Frequently Asked Questions About Mold
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“The Key to Mold Control Is Moisture Control.”
MOLD U.S. Department of Housing and Urban Development • Office of Healthy Homes and Lead Hazard Control “The key to mold control is moisture control.” U.S. Environmental Protection Agency Does your home have...? ■ Stains or discoloration on your walls, ceiling, or furniture? ■ A damp or musty smell? ■ Water problems like a leaky roof or water in the basement? What is it? Molds are alive. There are hundreds of thousands of different types of mold. They are living organisms that grow naturally, particularly in warm, damp, humid conditions where there is little air movement. Often called “mildew,” molds are related to mushrooms and yeast but are much smaller— we can only see or smell mold when there is a large quantity. Mold can grow almost anywhere: on walls, ceilings, carpets, or furniture. Humidity or wetness, caused by water leaks, spills from bathtubs or showers, or condensation, can cause mold to grow in your home. Mold produces “spores,” tiny particles that float through the air. These can sometimes cause health problems. Mold does not affect everyone, and different people are affected differently when mold is breathed or inhaled. People who are allergic to mold may get watery eyes, runny or stuffed noses, itching, headaches, and may have difficulty breathing. Mold can also trigger asthma attacks (see “Asthma” fact sheet). Some molds produce toxins (poisons) that may be hazardous if people are exposed to large amounts of these molds. continued on back www.hud.gov/offices/lead U.S. Department of Housing and Urban Development MOLD Office of Healthy Homes and Lead Hazard Control Moldy materials that cannot be cleaned should be What can you do? thrown away. -
Nomination Background: Stachybotrys Chartarum Strain 2 Mold (Atranone Chemotype) (CASRN: STACHYSTRN2)
Stachybotrys chartarum (or S. atra or S. alternans) [CAS No. 67892-26-6] Review of Toxicological Literature June 2004 Stachybotrys chartarum (or S. atra or S. alternans) [CAS No. 67892-26-6] Review of Toxicological Literature Prepared for National Toxicology Program (NTP) National Institute of Environmental Health Sciences (NIEHS) National Institutes of Health U.S Department of Health and Human Services Contract No. N01-ES-35515 Project Officer: Scott A. Masten, Ph.D. NTP/NIEHS Research Triangle Park, North Carolina Prepared by Integrated Laboratory Systems, Inc. Research Triangle Park, North Carolina June 2004 Abstract Stachybotrys chartarum is a greenish-black mold in the fungal division Deuteromycota, a catch-all group for fungi for which a sexually reproducing stage is unknown. It produces asexual spores (conidia). The morphology and color of conidia and other structures examined microscopically help distinguish the species from other molds found in indoor air that may contaminate materials in buildings that have suffered water intrusion. S. chartarum may ultimately overgrow other molds that have also produced colonies on wet cellulosic materials such as drywall (gypsum board, wallboard, sheet rock, etc.). Because of the likelihood that it may produce toxic macrocyclic trichothecenes and hemolytic stachylysin (exposure to which may be associated with idiopathic pulmonary hemorrhage [IPH] in infants), S. chartarum exposure is of concern to the members of the general public whose homes and workplaces have been contaminated after water intrusion, to agricultural and textile workers who handle contaminated plant material, and to workers involved in remediation of mold-damaged structures. Dry conidia, hyphae, and other fragments can be mechanically aerosolized as inhalable particulates. -
Indoor Mold and Health a Fungus Among Us
Indoor Mold and Health A Fungus among Us This article addresses some of the most common questions and concerns about indoor mold, how it affects human health and ways in which you can prevent or remove it. What are molds? Molds are types of fungi. They grow in the natural environment. Tiny particles of molds are found everywhere in indoor and outdoor air. In nature, molds help break down dead materials and can be found growing on soil, foods, plants and other items. Molds are also very common in buildings and homes. Mold needs moisture to grow. Indoors, mold growth can be found where humidity levels are high, like basements and showers. Molds produce microscopic cells called “spores” that are spread easily through the air. Spores can also be spread by water and insects. Live spores act like seeds, forming new mold colonies when they find the right conditions. What makes mold grow? Mold only needs a few things to grow and multiply: ●Nutrients (food) ●A suitable place to grow ●Moisture Many building materials (such as wood, sheetrock, etc.) provide food that can support mold growth. Even dust that has settled on these materials or furniture can be a food source for molds. Molds can grow almost anywhere there is enough moisture or high humidity. Controlling moisture is the key to stopping indoor mold growth, because all molds require water to grow. Moisture can come from: ●Flooding from the outside (storm water, overflowing lakes, streams, storm surge, etc.) ●Flooding from the indoors (overflow from sinks, tubs, toilets, air conditioner -
Mold and Indoor Air Quality in Schools
Mold and Indoor Air Quality in Schools University of Nebraska—Lincoln Extension Indoor Air Quality (IAQ) Air quality can be affected by many compounds and organisms Molds and other indoor air pollutants can have negative effects on occupants’ health Some indoor air pollutants can be triggers for asthma ¾A lung disease that, when triggered, can result in severe, acute attacks that can be life threatening 1995 GEO Report… Over 50% of the nation’s schools have poor ventilation and significant sources of pollution in buildings Photo: USDA Factors Affecting IAQ Tighter building construction or remodeling of old structures ¾ Energy efficient practices without adequate ventilation and humidity control Synthetic building materials and furnishings Chemical products used indoors ¾ Some give off Volatile Organic Compounds (VOCs) Pests – Cockroaches, rodents Dust mites and other components of dust Animals – classroom pets Factors Affecting IAQ Pollen Secondhand smoke and combustion High humidity, condensation, leaking roofs (and other parts of buildings) cause moisture problems when food (organic matter) and other conditions are present Moisture Time Mold! Photo: University of Nebraska Leaking Roofs and Buildings Allow Entry of: Moisture Insects Rodents Organic materials (i.e. soil) Pollutants Photo: University of Nebraska Potential Air Pollution Sources Inadequately vented gas appliances Formaldehyde from new building products Other products, including pesticides Health Consequences of Poor Indoor Air Quality Short-term health effects of pollutants: -
Savoryellales (Hypocreomycetidae, Sordariomycetes): a Novel Lineage
Mycologia, 103(6), 2011, pp. 1351–1371. DOI: 10.3852/11-102 # 2011 by The Mycological Society of America, Lawrence, KS 66044-8897 Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella Nattawut Boonyuen1 Canalisporium) formed a new lineage that has Mycology Laboratory (BMYC), Bioresources Technology invaded both marine and freshwater habitats, indi- Unit (BTU), National Center for Genetic Engineering cating that these genera share a common ancestor and Biotechnology (BIOTEC), 113 Thailand Science and are closely related. Because they show no clear Park, Phaholyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120, Thailand, and Department of relationship with any named order we erect a new Plant Pathology, Faculty of Agriculture, Kasetsart order Savoryellales in the subclass Hypocreomyceti- University, 50 Phaholyothin Road, Chatuchak, dae, Sordariomycetes. The genera Savoryella and Bangkok 10900, Thailand Ascothailandia are monophyletic, while the position Charuwan Chuaseeharonnachai of Ascotaiwania is unresolved. All three genera are Satinee Suetrong phylogenetically related and form a distinct clade Veera Sri-indrasutdhi similar to the unclassified group of marine ascomy- Somsak Sivichai cetes comprising the genera Swampomyces, Torpedos- E.B. Gareth Jones pora and Juncigera (TBM clade: Torpedospora/Bertia/ Mycology Laboratory (BMYC), Bioresources Technology Melanospora) in the Hypocreomycetidae incertae -
Stachybotrys Chartarum
Fungi General Characteristics • Primarily terrestrial • Filamentous • __________ • Coenocytic (aseptate) • septate • mycelium • Haustoria – specialized parasitic hyphae Fungal Hyphae General Characteristics (animal-like) • Heterotrophic • absorption (saprobes) • parasitic • mutualistic • Cell Wall:______ • Store sugar as glycogen Fungal Reproduction • Asexual • haploid spores (conidia/sporangia) • Sexual • hyphae (haploid) • Syngamy (diploid) – (like us) • ______________ (dikaryon) (Heterokaryon) • karyogamy (diploid) Fugal Reproduction Fungal Classification Division: Chytridiomycota • Have _______ (rare in fungi) • Coenocytic hyphae or unicellular • Cell wall: chitin • Saprobes or parasites • May be most primitive fungi Division: Zygomycota Division: Zygomycota • Coenocytic Fungi • Mostly terrestrial (live on decaying material) • Example: Rhizopus (Black bread mold) • Uses: birth control pills, meat tenderizers, margarine coloring (enzymes) Fig. 31-13-4 Key Haploid (n) Heterokaryotic (n + n) Diploid (2n) PLASMOGAMY Mating Gametangia with type (+) Mating haploid nuclei type (–) 100 µm Young zygosporangium Rhizopus (heterokaryotic) growing SEXUAL on bread REPRODUCTION Dispersal and Zygosporangium germination Sporangia KARYOGAMY Spores Sporangium Diploid nuclei ASEXUAL REPRODUCTION MEIOSIS Dispersal and germination 50 µm Mycelium Division: Zygomycota • Microsporidia • Parasitic • Loss of organelles • Cause disease in people with immune deficiency • Used as pest control Division: Glomeromycota • Arbuscular mycorrhizae • Coenocytic Fungi • -
February 10, 2021 Prince George's County Public Schools
Soil and Land Use Technology, Inc. 1818 New York Ave. NE, Ste 231, Washington, DC 20002 Telephone: (301) 595-3783 www.salutinc.com February 10, 2021 Prince George’s County Public Schools Environmental Safety Office 13306 Old Marlboro Pike Upper Marlboro, MD 20772 Attention: Alex Baylor [email protected] Subject: Indoor Air Quality Survey Tulip Grove Elementary School 2909 Trainor Lane Bowie, MD 20715 Mr. Baylor: On January 25, 2021, a Soil and Land Use Technology, Inc. (SaLUT) Industrial Hygienist conducted an indoor air quality (IAQ) evaluation at Tulip Grove Elementary School, a property maintained by Prince George’s County Public Schools (PGCPS) located at 2909 Trainor Lane, Bowie, MD 20715. The inspection was performed in accordance with PGCPS contract number IFB 022-19. Methodology The IAQ evaluation conducted by SaLUT included a visual assessment, IAQ instrumentation screening, and a collection of interior air samples for mold in representative locations throughout the building. Additionally, one building exterior environmental air sample was taken for comparison. Air-borne fungal spore samples were collected on Air-O-Cell cassettes using a Buck BioAire calibrated pump. The air samples were taken between three and five feet from the ground. In tandem with collecting mold samples, real-time readings for carbon dioxide, carbon monoxide, temperature and relative humidity were collected using a Fluke 975 Air Meter in representative areas within the facility. The fungal spore air samples were delivered to EMSL Analytical, Inc. of Beltsville, Maryland for analysis. Fungal spores and particulates in air samples were analyzed by Optical Microscopy (methods EMSL 05-TP-003 and ASTM D7391). -
Correlation Between the Prevalence of Certain Fungi and Sick Building
Occup Environ Med 1998;55:579–584 579 Correlation between the prevalence of certain Occup Environ Med: first published as 10.1136/oem.55.9.579 on 1 September 1998. Downloaded from fungi and sick building syndrome J Danny Cooley, Wing C Wong, Cynthia A Jumper, David C Straus Abstract people in certain buildings in 1982. The first Objective—To examine the role of fungi in oYcial study of SBS that examined more than the production of sick building syndrome. one structure was published in 1984.3 Sick Methods—A 22 month study in the United building syndrome has been diYcult to define States of 48 schools (in which there had and no single cause of this malady has been been concerns about health and indoor air identified.1 quality (IAQ)). Building indoor air and Complaints common to SBS include allergic surface samples, as well as outdoor air rhinitis, diYculty in breathing, headaches, flu- samples were taken at all sites to look for like symptoms, and watering of the eyes.4 the presence of fungi or their viable prop- Numerous studies have been carried out in an agules. attempt to elucidate the cause of SBS.35Early Results—Five fungal genera were consist- studies showed that many of the reported ently found in the outdoor air and com- causes of SBS were undesirably high levels of prised over 95% of the outdoor fungi. known respiratory irritants such as nitrogen These genera were Cladosporium and sulphur dioxides, hydrocarbons, and 6 (81.5%), Penicillium (5.2%), Chrysospo- particulates, known or suspected carcinogens rium (4.9%), Alternaria (2.8%), and As- such as asbestos, radon, formaldehyde, and 7 pergillus (1.1%). -
Stachybotrys Musae Sp. Nov., S. Microsporus, and Memnoniella Levispora (Stachybotryaceae, Hypocreales) Found on Bananas in China and Thailand
life Article Stachybotrys musae sp. nov., S. microsporus, and Memnoniella levispora (Stachybotryaceae, Hypocreales) Found on Bananas in China and Thailand Binu C. Samarakoon 1,2,3, Dhanushka N. Wanasinghe 1,4,5, Rungtiwa Phookamsak 1,4,5,6 , Jayarama Bhat 7, Putarak Chomnunti 2,3, Samantha C. Karunarathna 1,4,5,6,* and Saisamorn Lumyong 6,8,9,* 1 CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] (B.C.S.); [email protected] (D.N.W.); [email protected] (R.P.) 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; [email protected] 3 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 4 World Agroforestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, China 5 Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China 6 Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand 7 Formerly, Department of Botany, Goa University, Goa, Res: House No. 128/1-J, Azad Co-Op Housing Society, Curca, P.O. Goa Velha 403108, India; [email protected] 8 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 9 Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand * Correspondence: [email protected] (S.C.K.); [email protected] (S.L.) Citation: Samarakoon, B.C.; Wanasinghe, D.N.; Phookamsak, R.; Abstract: A study was conducted to investigate saprobic fungal niches of Stachybotryaceae (Hypocre- Bhat, J.; Chomnunti, P.; Karunarathna, ales) associated with leaves of Musa (banana) in China and Thailand. -
The Chemistry and Biology of Fungal Meroterpenoids (2009-2019)
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020 Supplementary Materials S1: Detail information of individual fungal meroterpenoids newly discovered in 2009-2019 The Chemistry and Biology of Fungal Meroterpenoids (2009-2019) Minghua Jiang 1,3,†, Zhenger Wu 1,†, Lan Liu 1,2,3* and Senhua Chen 1,2,3,* 1. School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. [email protected] (M.J.); [email protected] (Z.W.) 2. Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China. 3. South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China. † These authors contributed equally to this work. * Correspondence: [email protected] (L.L.); [email protected] (S.C.); Tel.: +86-020- 84725459 1 CONTENTS 1. Introduction 1 2. Abbreviations 1 3. Triketide–terpenoids (98, 1-98) 4 3.1 Aspergillus sp. (30)................................................................................................................................................4 3.2 Colletotrichum sp. (4)............................................................................................................................................5 3.3 Emericella sp. (3) ..................................................................................................................................................6 3.4 Eurotium sp. (5).....................................................................................................................................................6 -
Facts About Mold Regulated Materials Management Center Phone: (307)766-3696 Fax: (307)766-3699 Web Page
Risk Management & Safety Main Office, Wyoming Hall 102 Phone: (307) 766-3277 Fax: (307)766-6116 Facts About Mold Regulated Materials Management Center Phone: (307)766-3696 Fax: (307)766-3699 Web page: http://www.uwyo.edu/ehs Table of Contents Mold is in the news. People are talking about its potential health and economic impact. But what are the real risks and issues? A. What is mold? The available science is incomplete and sometimes controversial. B. How does mold get into Although there are several guidance documents available (refer to the house or building? resource section), there is no accepted national standard. Validated methods to measure contamination are still in their infancy, and even C. How do I prevent mold when measurement techniques are available, there are no clear growth? benchmarks or standard values to compare the results against. Similar scientific uncertainties exist in the medical diagnosis of some mold‐ D. Can mold be toxic? related health effects. Cases involving mold involve the public, media, risk communicators, money and liability. E. What is “black” mold? The guidance offered is practical and does not claim to be a definitive F. Why are we concerned about or comprehensive position statement. It should be used in conjunction mold? with other exiting guidance document, as well as professional judgment. G. How do molds affect people? THE FACTS ABOUT MOLD: FOR EVERYONE H. Who is affected by exposure to mold? What is mold? Molds are forms of fungi found all year round both indoors and outdoors. Outdoors, molds live in the soil, on plants and I. -
Two New Sordariomycetes Records from Forest Soils in Thailand
Asian Journal of Mycology 3(1): 456–471 (2020) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/3/1/16 Two new Sordariomycetes records from forest soils in Thailand Yasanthika WAE1,2,6, Wanasinghe DN3,4,5, Karunarathna SC3,4,5, Bhat DJ7, Samarakoon SMBC1,2, Ren GC1,3, Monkai J1, Mortimer PE3,5 and Hyde KD1,2,6* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 2School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People's Republic of China 4World Agroforestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, People's Republic of China 5Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, Yunnan, People's Republic of China 6Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guang Dong Province, People's Republic of China 7Formerly, Department of Botany, Goa University, Goa, India; House No. 128/1-J, Azad Co-Op Housing Society, Curca, P.O. Goa Velha-403108, India Yasanthika WAE, Wanasinghe DN, Karunarathna SC, Bhat DJ, Samarakoon SMBC, Ren GC, Monkai J, Mortimer PE, Hyde KD 2020 – Two new Sordariomycetes records from forest soils in Thailand. Asian Journal of Mycology 3(1), 456–471, Doi 10.5943/ajom/3/1/16 Abstract Forest soils contain relatively high levels of fungal diversity compared to other soil types and are primarily comprised of pathogens, saprobes or mutualists.