB runaway stars. Leonard and Duncan to be 6/11 = 55% which is typical for O stars in clusters (1988, 1990) and Leonard (1991) studied this possibility and associations (26%-55%; Gies 1987). If the Levato et through numerical simulations of parsec-sized clusters that al. results are correct, they imply that Tr 14 does indeed contain a population of primordial massive binaries. They have favorable conditions for dynamical ejection (although found that these binaries tend to sink to the center of the no escapees were actually identified by Levato et al. ). Here cluster where they form hierarchical doubles. Gravita- we describe our spectroscopic (Sec. 2) and speckle (Sec. tional perturbations by other cluster members cause an 5) observations of the six brightest members of the cluster, increase in the eccentricity of such doubles, and eventually and measurements of their radial velocities (Sec. 3) and a binary-binary collision occurs at periastron. Leonard and projected rotational velocities (Sec. 4). Contrary to the Duncan demonstrate that this process can produce run- results of Levato et al. (1991), our measurements indicate away stars of sufficient number and speed to account for a low binary frequency, and we argue that this lack of the observed high-velocity population. Clarke and Pringle binaries may explain why Tr 14 has maintained a high (1992) have further explored the cluster ejection model, spatial density over a significant fraction of its dynamical and they find that the observed runaway star properties history (Sec. 6). can be explained if ( 1 ) massive stars form in small clusters of binaries with near unity mass ratios, and (2) the initial 2. SPECTROSCOPIC OBSERVATIONS mass function is under represented in low-mass stars. The dynamical influence of binaries on cluster evolution is ex- We obtained spectra with the CTIO 4-m telescope and cassegrain echelle spectrograph in the period 1987 Febru- plored in a more general way by Heggie and Aarseth -1 (1992). ary 14-18. We used the 31.6 grooves mm echelle grating -1 The young open cluster Trumpler 14 in the Eta Carinae and a 226 grooves mm cross disperser grating blazed at region is a potential site for binary-binary encounters since 8000 A (which we used in second order with a CUSO4 filter it contains many massive stars (including three of type to block competing orders). The spectra were made with 03) within a region 1 pc in diameter (Feinstein et al. 1973; blue train optics, blue collimator, and long camera. The Walbom 1973; Feinstein 1983; Morrell et al. 1988; Massey detector was the RCA4 CCD, a 320x512 array consisting of 30 μτη square pixels. We obtained spectra in two re- gions: on 1987 February 14, we made observations over the Visiting Astronomer, Cerro Tololo Inter-American Observatory, Na- tional Optical Astronomy Observatories, operated by the Association of range 4406-4688 A (seven echelle orders with some wave- Universities for Research in Astronomy, Inc., under contract with the length gaps between orders), and on the other four nights, National Science Foundation. we recorded spectra in the range 3915-4234 A (ten orders 588 © 1993. Astronomical Society of the Pacific © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System FREQUENCY OF BINARIES IN TR 14 589 Table 1 interpolation. Each order was then rectified to a unit con- Target Stars tinuum (using "eccontinuum") by fitting a parabola (or a Spectral V sin i straight line in the case of the order recording Η<5 for the Star Classification B-V (km s"1) four cooler stars since this feature occupies most of the order) to line-free regions. Finally, the heliocentric Julian HD 93129 A 03 If* 7.3 0.22 130 HD 93129 Β 03 V((f)) 8.9 0.22 112 dates and solar corrections were calculated using "rvcor- HD 93128 03 V f 8.84 0.25 116 rect," and velocities were measured using rectified intensity FMM 20 06 V( f)) 9.61 0.28 56 FMM 8 06.5 V((f)) 9.40 0.17 46 versus heliocentric wavelength format spectra for each or- FMM 9 08 V 9.92 0.21 60 der. FMM 3 BO.5 IV-V 10.80 0.26 111 The final average spectra appear in Fig. 1. All the spec- tra of each target were transformed to a common wave- length grid and then summed to form a global average with no gaps). The spectra for the first (second) region spectrum. The global average was smoothed using a Gaus- were made with a 150 (225) μτη slit, equal to 1.0 (1.5) sian transfer function (truncated at 3σ) with a FWHM arcsec on the sky, and the spectra have a reciprocal dis- -1 =0.35 A. These merged spectra are plotted in Fig. 1 (sep- persion of 0.067 (0.060) A pixel and a resolution arated in intensity by 50% of the continuum for clarity) in (FWHM) of 0.15 (0.18) Â. a format similar to the illustrations in the spectral atlas of The primary targets of our survey are listed in Table 1 Walbom and Fitzpatrick (1990) [see their Fig. 4 and Fig. which identifies the stars by their designation in the HD 12(a) of Massey and Johnson 1993 for HD 93129 A]. The catalog or by the cluster member number assigned by Fein- redward portion of the diagram corresponds to data ob- stein et al. (1973; noted as FMM). The spectral types are tained on the first night (some wavelength gaps) while the from Walbom (1973, 1982), except for the final two en- blueward portion represents the sum of the final four tries (FMM 9, 3) which are types from Morrell et al. nights. Some discontinuités appear at the junction of indi- ( 1988). The photometric quantities are derived from Fein- vidual orders due to continuum placement errors at the stein et al. (1973), with the exception of the measures for edges. These spectra are available to other investigators the close pair HD 93129 A, Β which are taken from Wal- upon request. bom (1973). These measurements are in good agreement with those of Massey and Johnson (1993) for those stars which are free from image blending in their CCD photom- 3. RADIAL VELOCITY MEASUREMENTS etry. We also obtained spectra each night of the bright O stars HD 38666 (Mu Columbae) and HD 57682 which are We measured the radial velocities of the program stars considered constant radial-velocity objects by Garmany et by fitting parabolas to the lower (upper) half of the ab- al. ( 1980), and we used these targets to provide a check on sorption (emission) lines. Only features with a line depth the velocity stability of our observing scheme. We kept the significantly greater than the noise level were measured. exposure times short ( 10-20 min) to minimize the effect of All profiles and fits were inspected interactively to discard cosmic ray hits on the CCD, and we generally obtained problem lines or to adjust the portion of the line included three consecutive images that were combined subsequently in the fit in the case of partially blended lines. Our sample by median averaging. The S/N ratio (per pixel) of the of lines and adopted wavelengths are listed in Table 2; an resulting spectra falls in the range 40-90 depending on the "X" indicates which lines were measured for each star brightness of the target.
Recommended publications
  • XMM-Newton X-Ray Study of Early Type Stars in the Carina OB1 Association,
    A&A 477, 593–609 (2008) Astronomy DOI: 10.1051/0004-6361:20065711 & c ESO 2007 Astrophysics XMM-Newton X-ray study of early type stars in the Carina OB1 association, I. I. Antokhin1,2,3,G.Rauw2,,J.-M.Vreux2, K. A. van der Hucht4,5, and J. C. Brown3 1 Sternberg Astronomical Institute, Moscow University, Universitetskij Prospect 13, Moscow 119992, Russia e-mail: [email protected] 2 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 août, 17 Bât. B5c, 4000 Liège, Belgium 3 Department of Physics and Astronomy, University of Glasgow, Kelvin Building, Glasgow G12 8QQ, Scotland, UK 4 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 5 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands Received 29 May 2006 / Accepted 10 October 2007 ABSTRACT Aims. X-ray properties of the stellar population in the Carina OB1 association are examined with special emphasis on early-type stars. Their spectral characteristics provide some clues to understanding the nature of X-ray formation mechanisms in the winds of single and binary early-type stars. Methods. A timing and spectral analysis of five observations with XMM-Newton is performed using various statistical tests and thermal spectral models. Results. 235 point sources have been detected within the field of view. Several of these sources are probably pre-main sequence stars with characteristic short-term variability. Seven sources are possible background AGNs. Spectral analysis of twenty four sources of type OB and WR 25 was performed. We derived spectral parameters of the sources and their fluxes in three energy bands.
    [Show full text]
  • Stsci Newsletter: 1997 Volume 014 Issue 01
    January 1997 • Volume 14, Number 1 SPACE TELESCOPE SCIENCE INSTITUTE Highlights of this issue: • AURA science and functional awards to Leitherer and Hanisch — pages 1 and 23 • Cycle 7 to be extended — page 5 • Cycle 7 approved Newsletter program listing — pages 7-13 Astronomy with HST Climbing the Starburst Distance Ladder C. Leitherer Massive stars are an important and powerful star formation events in sometimes dominant energy source for galaxies. Even the most luminous star- a galaxy. Their high luminosity, both in forming regions in our Galaxy are tiny light and mechanical energy, makes on a cosmic scale. They are not them detectable up to cosmological dominated by the properties of an distances. Stars ~100 times more entire population but by individual massive than the Sun are one million stars. Therefore stochastic effects times more luminous. Except for stars prevail. Extinction represents a severe of transient brightness, like novae and problem when a reliable census of the supernovae, hot, massive stars are Galactic high-mass star-formation the most luminous stellar objects in history is atempted, especially since the universe. massive stars belong to the extreme Massive stars are, however, Population I, with correspondingly extremely rare: The number of stars small vertical scale heights. Moreover, formed per unit mass interval is the proximity of Galactic regions — roughly proportional to the -2.35 although advantageous for detailed power of mass. We expect to find very studies of individual stars — makes it few massive stars compared to, say, difficult to obtain integrated properties, solar-type stars. This is consistent with such as total emission-line fluxes of observations in our solar neighbor- the ionized gas.
    [Show full text]
  • On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in Mu Columbae
    East Tennessee State University From the SelectedWorks of Richard Ignace September 10, 2012 On the Weak-Wind Problem in Massive Stars: X- Ray Spectra Reveal a Massive Hot Wind in mu Columbae. David P. Huenemoerder, Massachusetts nI stitute of Technology Lidia M. Oskinova, University of Potsdam Richard Ignace, East Tennessee State University Wayne L. Waldron, Eureka Scientific nI c. Helge Todt, University of Potsdam, et al. Available at: https://works.bepress.com/richard_ignace/61/ The Astrophysical Journal Letters, 756:L34 (5pp), 2012 September 10 doi:10.1088/2041-8205/756/2/L34 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ON THE WEAK-WIND PROBLEM IN MASSIVE STARS: X-RAY SPECTRA REVEAL A MASSIVE HOT WIND IN μ COLUMBAE David P. Huenemoerder1, Lidia M. Oskinova2, Richard Ignace3, Wayne L. Waldron4, Helge Todt2, Kenji Hamaguchi5,6, and Shunji Kitamoto7 1 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139, USA 2 Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam, Germany 3 Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614, USA 4 Eureka Scientific Inc., 2452 Dellmer Street, Suite 100, Oakland, CA 94602, USA 5 CRESST and X-ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA 6 Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 7 Department of Physics, Rikkyo University, Tokyo 171-8501, Japan Received 2012 June 16; accepted 2012 August 3; published 2012 August 22 ABSTRACT μ Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku.
    [Show full text]
  • Introduction to ASTR 565 Stellar Structure and Evolution
    Introduction to ASTR 565 Stellar Structure and Evolution Jason Jackiewicz Department of Astronomy New Mexico State University August 22, 2019 Main goal Structure of stars Evolution of stars Applications to observations Overview of course Outline 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Order in the H-R Diagram!! Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Motivation: Understanding the H-R Diagram Introduction to ASTR 565 Jason Jackiewicz HRD (2) HRD (3) Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Basic structure - highly non-linear solution Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Massive-star nuclear burning Introduction
    [Show full text]
  • International Astronomical Union Commission G1 BIBLIOGRAPHY of CLOSE BINARIES No
    International Astronomical Union Commission G1 BIBLIOGRAPHY OF CLOSE BINARIES No. 104 Editor-in-Chief: W. Van Hamme Editors: R.H. Barb´a D.R. Faulkner P.G. Niarchos D. Nogami R.G. Samec C.D. Scarfe C.A. Tout M. Wolf M. Zejda Material published by March 15, 2017 BCB issues are available at the following URLs: http://ad.usno.navy.mil/wds/bsl/G1_bcb_page.html, http://faculty.fiu.edu/~vanhamme/IAU-BCB/. The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a. Catalogues b. Discoveries of new binaries and novae c.
    [Show full text]
  • TRANSIT the Newsletter Of
    TRANSIT The Newsletter of 05 January 2009 Hubble caught Saturn with the edge-on rings in 1996. Image courtesy Eric Karkoschka (UoA) Front Page Image - Saturn, like the Earth, is tilted on its axis compared to the plane of its orbit, being off vertical by 26.7 degrees. Saturn’s rings are aligned with its equator so that means that roughly twice every orbit of Saturn we on Earth see the rings edge on. We pass through the ring plane in September 2009 but at that time Saturn is on the other side of the Sun, so now is the best time to view Saturn in Leo with the almost disappeared rings when they are inclined at 0.8 degrees to our line of sight. The next ring plane crossing is March 2025 Last meeting : 12 December 2008. “The Large Hadron Collider” by Dr Peter Edwards of Durham University. Dr Edwards proved he was a skilled public communicator when he initially launched into a short history of particle physics – we all understood what he was talking about! After then explaining what the LHC was actually looking for and how their massive detectors work he explained the problems caused by the unfortunate accident when firing up the LHC for the first time. The prognosis for future collisions seems to have a varying date but perhaps the 2010 date is the most likely. We wish Dr Edwards and his LHC colleagues the best of luck in achieving an early target date. Next meeting : 09 January 2009 – Members night. The meeting will start with the Society 2009 AGM and follow on with short talks presented by members of the Society.
    [Show full text]
  • International Astronomical Union Commission 42 BIBLIOGRAPHY
    International Astronomical Union Commission 42 BIBLIOGRAPHY OF CLOSE BINARIES No. 82 Editor-in-Chief: C.D. Scarfe Editors: H. Drechsel D.R. Faulkner L.V. Glazunova E. Lapasset C. Maceroni Y. Nakamura P.G. Niarchos R.G. Samec W. Van Hamme M. Wolf Material published by March 15, 2006 BCB issues are available via URL: http://www.konkoly.hu/IAUC42/bcb.html, http://www.sternwarte.uni-erlangen.de/ftp/bcb or http://orca.phys.uvic.ca/climenhaga/robb/bcb/comm42bcb.html or via anonymous ftp from: ftp://www.sternwarte.uni-erlangen.de/pub/bcb The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j.
    [Show full text]
  • The Electric Sun Hypothesis
    Basics of astrophysics revisited. II. Mass- luminosity- rotation relation for F, A, B, O and WR class stars Edgars Alksnis [email protected] Small volume statistics show, that luminosity of bright stars is proportional to their angular momentums of rotation when certain relation between stellar mass and stellar rotation speed is reached. Cause should be outside of standard stellar model. Concept allows strengthen hypotheses of 1) fast rotation of Wolf-Rayet stars and 2) low mass central black hole of the Milky Way. Keywords: mass-luminosity relation, stellar rotation, Wolf-Rayet stars, stellar angular momentum, Sagittarius A* mass, Sagittarius A* luminosity. In previous work (Alksnis, 2017) we have shown, that in slow rotating stars stellar luminosity is proportional to spin angular momentum of the star. This allows us to see, that there in fact are no stars outside of “main sequence” within stellar classes G, K and M. METHOD We have analyzed possible connection between stellar luminosity and stellar angular momentum in samples of most known F, A, B, O and WR class stars (tables 1-5). Stellar equatorial rotation speed (vsini) was used as main parameter of stellar rotation when possible. Several diverse data for one star were averaged. Zero stellar rotation speed was considered as an error and corresponding star has been not included in sample. RESULTS 2 F class star Relative Relative Luminosity, Relative M*R *eq mass, M radius, L rotation, L R eq HATP-6 1.29 1.46 3.55 2.950 2.28 α UMi B 1.39 1.38 3.90 38.573 26.18 Alpha Fornacis 1.33
    [Show full text]
  • Eta Carinae's Dusty Homunculus Nebula from Near-Infrared To
    The Astrophysical Journal, 842:79 (26pp), 2017 June 20 https://doi.org/10.3847/1538-4357/aa71b3 © 2017. The American Astronomical Society. All rights reserved. η Carinaeʼs Dusty Homunculus Nebula from Near-infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity Patrick W. Morris1, Theodore R. Gull2, D. John Hillier3, M. J. Barlow4, Pierre Royer5, Krister Nielsen6, John Black7, and Bruce Swinyard8,9 1 California Institute of Technology, IPAC, M/C 100−22, Pasadena, CA 91125, USA; [email protected] 2 NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771, USA 3 Department of Physics & Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260, USA 4 Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK 5 Katholieke Universiteit Leuven, Institute of Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium 6 Department of Physics, IACS, Catholic University of America, Washington, DC 20064, USA 7 Department of Earth & Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala, Sweden 8 Space Science & Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK Received 2017 March 28; revised 2017 May 3; accepted 2017 May 4; published 2017 June 15 Abstract Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable η Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the great eruption. We present the 2.4–670 μm spectral energy distribution, constructed from legacy Infrared Space Observatory observations and new spectroscopy obtained with the Herschel Space Observatory. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions that are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common.
    [Show full text]
  • Desert Skies Tucson Amateur Astronomy Association Volume LIV, Number 1 January, 2008
    Desert Skies Tucson Amateur Astronomy Association Volume LIV, Number 1 January, 2008 TAAA Telescope Winner ♦ Learn about the ♦ January School star parties ♦ Constellation of the month Desert Skies: January, 2008 2 Volume LIV, Number 1 Cover Photo: Congratulations to Victor Herrero on winning the Celestron/Byers 8-inch SCT at the holiday party. Photo by Ken Shaver. TAAA Web Page: http://www.tucsonastronomy.org TAAA Phone Number: (520) 792-6414 Office/Position Name Phone E-mail Address President Bill Lofquist 297-6653 [email protected] Vice President Ken Shaver 762-5094 [email protected] Secretary Steve Marten 307-5237 [email protected] Treasurer Terri Lappin 977-1290 [email protected] Member-at-Large George Barber 822-2392 [email protected] Member-at-Large Keith Schlottman 290-5883 [email protected] Member-at-Large Teresa Plymate 883-9113 [email protected] Chief Observer Wayne Johnson 586-2244 [email protected] AL Correspondent (ALCor) Nick de Mesa 797-6614 [email protected] Astro-Imaging SIG Steve Peterson 762-8211 [email protected] Computers in Astronomy SIG Roger Tanner 574-3876 [email protected] Beginners SIG JD Metzger 760-8248 [email protected] Newsletter Editor George Barber 822-2392 [email protected] School Star Party Scheduling Coordinator Paul Moss 240-2084 [email protected] School Star Party Volunteer Coordinator Claude Plymate 883-9113 [email protected]
    [Show full text]
  • O Runaway Stars: a Nightfall Observer's Challenge List
    DOUGLAS BULLIS Hubble Space Telescope,Hubble Heritage Team (STScI/AURA). O Runaway Stars A Nightfall Observer’s Challenge List Zeta Ophiuchi is traveling through the galaxy faster than our Who doesn't want something new to look at? sun, at 24 km.sec (54,000 mph) relative to its surroundings. Our usual instinct is to go for objects faint and far away. But there is an we possibly learn with a pair of binoculars? observing challenge sitting before our very eyes which we haven't paid much Let’s take an oft-told example: The stars AE Aurigae and Mu Columbae attention to: O runaway stars. These are giant, furiously hot Class-O stars, are flying directly away from each other at velocities of over 100 km/sec unaccountably speeding along in near-solitude in parts of the Galaxy where each. By compare, the Sun moves through the local medium of the Milky Way they shouldn’t be. They are easy to find, bright even in a pair of binoculars. at only about 20 km/sec. Tracing the two stars’ motions backward to their They also tell a tale about stellar life styles within galaxies that we could origin, astronomers end up in the Orion Nebula about 2 million years ago. discover no other way. (Barnard's Loop is believed to be the remnant of the supernova that launched The oddities of high-velocity O stars have led some astronomers into some the other stars.) physically improbable dead-ends of surmise, the pursuit of which cost them considerable time, argument, and reputation, only to be vindicated by today’s An O Primer most advanced detection and analytical capabilities.
    [Show full text]
  • Bibliography from ADS File: Carpenter.Bib August 16, 2021 1
    Bibliography from ADS file: carpenter.bib Nunes, D. C., Carpenter, K., Haynes, M., & de la Croix, J. P., “Shifting the August 16, 2021 Paradigm of Coping with Nyx on the Moon - a Ground-Penetrating Radar Case”, 2018LPICo2106.7012N ADS Evans, N. R., Proffitt, C., Carpenter, K. G., et al., “The Mass of the Cepheid Nunes, D. C., Grimm, R. E., Barba, N., et al., “After All, Where is the Martian V350 Sgr”, 2018ApJ...866...30E ADS Ground Water? TH2OR Can Help”, 2021LPICo2595.8020N ADS Carpenter, K. & Rau, G., “Imaging the Surfaces of Stars from Space”, Rau, G., Peacock, S., & Carpenter, K. G., “A New Look into K-giants’ Chromo- 2018iss..confE...4C ADS spheres”, 2021RNAAS...5...73R ADS Bennett, D. P., Akeson, R., Anderson, J., et al., “The WFIRST Exoplanet Mi- Carpenter, K., Cable, M. L., Ono, M., & Kornfeld, R. P., “Adapt- crolensing Survey”, 2018arXiv180308564B ADS able Autonomous Ocean Access Through Erupting Conduits”, Airapetian, V., Upton, R. S., Davila, J., et al., “Weighing supermassive black 2020AGUFMP044.0015C ADS holes with the UV photon sieve space telescope”, 2017SPIE10564E..3RA Nielsen, K. E., Carpenter, K. G., Kober, G. V., & Wahlgren, G. M., “The Ad- ADS vanced Spectral Library (ASTRAL): Abundance Analysis of the Chemically Airapetian, V. S., Danchi, W. C., Chen, P. C., et al., “Detecting Peculiar Star HR 465”, 2020ApJ...899..166N ADS the Beacons of Life with Exo-Life Beacon Space Telescope (ELBST)”, Stamenkovic, V., Grimm, R. E., Burgin, M. S., et al., “The Search for 2017LPICo1989.8214A ADS Liquid Water and Modern-Day Habitats in the Martian Subsurface”, Carpenter, K.
    [Show full text]