Novitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET NEW YORK, N.Y

Total Page:16

File Type:pdf, Size:1020Kb

Novitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET NEW YORK, N.Y NovitatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET NEW YORK, N.Y. 10024 U.S.A. NUMBER 2607 NOVEMBER 10, 1976 NORMAN I. PLATNICK AND WILLIS J. GERTSCH The Suborders of Spiders: A Cladistic Analysis (Arachnida, Araneae) k g - si 0,.00<t 0i 000:0::0; ,0;f\:Nv: ::l zA :::}-0%0, :; ;, :f 41$ 4 AMERICAN MUSEUM Novttates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2607, pp. 1-15, figs. 1-18 November 10, 1976 The Suborders of Spiders: A Cladistic Analysis (Arachnida, Araneae) NORMAN I. PLATNICK1 AND WILLIS J. GERTSCH2 "What, for instance, shall we do if we find fossils that are typical of the Mygalomorph and Arachnomorph forms save for the presence of segmentation? It is well within the bounds of possibility and we shall then have to decide whether a 'grandfather' is to be grouped with his descendants or 'his cousins'." -W. S. Bristowe, 1933, p. 1033 "The synthetic or evolutionary method of classification . agrees with cladistics in the postulate that as complete as possible a reconstruc- tion of phylogeny must precede the construction of a classification . ." -E. Mayr, 1974, p. 95 ABSTRACT The methods of phylogenetic systematics are group relationships (between the Liphistiidae applied to the problem of the subordinal classifi- and, in the first case all of, and in the second cation of spiders. Synapomorphies in external case some of, the mygalomorph spiders) docu- morphology, internal morphology, embryology, mented only by symplesiomorphic characters. and karyology indicate that the Liphistiidae A return to the earlier classification of Pocock, represent the sister group of all other Recent recognizing two suborders (Mesothelae and spiders. The two currently prevailing subordinal Opisthothelae) and two infraorders of Opistho- classifications of spiders (those of Bristowe and thelae (Mygalomorphae and Araneomorphae), Gertsch) are rejected because they imply sister is advocated. INTRODUCTION The present paper represents an attempt to be strictly monophyletic (i.e., must contain all examine the higher classification of spiders from species assumed to be descendants of a hypo- the viewpoint of phylogenetic systematics. The thetical ancestral species; Nelson, 1971, 1973) principles involved are that all named taxa must and that such groups can be recognized only by 'Assistant Curator, Department of Entomology, the American Museum of Natural History. 2Curator Emeritus, Department of Entomology, the American Museum of Natural History. Copyright i) The American Museum of Natural History 1976 ISSN 0003-0082 / Price $1.00 2 AMERICAN MUSEUM NOVITATES NO. 2607 the presence of shared, derived (synapomorphic) it can be shown that amblypygids and spiders characters and not by the presence of shared, are not each other's closest relatives, much of our primitive (symplesiomorphic) characters (Hennig, analysis may be falsified; we would point out, 1966). By this means, the reconstruction of however, that several authors who have recently phylogeny is placed on an objective basis, as it addressed the problem of the interrelationships involves character analysis only, and not (as seen of the various arachnid orders (Petrunkevitch, in one recent classification of araneomorph spi- 1955; Savory, 197 1; Firstman, 1973; Yoshikura, ders) the subjective recognition and evaluation of 1975) have supported this hypothesis. "basic patterns and evolutionary trends" (Leh- We thank Dr. Mohammad U. Shadab for pro- tinen, 1967, p. 204). The cladograms produced viding the illustration ofLiphistius, Mr. Robert J. differ from phylogenetic trees in that they do Koestler for assistance with the scanning electron not attempt to specify unknowable ancestor- microscope, and Dr. Herbert W. Levi of the descendant relationships or unmeasurable differ- Museum of Comparative Zoology, Harvard Uni- ences in genetic similarity; they are, however, versity, for the loan of specimens. Drs. W. S. Bris- predictions of general synapomorphy and are towe, R. R. Forster, H. W. Levi, and R. T. Schuh thus testable and potentially falsifiable (and read and commented on the manuscript. therefore scientific) hypotheses (Wiley, 1975). As Schaeffer, Hecht, and Eldredge (1972) HISTORY have pointed out, character analysis involves two separate processes, the recognition of transforma- Since the time of Pocock (1892) it has been tion series of homologous character states and recognized that the basic problem in the higher the determination of the polarity (primitive to classification of spiders centers around the derived sequence) of those transformation series; family Liphistiidae and its relationships; as he the first process presents no real difficulties for summarized it (pp. 307-308), "In the presence the characters described below. To determine of chitinous plates on the upper surface of the which of two or more homologous states is prim- abdomen and of two sternal plates on the an- itive and which derived, we have used two sources terior extremity of its under surface, in the of evidence, immediate out-group comparison extreme narrowness of the sternum, but above and ontogeny; where such evidence is unavailable all in the position and structure of its spinning- we have refrained from establishing polarities mammillae, Liphistius differs from all known and merely indicate that the character distribu- spiders; and no gradational forms are known tion supports the monophyly of one or the other which would lessen the value of these peculiari- of two taxa even though we do not know which. ties.... The isolated position that Liphistius The use of out-group comparison requires knowl- occupies with respect to other spiders can per- edge of the closest relative of the entire group haps be best expressed by setting it apart by under consideration, which in this case we sug- itself in a group equal in value to a group con- gest is the arachnid order Amblypygi. The taining all the others. For these I propose the hypothesis that spiders and amblypygids are names Mesothelae and Opisthothelae, the terms sister groups is supported by at least two appar- being derived from the position of the spinning- ently autapomorphic characters: they are the organs." A cladogram can be easily derived from only arachnids with subchelate chelicerae and Pocock's strictly subordinated classification with both a pumping pharynx and a pumping (fig. 1). stomach (Kaestner, 1968). We thus hypothesize Petrunkevitch (1923, pp. 150-152) reacted that any character state found in some but not to this classification: "Pocock's idea in separating all spiders and also in amblypygids is plesio- the Liphistiidae in a special sub-order Mesothelae morphic, and its homologs apomorphic; this hy- is undoubtedly sound, although the name chosen pothesis can be falsified in any particular case by by him is misleading and therefore objectionable. incongruence with more numerous synapomorphy . To correct this error and to make the names patterns, but only one such incongruence has more uniform, I shall call this first sub-order been detected in the characters used below. If Liphistiomorphae. ... One might regard all spi- CD °=- /Liphistiidae Mygalomorphae C0~ CD 0 qoQ CD O XArachnomorphae CD o CD~' CD * Liphistiomorphae 1CD 5_ . Mygalomorphae ca. xCD tr Arachnomorphae ;s 0oC, Liphistiomorphae oCso 0 Mygalomorphae CDCD*_ CA) ,,oe _j CD * Araneomorphae CD CD (including Liphistiidae) CD Ctenizoidea 4 AMERICAN MUSEUM NOVITATES NO. 2607 ders with an unsegmented abdomen as belonging Finally, Gertsch (1949) presented a classifica- to a sub-order equivalent in value and opposed tion accepting only two suborders (Mygalo- to the Liphistiomorphae. Without calling such a morphae and Araneomorphae) in which the group a sub-order, Pocock has applied to it the Liphistiidae are associatedwiththemygalomorph name Ophisthothelae. This, however, seems to families Mecicobothriidae, Antrodiaetidae, and me objectionable for two reasons: First, it would Atypidae in the superfamily Atypoidea and the necessitate the creation of divisions under the other mygalomorph families are associated in the sub-order, and, second, it would be reasonable superfamily Ctenizoidea (fig. 4). This scheme has only if the composition of the abdomen in all since won widespread acceptance by authors non-segmented spiders were the same. This, such as Archer (1948; although published prior however, is not only far from being certain, but to Gertsch's classification Archer credits Gertsch may altogether not be true. It is, for example, for the changes relevant here), Kaston (1972), known that the heart in Arachnomorph spiders Lehtinen (1975), and recently even Bristowe has three pairs of ostia, while in Mygalomorph (1976). Gertsch's classification appeared in a spiders it has four pairs." From these comments popular book, and the justification of it was and the classification he presented, it is evident intended for publication as part of a revision of that in 1923 Petrunkevitch accepted the mono- the North American Atypoidea that, for various phyly of Liphistiomorphae, Mygalomorphae, and reasons, has not yet been published. As the Arachnomorphae, but not of Opisthothelae; adoption of this classification has never been thus his scheme must be presented as a trichotomy adequately defended in print, we have thought (fig. 2). Among recent authors, Lehtinen has it best to begin the present analysis with a evidently accepted this scheme, as his dendro- summary of the arguments
Recommended publications
  • Arachnida: Araneae) by Monthly Census for 3 Years in Forest Areas of Yakushima Island, Japan
    Biodiversity Data Journal 5: e14789 doi: 10.3897/BDJ.5.e14789 Data Paper Specimen records of spiders (Arachnida: Araneae) by monthly census for 3 years in forest areas of Yakushima Island, Japan Takeshi Osawa‡‡, Yuki G Baba , Tatsumi Suguro§, Noriaki Naya |, Takeo Yamauchi¶ ‡ Institute for Agro-environmental Sciences, Tsukuba, Japan § Keio Yochisha Elementary School, Tokyo, Japan | Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan ¶ Museum of Nature and Human Activities, Hyogo, Sanda, Japan Corresponding author: Takeshi Osawa ([email protected]) Academic editor: Robert Mesibov Received: 29 Jun 2017 | Accepted: 18 Jul 2017 | Published: 25 Jul 2017 Citation: Osawa T, Baba Y, Suguro T, Naya N, Yamauchi T (2017) Specimen records of spiders (Arachnida: Araneae) by monthly census for 3 years in forest areas of Yakushima Island, Japan. Biodiversity Data Journal 5: e14789. https://doi.org/10.3897/BDJ.5.e14789 Abstract Background Spiders (Arachnida: Araneae) are a classic indicator taxon for evaluating the health of natural environments. However, studies of spiders’ responses to forest succession under natural and anthropogenic disturbance regimes are lacking. Yakushima Island in southwestern Japan has a unique forest ecosystem, and part of the island is designated as a world natural heritage site by UNESCO. Approximately 90% of Yakushima is covered by forest, including both plantations and natural forests. New information We made an inventory of spiders on Yakushima Island by collecting specimens in five forests (two plantations and three natural forests) with Malaise and window traps from 2006 to 2008 (a total of 637 traps). We collected 3487 specimens, representing 31 families and © Osawa T et al.
    [Show full text]
  • The Road Travelled by Australian Trapdoor Spiders
    Discovered words and photo by Mark Harvey, WA Museum ustralia is home to many unique spiders with most species occurring Anowhere else on Earth. Many have their origins in the distant past, when Australia was part of Gondwana in the Mesozoic, ca. 180 million years ago. Australia, New Zealand, South America, Africa, Madagascar, Antarctica and the Indian sub-continent, plus a few small islands, once formed a massive southern supercontinent known as Gondwana that gradually fragmented from the Jurassic, ca. 180–160 million years ago. Evidence of the connection between these continental blocks can be found in the fossil record The road travelled by Australian of some plants and animals, but most strikingly in the presence of related groups trapdoor spiders of organisms in the modern biota. But back to spiders. There are three major groups of spiders: the Mesothelae (a Australia that lives in shallow burrows with Above An undescribed species of Conothele. group of primitive spiders now only found in a flap-like lid. It was discovered by Adelaide Asia), the Mygalomorphae (trapdoor spiders University PhD student, Sophie Harrison, and their relatives) and the Araneomorphae to be most closely related to spiders of (all other spiders). The Australian the same genus from South Africa. Using timeline of Australia bumping into Asia. mygalomorphs include trapdoor, funnel- molecular sequence data, Sophie found that He also noted that there were two distinct web and mouse spiders, and tarantulas. the spider, Moggridgea rainbowi, diverged habitat preferences for Australian Conothele. Most Australian mygalomorph spiders from its African cousins sometime between Some species built burrows on tree trunks have their origins in Gondwana.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D.
    [Show full text]
  • Prey of the Jumping Spider Phidippus Johnsoni (Araneae : Salticidae)
    Jackson, R. R . 1977 . Prey of the jumping spider Phidippus johnsoni (Araneae : Salticidae) . J. Arachnol. 5 :145-149 . PREY OF THE JUMPING SPIDER PHIDIPPUS JOHNSONI (ARANEAE : SALTICIDAE) Robert R. Jackson I Zoology Departmen t University of Californi a Berkeley, California 9472 0 ABSTRACT Field data indicate that P. johnsoni is an euryphagous predator, whose diet includes organisms (aphids, ants, opilionids) sometimes considered distasteful to spiders . Other spiders are preyed upon , including conspecifics. Prey size tends to be one quarter to three quarters the size of the predator . INTRODUCTION Since spiders are probably a dominant group of predators of insects (Bristowe, 1941 ; Riechert, 1974; Turnbull, 1973), there is considerable interest in their feeding ecology . Spiders have usually been considered to be euryphagous predators with a stabilizing , rather than regulative, effect on insect populations (Riechert, 1974) . However, informa- tion concerning the prey taken by particular spider species, in the field, is limited . Field studies by Edgar (1969, 1970), Robinson and Robinson (1970) and Turnbull (1960) are especially noteworthy . During the course of a study of the reproductive biology of Phidippus johnsoni (Peckham and Peckham) (Jackson, 1976), occasionally individuals of this species were found in the field holding prey in their chelicerae . Each prey discovered in this way i s listed in Table 1 . In addition, Ken Evans and Charles Griswold, who were familiar wit h this species, recorded observations of P. johnsoni with prey. (Their data are included in Table 1 .) These data came from a variety of habitats in western North America, most o f which have been described elsewhere (Jackson, 1976) .
    [Show full text]
  • Malelane Safari Lodge, Kruger National Park
    INVERTEBRATE SPECIALIST REPORT Prepared For: Malelane Safari Lodge, Kruger National Park Dalerwa Ventures for Wildlife cc P. O. Box 1424 Hoedspruit 1380 Fax: 086 212 6424 Cell (Elize) 074 834 1977 Cell (Ian): 084 722 1988 E-mail: [email protected] [email protected] Table of Contents 1. EXECUTIVE SUMMARY ............................................................................................................................ 3 2. INTRODUCTION ........................................................................................................................................... 5 2.1 DESCRIPTION OF PROPOSED PROJECT .................................................................................................................... 5 2.1.1 Safari Lodge Development .................................................................................................................... 5 2.1.2 Invertebrate Specialist Report ............................................................................................................... 5 2.2 TERMS OF REFERENCE ......................................................................................................................................... 6 2.3 DESCRIPTION OF SITE AND SURROUNDING ENVIRONMENT ......................................................................................... 8 3. BACKGROUND ............................................................................................................................................. 9 3.1 LEGISLATIVE FRAMEWORK ..................................................................................................................................
    [Show full text]
  • North American Spiders of the Genera Cybaeus and Cybaeina
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital... BULLETIN OF THE UNIVERSITY OF UTAH Volume 23 December, 1932 No. 2 North American Spiders of the Genera Cybaeus and Cybaeina BY RALPH V. CHAMBERLIN and WILTON IVIE BIOLOGICAL SERIES, Vol. II, No. / - PUBLISHED BY THE UNIVERSITY OF UTAH SALT LAKE CITY THE UNIVERSITY PRESS UNIVERSITY OF UTAH SALT LAKE CITY A Review of the North American Spider of the Genera Cybaeus and Cybaeina By R a l p h V. C h a m b e r l i n a n d W i l t o n I v i e The frequency with which members of the Agelenid genus Cybaeus appeared in collections made by the authors in the mountainous and timbered sections of the Pacific coast region and the representations therein of various apparently undescribed species led to the preparation of this review of the known North American forms. One species hereto­ fore placed in Cybaeus is made the type of a new genus Cybaeina. Most of our species occur in the western states; and it is probable that fur­ ther collecting in this region will bring to light a considerable number of additional forms. The drawings accompanying the paper were made from specimens direct excepting in a few cases where material was not available. In these cases the drawings were copied from the figures published by the authors of the species concerned, as indicated hereafter in each such case, but these drawings were somewhat revised to conform with the general scheme of the other figures in order to facilitate comparison.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • The Effects of Native and Non-Native Grasses on Spiders, Their Prey, and Their Interactions
    Spiders in California’s grassland mosaic: The effects of native and non-native grasses on spiders, their prey, and their interactions by Kirsten Elise Hill A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the GRADUATE DIVISION of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Rosemary G. Gillespie Professor Mary E. Power Spring 2014 © 2014 Abstract Spiders in California’s grassland mosaic: The effects of native and non-native grasses on spiders, their prey, and their interactions by Kirsten Elise Hill Doctor of Philosophy in Environmental Science and Policy Management University of California, Berkeley Professor Joe R. McBride, Chair Found in nearly all terrestrial ecosystems, small in size and able to occupy a variety of hunting niches, spiders’ consumptive effects on other arthropods can have important impacts for ecosystems. This dissertation describes research into spider populations and their interactions with potential arthropod prey in California’s native and non-native grasslands. In meadows found in northern California, native and non-native grassland patches support different functional groups of arthropod predators, sap-feeders, pollinators, and scavengers and arthropod diversity is linked to native plant diversity. Wandering spiders’ ability to forage within the meadow’s interior is linked to the distance from the shaded woodland boundary. Native grasses offer a cooler conduit into the meadow interior than non-native annual grasses during midsummer heat. Juvenile spiders in particular, are more abundant in the more structurally complex native dominated areas of the grassland.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Download Download
    Behavioral Ecology Symposium ’96: Cushing 165 MYRMECOMORPHY AND MYRMECOPHILY IN SPIDERS: A REVIEW PAULA E. CUSHING The College of Wooster Biology Department 931 College Street Wooster, Ohio 44691 ABSTRACT Myrmecomorphs are arthropods that have evolved a morphological resemblance to ants. Myrmecophiles are arthropods that live in or near ant nests and are considered true symbionts. The literature and natural history information about spider myrme- comorphs and myrmecophiles are reviewed. Myrmecomorphy in spiders is generally considered a type of Batesian mimicry in which spiders are gaining protection from predators through their resemblance to aggressive or unpalatable ants. Selection pressure from spider predators and eggsac parasites may trigger greater integration into ant colonies among myrmecophilic spiders. Key Words: Araneae, symbiont, ant-mimicry, ant-associates RESUMEN Los mirmecomorfos son artrópodos que han evolucionado desarrollando una seme- janza morfológica a las hormigas. Los Myrmecófilos son artrópodos que viven dentro o cerca de nidos de hormigas y se consideran verdaderos simbiontes. Ha sido evaluado la literatura e información de historia natural acerca de las arañas mirmecomorfas y mirmecófilas . El myrmecomorfismo en las arañas es generalmente considerado un tipo de mimetismo Batesiano en el cual las arañas están protegiéndose de sus depre- dadores a través de su semejanza con hormigas agresivas o no apetecibles. La presión de selección de los depredadores de arañas y de parásitos de su saco ovopositor pueden inducir una mayor integración de las arañas mirmecófílas hacia las colonias de hor- migas. Myrmecomorphs and myrmecophiles are arthropods that have evolved some level of association with ants. Myrmecomorphs were originally referred to as myrmecoids by Donisthorpe (1927) and are defined as arthropods that mimic ants morphologically and/or behaviorally.
    [Show full text]
  • Hemolymph and Hemocytes of Tarantula Spiders: Physiological Roles and Potential As Sources of Bioactive Molecules
    In: Advances in Animal Science and Zoology. Volume 8 ISBN: 978-1-63483-552-7 Editor: Owen P. Jenkins © 2015 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 8 HEMOLYMPH AND HEMOCYTES OF TARANTULA SPIDERS: PHYSIOLOGICAL ROLES AND POTENTIAL AS SOURCES OF BIOACTIVE MOLECULES Tatiana Soares, Thiago H. Napoleão, Felipe R. B. Ferreira and Patrícia M. G. Paiva∗ Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil ABSTRACT Arachnids compose the most important and numerous group of chelicerates and include spiders, scorpions, mites and ticks. Some arachnids have a worldwide distribution and can live for more than two decades. This is in part due to their efficient defense system, with an innate immunity that acts as a first line of protection against bacterial, fungal and viral pathogens. The adaptive success of the spiders stimulates the study of their defense mechanisms at cellular and molecular levels with both biological and biotechnological purposes. The hemocytes (plasmatocytes, cyanocytes, granulocytes, prohemocytes, and leberidocytes) of spiders are responsible for phagocytosis, nodulation, and encapsulation of pathogens as well as produce substances that mediate humoral mechanisms such as antimicrobial peptides and factors involved in the coagulation of hemolymph and melanization of microorganisms.
    [Show full text]
  • Phylogenomic Analysis and Revised Classification of Atypoid Mygalomorph Spiders (Araneae, Mygalomorphae), with Notes on Arachnid Ultraconserved Element Loci
    Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci Marshal Hedin1, Shahan Derkarabetian1,2,3, Adan Alfaro1, Martín J. Ramírez4 and Jason E. Bond5 1 Department of Biology, San Diego State University, San Diego, CA, United States of America 2 Department of Biology, University of California, Riverside, Riverside, CA, United States of America 3 Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America 4 Division of Arachnology, Museo Argentino de Ciencias Naturales ``Bernardino Rivadavia'', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 5 Department of Entomology and Nematology, University of California, Davis, CA, United States of America ABSTRACT The atypoid mygalomorphs include spiders from three described families that build a diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs, trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally supported the monophyly of Atypoidea, but prior studies have not sampled all relevant taxa. Here we generated a dataset of ultraconserved element loci for all described atypoid genera, including taxa (Mecicobothrium and Hexurella) key to understanding familial monophyly, divergence times, and patterns of entrance web evolution. We show that the conserved regions of the arachnid UCE probe set target exons, such that it should be possible to combine UCE and transcriptome datasets in arachnids. We also show that different UCE probes sometimes target the same protein, and under the matching parameters used here show that UCE alignments sometimes include non- Submitted 1 February 2019 orthologs. Using multiple curated phylogenomic matrices we recover a monophyletic Accepted 28 March 2019 Published 3 May 2019 Atypoidea, and reveal that the family Mecicobothriidae comprises four separate and divergent lineages.
    [Show full text]