The Road Travelled by Australian Trapdoor Spiders

Total Page:16

File Type:pdf, Size:1020Kb

The Road Travelled by Australian Trapdoor Spiders Discovered words and photo by Mark Harvey, WA Museum ustralia is home to many unique spiders with most species occurring Anowhere else on Earth. Many have their origins in the distant past, when Australia was part of Gondwana in the Mesozoic, ca. 180 million years ago. Australia, New Zealand, South America, Africa, Madagascar, Antarctica and the Indian sub-continent, plus a few small islands, once formed a massive southern supercontinent known as Gondwana that gradually fragmented from the Jurassic, ca. 180–160 million years ago. Evidence of the connection between these continental blocks can be found in the fossil record The road travelled by Australian of some plants and animals, but most strikingly in the presence of related groups trapdoor spiders of organisms in the modern biota. But back to spiders. There are three major groups of spiders: the Mesothelae (a Australia that lives in shallow burrows with Above An undescribed species of Conothele. group of primitive spiders now only found in a flap-like lid. It was discovered by Adelaide Asia), the Mygalomorphae (trapdoor spiders University PhD student, Sophie Harrison, and their relatives) and the Araneomorphae to be most closely related to spiders of (all other spiders). The Australian the same genus from South Africa. Using timeline of Australia bumping into Asia. mygalomorphs include trapdoor, funnel- molecular sequence data, Sophie found that He also noted that there were two distinct web and mouse spiders, and tarantulas. the spider, Moggridgea rainbowi, diverged habitat preferences for Australian Conothele. Most Australian mygalomorph spiders from its African cousins sometime between Some species built burrows on tree trunks have their origins in Gondwana. The highly two and 16 million years ago – way too in tropical Australia, but others dug burrows venomous Sydney funnel-web spider (Atrax late to have been the result of Gondwanan in the soil. This second group used this robustus) and its relatives only occur in continental drift. Sophie and her co-authors amazing behavioural shift to colonise the eastern Australia (and many species are most speculated that the spider rafted its way to majority of the Australian arid zone. likely to have been impacted by the recent southern Australia on a big chunk of soil or He and his colleagues also found that disastrous fires). Mouse spiders (genus in a floating log, sealed inside its tube to there were plenty of species. Many could be Missulena) occur only in mainland Australia, avoid salt water and desiccation. This voyage recognised using morphological differences, with their nearest relatives in South America. of several thousand kilometres to a new life mostly in the adult males. But others were The spiny trapdoor spiders (family Idiopidae) in Australia is one of the longest recorded discovered using the DNA data. Distinct are found all over Australia, with their journeys of a mygalomorph spider. groups could be seen in the phylogenetic closest relatives in South America, Africa and The second pattern was studied by Joel tree (which looks like a family genealogy) Madagascar. The pygmy trapdoor spiders Huey and his colleagues from the Western and each is thought to be an independent (family Migidae) occur in eastern and south- Australian Museum, who examined the species. The variation was so great that western Australia, but also in South America, genus Conothele. It’s long been suspected it looks like there at least 60 species. And Africa and Madagascar. This pattern recurs that Conothele arrived from Asia during unfortunately not a single one of these has throughout the Australian mygalomorph the Cenozoic era when Australia was yet been named in the scientific literature. fauna suggesting that the majority of in close proximity to Asia, enabling the This diverse group awaits a detailed study families have been in Australia for at least spiders to island hop, especially when sea and the use of a good Latin dictionary to 180 million years. levels were low. Conothele is widespread find some euphonious species names. However, some recent studies have throughout south-east Asia, including The biological road to Australia has found different geographic patterns that various Indonesian islands. Joel found that been paved by ancient Gondwanan show that they haven’t been here the entire the entire Australian fauna only arrived relicts, followed by ring-ins from Asia and time and are relatively recent interlopers. some 20 million years ago. Once again, elsewhere. Mygalomorph spiders show The first pattern is that of a small migid this is way too young to be the result of a these distinct patterns, making them ideal spider found on Kangaroo Island in South Gondwanan origin but perfectly fits the subjects of further study. LANDSCOPE 11.
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Prey of the Jumping Spider Phidippus Johnsoni (Araneae : Salticidae)
    Jackson, R. R . 1977 . Prey of the jumping spider Phidippus johnsoni (Araneae : Salticidae) . J. Arachnol. 5 :145-149 . PREY OF THE JUMPING SPIDER PHIDIPPUS JOHNSONI (ARANEAE : SALTICIDAE) Robert R. Jackson I Zoology Departmen t University of Californi a Berkeley, California 9472 0 ABSTRACT Field data indicate that P. johnsoni is an euryphagous predator, whose diet includes organisms (aphids, ants, opilionids) sometimes considered distasteful to spiders . Other spiders are preyed upon , including conspecifics. Prey size tends to be one quarter to three quarters the size of the predator . INTRODUCTION Since spiders are probably a dominant group of predators of insects (Bristowe, 1941 ; Riechert, 1974; Turnbull, 1973), there is considerable interest in their feeding ecology . Spiders have usually been considered to be euryphagous predators with a stabilizing , rather than regulative, effect on insect populations (Riechert, 1974) . However, informa- tion concerning the prey taken by particular spider species, in the field, is limited . Field studies by Edgar (1969, 1970), Robinson and Robinson (1970) and Turnbull (1960) are especially noteworthy . During the course of a study of the reproductive biology of Phidippus johnsoni (Peckham and Peckham) (Jackson, 1976), occasionally individuals of this species were found in the field holding prey in their chelicerae . Each prey discovered in this way i s listed in Table 1 . In addition, Ken Evans and Charles Griswold, who were familiar wit h this species, recorded observations of P. johnsoni with prey. (Their data are included in Table 1 .) These data came from a variety of habitats in western North America, most o f which have been described elsewhere (Jackson, 1976) .
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Spider Biology Unit
    Spider Biology Unit RET I 2000 and RET II 2002 Sally Horak Cortland Junior Senior High School Grade 7 Science Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Spider Biology Unit Overview Grade level- 7th grade life science- heterogeneous classes Theme- The theme of this unit is to understand the connection between form and function in living things and to investigate what humans can learn from other living things. Schedule- projected time for this unit is 3 weeks Outline- *Activity- Unique spider facts *PowerPoint presentation giving a general overview of the biology of spiders with specific examples of interest *Lab- Spider observations *Cross-discipline activity #1- Spider short story *Activity- Web Spiders and Wandering spiders *Project- create a 3-D model of a spider that is anatomically correct *Project- research a specific spider and create a mini-book of information. *Activity- Spider defense pantomime *PowerPoint presentation on Spider Silk *Lab- Fiber Strength and Elasticity *Lab- Polymer Lab *Project- Spider silk challenge Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Correlation to the NYS Intermediate Level Science Standards (Core Curriculum, Grades 5-8): General Skills- #1. Follow safety procedures in the classroom and laboratory. #2. Safely and accurately use the following measurement tools- Metric ruler, triple beam balance #3. Use appropriate units for measured or calculated values #4. Recognize and analyze patterns and trends #5. Classify objects according to an established scheme and a student-generated scheme.
    [Show full text]
  • Species Delimitation and Phylogeography of Aphonopelma Hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas
    Species Delimitation and Phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas Chris A. Hamilton1*, Daniel R. Formanowicz2, Jason E. Bond1 1 Auburn University Museum of Natural History and Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America, 2 Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America Abstract Background: The primary objective of this study is to reconstruct the phylogeny of the hentzi species group and sister species in the North American tarantula genus, Aphonopelma, using a set of mitochondrial DNA markers that include the animal ‘‘barcoding gene’’. An mtDNA genealogy is used to consider questions regarding species boundary delimitation and to evaluate timing of divergence to infer historical biogeographic events that played a role in shaping the present-day diversity and distribution. We aimed to identify potential refugial locations, directionality of range expansion, and test whether A. hentzi post-glacial expansion fit a predicted time frame. Methods and Findings: A Bayesian phylogenetic approach was used to analyze a 2051 base pair (bp) mtDNA data matrix comprising aligned fragments of the gene regions CO1 (1165 bp) and ND1-16S (886 bp). Multiple species delimitation techniques (DNA tree-based methods, a ‘‘barcode gap’’ using percent of pairwise sequence divergence (uncorrected p- distances), and the GMYC method) consistently recognized a number of divergent and genealogically exclusive groups. Conclusions: The use of numerous species delimitation methods, in concert, provide an effective approach to dissecting species boundaries in this spider group; as well they seem to provide strong evidence for a number of nominal, previously undiscovered, and cryptic species.
    [Show full text]
  • Arachnids) Physical Identification Spiders (Order Araneae
    SPIDERS (Arachnids) Physical Identification Spiders (order Araneae) are air-breathing arthropods that have eight legs and chelicerae with fangs that inject venom. They are the largest order of arachnids and rank seventh in total species diversity among all other orders of organisms. Spiders are found worldwide on every continent except for Antarctica, and have become established in nearly every habitat with the exceptions of air and sea colonization. As of November 2015, at least 45,700 spider species, and 113 families have been recorded by taxonomists. However, there has been dissension within the scientific community as to how all these families should be classified, as evidenced by the over 20 different classifications that have been proposed since 1900. Anatomically, spiders differ from other arthropods in that the usual body segments are fused into two tagmata, the cephalothorax and abdomen, and joined by a small, cylindrical pedicel. Unlike insects, spiders do not have antennae. In all except the most primitive group, the Mesothelae, spiders have the most centralized nervous systems of all arthropods, as all their ganglia are fused into one mass in the cephalothorax. Unlike most arthropods, spiders have no extensor muscles in their limbs and instead extend them by hydraulic pressure. Their abdomens bear appendages that have been modified into spinnerets that extrude silk from up to six types of glands. Spider webs vary widely in size, shape and the amount of sticky thread used. It now appears that the spiral orb web may be one of the earliest forms, and spiders that produce tangled cobwebs are more abundant and diverse than orb-web spiders.
    [Show full text]
  • Spiders 27 November-5 December 2018 Submitted: August 2019 Robert Raven
    Bush Blitz – Namadgi, ACT 27 Nov-5 Dec 2018 Namadgi, ACT Bush Blitz Spiders 27 November-5 December 2018 Submitted: August 2019 Robert Raven Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 12 Bush Blitz – Namadgi, ACT 27 Nov-5 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 2 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 4 2.1 Site selection ............................................................................................................. 4 2.2 Survey techniques ..................................................................................................... 4 2.2.1 Methods used at standard survey sites ................................................................... 5 2.3 Identifying the collections .........................................................................................
    [Show full text]
  • The Complete Mitochondrial Genome of Endemic Giant Tarantula
    www.nature.com/scientificreports OPEN The Complete Mitochondrial Genome of endemic giant tarantula, Lyrognathus crotalus (Araneae: Theraphosidae) and comparative analysis Vikas Kumar, Kaomud Tyagi *, Rajasree Chakraborty, Priya Prasad, Shantanu Kundu, Inderjeet Tyagi & Kailash Chandra The complete mitochondrial genome of Lyrognathus crotalus is sequenced, annotated and compared with other spider mitogenomes. It is 13,865 bp long and featured by 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and a control region (CR). Most of the PCGs used ATN start codon except cox3, and nad4 with TTG. Comparative studies indicated the use of TTG, TTA, TTT, GTG, CTG, CTA as start codons by few PCGs. Most of the tRNAs were truncated and do not fold into the typical cloverleaf structure. Further, the motif (CATATA) was detected in CR of nine species including L. crotalus. The gene arrangement of L. crotalus compared with ancestral arthropod showed the transposition of fve tRNAs and one tandem duplication random loss (TDRL) event. Five plesiomophic gene blocks (A-E) were identifed, of which, four (A, B, D, E) retained in all taxa except family Salticidae. However, block C was retained in Mygalomorphae and two families of Araneomorphae (Hypochilidae and Pholcidae). Out of 146 derived gene boundaries in all taxa, 15 synapomorphic gene boundaries were identifed. TreeREx analysis also revealed the transposition of trnI, which makes three derived boundaries and congruent with the result of the gene boundary mapping. Maximum likelihood and Bayesian inference showed similar topologies and congruent with morphology, and previously reported multi-gene phylogeny. However, the Gene-Order based phylogeny showed sister relationship of L.
    [Show full text]
  • Western Australian Maritime Museum
    Western Australian Museum Annual Report 2004-2005 Jandamarra Crossing Artists: Alwin Reamillo and Roselin Eaton Photograph by Norman Bailey © Western Australian Museum, 2005 Coordinated by Ann Ousey and Nick Mayman Edited by Roger Bourke Designed by Charmaine Cave Layout by Gregory Jackson Published by the Western Australian Museum Locked Bag 49, Welshpool DC, Western Australia 6986 49 Kew Street, Welshpool, Western Australia 6106 www.museum.wa.gov.au ISSN 0083-87212204-6127 Cover: Jandamarra Crossing Artists: Alwin Reamillo, Filipino Australian, and Roselin Eaton, Walmajarri, 2003 Mixed media installation, including bamboo, beer cans, rubber tyre tubing, flicker-flame resin cast heart with electric component, motorised propeller with electrical component, motion sensor and organic material including emu feet, kangaroo leg, bush turkey feathers. Miniature landscape comprises plastic/rubber animals, miniature helicopters and termite mounds. This five-metre hybrid helicopter reflects the story of Jandamarra or Pigeon, a young Bunuba hero who led the resistance against the invasion and pastoral occupation of Aboriginal lands in the Kimberley in the 1890s. Jandamarra was an exceptional marksman and his improvised manufacture of ammunition using found materials, as well as his ability to evade capture by the authorities earned him a reputation that has become legend. He was said to be able to fly like a bird and disappear like a ghost. The helicopter is also a visual reference to the importance of aerial mustering as part of the pastoral industry in which so many Bunaba people continue to be involved. Initially proposed as an experiment in collaborative art-making with mature age students at Karrayili Adult Education Centre, the project was developed by accomplished Filipino Australian artist and teacher Alwin Reamillo, with Roselin Eaton, an Walmajarri artist, student and arts worker.
    [Show full text]
  • A Remarkable Example of Trans-Oceanic Dispersal in an Austral Mygalomorph Spider
    Edith Cowan University Research Online ECU Publications Post 2013 8-2-2017 Across the Indian Ocean: A remarkable example of trans-oceanic dispersal in an austral mygalomorph spider Sophie E. Harrison Mark S. Harvey Edith Cowan University Steve J.B. Cooper Andrew D. Austin Michael G. Rix Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013 Part of the Other Animal Sciences Commons 10.1371/journal.pone.0180139 Harrison, S. E., Harvey, M. S., Cooper, S. J., Austin, A. D., & Rix, M. G. (2017). Across the Indian Ocean: A remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PloS one, 12(8), e0180139. https://doi.org/10.1371/journal.pone.0180139 This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ecuworkspost2013/3079 RESEARCH ARTICLE Across the Indian Ocean: A remarkable example of trans-oceanic dispersal in an austral mygalomorph spider Sophie E. Harrison1*, Mark S. Harvey2,3,4, Steve J. B. Cooper1,5, Andrew D. Austin1, Michael G. Rix1,2,6 1 Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia, 2 Department of Terrestrial Zoology, Western Australian Museum, Welshpool DC, WA, Australia, 3 School of Biology, The University of Western Australia, Crawley, WA, a1111111111 Australia, 4 School of Natural Sciences, Edith Cowan University, Joondalup, WA, Australia, 5 Evolutionary a1111111111 Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, Australia, 6 Biodiversity and a1111111111 Geosciences Program, Queensland Museum, South Brisbane, QLD, Australia a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS The Migidae are a family of austral trapdoor spiders known to show a highly restricted and Citation: Harrison SE, Harvey MS, Cooper SJB, disjunct distribution pattern.
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Onetouch 4.0 Sanned Documents
    Anna. Rev. Ecol. Swf. 1991. 22:565-92 SYSTEMATICS AND EVOLUTION OF SPIDERS (ARANEAE)* • Jonathan A. Coddington Department of Entomology, National Museum of Natural History. Smithsonian Institution, Washington, DC 20560 Herbert W. Levi Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 KEY WORDS: taxonomy, phytogeny, cladistics, biology, diversity INTRODUCTION In the last 15 years understanding of the higher systematics of Araneae has changed greatly. Large classical superfamilies and families have turned out to be poly- or paraphyletic; posited relationships were often based on sym- plesiomorphies. In this brief review we summarize current taxonomic and phylogenetic knowledge and suggest where future efforts might profitably be concentrated. We lack space to discuss fully all the clades mentioned, and the cited numbers of described taxa are only approximate. Other aspects of spider biology have been summarized by Barth (7), Eberhard (47), Jackson & Parks (72), Nentwig (105), Nyffeler & Benz (106), Riechert & Lockley (134), Shear (149) and Turnbull (160). Diversity, Paleontology, Descriptive Work, Importance The order Araneae ranks seventh in global diversity after the five largest insect orders (Coleoptera, Hymenoptera, Lepidoptera, Diptera, Hemiptera) and Acari among the arachnids (111) in terms of species described or an- *The US government has the right to retain a nonexclusive, royalty free license in and to any copyright covering this paper. 565 566 CODDINGTON & LEVI ticipated. Spiders are among the most diverse groups on earth. Among these taxa, spiders are exceptional for their complete dependence on predation as a trophic strategy. In contrast, the diversity of insects and mites may result from their diversity in dietary strategies•notably phytophagy and parasitism (104).
    [Show full text]