Specific Desulfuromonas Strains Can Determine Startup Times Of

Total Page:16

File Type:pdf, Size:1020Kb

Specific Desulfuromonas Strains Can Determine Startup Times Of applied sciences Article Specific Desulfuromonas Strains Can Determine Startup Times of Microbial Fuel Cells Keren Yanuka-Golub 1,* , Leah Reshef 2, Judith Rishpon 1,2 and Uri Gophna 1,2 1 The Porter School of Environmental Studies, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel; [email protected] (J.R.); [email protected] (U.G.) 2 The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; [email protected] * Correspondence: [email protected] Received: 31 October 2020; Accepted: 27 November 2020; Published: 30 November 2020 Abstract: Microbial fuel cells (MFCs) can generate electricity simultaneously with wastewater treatment. For MFCs to be considered a cost-effective treatment technology, they should quickly re-establish a stable electroactive microbial community in the case of system failure. In order to shorten startup times, temporal studies of anodic biofilm development are required, however, frequent sampling can reduce the functionality of the system due to electroactive biomass loss; therefore, on-line monitoring of the microbial community without interfering with the system’s stability is essential. Although all anodic biofilms were composed of Desulfuromonadaceae, MFCs differed in startup times. Generally, a Desulfuromonadaceae-dominated biofilm was associated with faster startup MFCs. A positive PCR product of a specific 16S rRNA gene PCR primer set for detecting the acetate-oxidizing, Eticyclidine (PCE)-dechlorinating Desulfuromonas group was associated with efficient MFCs in our samples. Therefore, this observation could serve as a biomarker for monitoring the formation of an efficient anodic biofilm. Additionally, we successfully enriched an electroactive consortium from an active anode, also resulting in a positive amplification of the specific primer set. Direct application of this enrichment to a clean MFC anode showed a substantial reduction of startup times from 18 to 3 days. Keywords: microbial fuel cells (MFCs); startup time; Desulfuromonadaceae; anodic biofilm; specific 16S-Desulfuromonas primer set 1. Introduction Microbial fuel cells (MFCs) are electrochemical devices that utilize anaerobic electroactive microorganisms to promote generation of electricity as a renewable clean source of energy directly from wastewater, and recently, for bioremediation of contaminated sites [1,2]. The working principle of MFCs is based on the activity of an electrochemically active biofilm that anaerobically oxidizes various organic substrates on the anode surface. The microorganisms that grow on the anode and that are responsible for the electron transfer are usually dissimilatory metal-reducing bacteria that are found ubiquitously in soils due to their ability to reduce insoluble elements, such as iron Fe+3 and manganese Mn+4 oxides [3]. The two best characterized families of dissimilatory metal reducing microorganisms in MFC systems are Geobacteracaea and Shewanellacaea. They differ considerably in metabolic flexibility [4] and in their individual electron transfer mechanisms [5]. Additional species belonging to the Desulfuromonadaceae family are well recognized, yet less studied metal reducers. Desulfuromonas members reduce elemental sulfur to sulfide in order to obtain energy, but can also use fumarate, ferric iron (Fe+3), or manganese (Mn+4) as terminal electron acceptors [6]. Moreover, they can obtain energy from the complete oxidation of organic compounds to carbon dioxide, while reducing Appl. Sci. 2020, 10, 8570; doi:10.3390/app10238570 www.mdpi.com/journal/applsci Appl. Sci. 2020, 10, 8570 2 of 12 extracellular electron acceptors [7]. Therefore, it is not surprising that Desulfuromonas and Geobacter species are so closely related [8] and are often reported to be the most predominate taxa found on MFC anodes. Anodic biofilms may face different, often suboptimal and varying abiotic conditions during their formation and operation, which is a challenge for the operation of MFCs as a cost-effective wastewater treatment technology. Of particular concern is the necessity of real-world MFCs to operate incessantly, as a wastewater plant cannot be shut down in the case of MFC failure. Thus, there is a true need for ways to monitor MFC operation in real time to predict system failure, as well as a means to rapidly restart the system, should such failure occur. Major factors that can limit the electrical output in scaled-up MFCs are directly related to the electroactive microbial community, as well as its electron transport efficiency towards the anode. The anodic biofilm microbial composition has been considered to be a vital component of the MFC performance, and an important parameter for assessing the performance of MFCs and the metabolic processes taking place under different conditions [9–15]. Anodic biofilm enrichment involves specific selection processes that eventually dictate the biofilm community composition at steady state, i.e., when a stable maximal voltage has been obtained. Little is known about the microbial processes that actually stimulate the complex development of an anodic biofilm composition and function. Furthermore, anodic biofilms are often inappropriately considered to have reached the mature phase when a stable voltage output is first obtained, while the microbial community may still be changing at that time [16]. However, achieving this knowledge is difficult given typical MFCs experimental designs that allow anodic biofilm sampling only for limited time points during an experiment, which does not provide a direct linkage between the colonization process of microbial cells and power production. This is because sampling methods usually require sampling a considerable fraction of the biomass which necessitates mechanical disruption of the anode. We recently observed that efficient MFCs had Desulforomodaceae-dominated biofilms, while non-efficient MFCs showed a co-dominance of the anodic biofilm by both Desulfuromonadaceae and Geobacteraceae [17]. These findings led to a better understanding of the important community dynamics that occur during the inoculation phase, and eventually lead to either an efficient or non-efficient MFC. One of the important findings was that members of Desulfuromonadaceae were associated with efficient MFCs, and this association was accelerated when Geabacteraceae members were outcompeted from the MFC by the former group. Thus, there seemed to be strong competitive interactions between Desulfuromonadaceae and Geabacteraceae that strongly affected the startup efficiency of an MFC. Since there were no higher resolution taxonomic assignments of the family Desulfuromonadaceae to genus or species, it was unclear whether there were different species or strains of this family arising in the anodic biofilm at different time points and whether a specific strain within this family group was more strongly associated with MFC efficiency than others. Here, our aim was to detect specific patterns of microbial dynamics that characterize shorter MFC startup times, focusing on Desulfuromonadaceae strains using a specific Desulfuromonas-targeted PCR primer set. Furthermore, direct application of a Desulfuromonas-enriched consortium was attempted in order to substantially reduce startup times relative to those observed by inoculating MFCs with a wastewater sample alone. 2. Materials and Methods 2.1. MFC Setup and Experimental Design Single-chamber, air-cathode MFCs were used for the enrichment of anodic respiring bacteria and suspended-cells (plankton) communities. The MFC was a bottle-type reactor (Adams & Chittenden Scientific Glass Ltd., Berkeley, Canada), 160 mL in capacity, with anode electrodes made of carbon felt 2 2 3 with a surface area of 32.64 cm (providing a specific surface area of 20 m m− ). In every MFC reactor, two identical pieces of carbon felt were attached together and suspended at the center of the bottle. An air cathode was placed at the side port (circular), providing a specific surface 2 3 area of 8 m m− (manganese-based catalyzed carbon commercial E4A electrode with a polypropylene Appl. Sci. 2020, 10, 8570 3 of 12 microporous separator, Electric Fuel Ltd., Bet Shemesh, Israel). The anode and cathode of all close circuit MFCs were connected by Ti wires and an external resistor (1000 W). Voltage across the resistor was monitored at 5 min intervals using a computerized data acquisition system connected to a PC. Before the experiment began, all MFC bottles were thoroughly washed with diluted hydrochloric acid and ultrapure water (Milli-Q system, Millipore, Merck, Rosh-Ha’ayin, Israel), and then autoclaved for 30 min at 121 ◦C. The carbon felt anodes were immersed in 100% ethanol (Merck, Israel) overnight and rinsed with ultrapure water before being placed into the reactor. In this study, four experiments were conducted similarly in terms of all parameters indicated above. Out of the four, three replicate experimental sets (named 2015, 2016, and 2016-2) were inoculated similarly using a diluted wastewater sample (10% v/v of total reactor volume) as the microbial source. For experiment 2015, a sample was taken in March 2015. For experiment 2016, a sample was taken in February 2016, and finally for 2016-2, a wastewater sample was taken in September 2016. The fourth experimental set (2016-E) aimed to directly apply an enriched electroactive consortium (composed of >50% Desulfuromonas spp.) from an active-operating MFC. The consortium was directly applied onto a clean anode in an MFC inoculated with a wastewater sample.
Recommended publications
  • Regeneration of Unconventional Natural Gas by Methanogens Co
    www.nature.com/scientificreports OPEN Regeneration of unconventional natural gas by methanogens co‑existing with sulfate‑reducing prokaryotes in deep shale wells in China Yimeng Zhang1,2,3, Zhisheng Yu1*, Yiming Zhang4 & Hongxun Zhang1 Biogenic methane in shallow shale reservoirs has been proven to contribute to economic recovery of unconventional natural gas. However, whether the microbes inhabiting the deeper shale reservoirs at an average depth of 4.1 km and even co-occurring with sulfate-reducing prokaryote (SRP) have the potential to produce biomethane is still unclear. Stable isotopic technique with culture‑dependent and independent approaches were employed to investigate the microbial and functional diversity related to methanogenic pathways and explore the relationship between SRP and methanogens in the shales in the Sichuan Basin, China. Although stable isotopic ratios of the gas implied a thermogenic origin for methane, the decreased trend of stable carbon and hydrogen isotope value provided clues for increasing microbial activities along with sustained gas production in these wells. These deep shale-gas wells harbored high abundance of methanogens (17.2%) with ability of utilizing various substrates for methanogenesis, which co-existed with SRP (6.7%). All genes required for performing methylotrophic, hydrogenotrophic and acetoclastic methanogenesis were present. Methane production experiments of produced water, with and without additional available substrates for methanogens, further confrmed biomethane production via all three methanogenic pathways. Statistical analysis and incubation tests revealed the partnership between SRP and methanogens under in situ sulfate concentration (~ 9 mg/L). These results suggest that biomethane could be produced with more fexible stimulation strategies for unconventional natural gas recovery even at the higher depths and at the presence of SRP.
    [Show full text]
  • The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
    life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment.
    [Show full text]
  • Metagenomes of Native and Electrode-Enriched Microbial Communities from the Soudan Iron Mine Jonathan P
    Metagenomes of native and electrode-enriched microbial communities from the Soudan Iron Mine Jonathan P. Badalamenti and Daniel R. Bond Department of Microbiology and BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul, Minnesota, USA Twitter: @JonBadalamenti @wanderingbond Summary Approach - compare metagenomes from native and electrode-enriched deep subsurface microbial communities 30 Despite apparent carbon limitation, anoxic deep subsurface brines at the Soudan ) enriched 2 Underground Iron Mine harbor active microbial communities . To characterize these 20 A/cm µ assemblages, we performed shotgun metagenomics of native and enriched samples. enrich ( harvest cells collect inoculate +0.24 V extract 10 Follwing enrichment on poised electrodes and long read sequencing, we recovered Soudan brine electrode 20° C from DNA biodreactors current electrodes from the metagenome the closed, circular genome of a novel Desulfuromonas sp. 0 0 10 20 30 40 filtrate PacBio RS II Illumina HiSeq with remarkable genomic features that were not fully resolved by short read assem- extract time (d) long reads short reads TFF DNA unenriched bly alone. This organism was essentially absent in unenriched Soudan communities, 0.1 µm retentate assembled metagenomes reconstruct long read return de novo complete genome(s) assembly indicating that electrodes are highly selective for putative metal reducers. Native HGAP assembly community metagenomes suggest that carbon cycling is driven by methyl-C me- IDBA_UD 1 hybrid tabolism, in particular methylotrophic methanogenesis. Our results highlight the 3 µm prefilter assembly N4 binning promising potential for long reads in metagenomic surveys of low-diversity environ- borehole N4 binning read trimming and filtering brine de novo ments.
    [Show full text]
  • 1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
    Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds.
    [Show full text]
  • (Pelobacter) and Methanococcoides Are Responsible for Choline-Dependent Methanogenesis in a Coastal Saltmarsh Sediment
    The ISME Journal https://doi.org/10.1038/s41396-018-0269-8 ARTICLE Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment 1 1 1 2 3 1 Eleanor Jameson ● Jason Stephenson ● Helen Jones ● Andrew Millard ● Anne-Kristin Kaster ● Kevin J. Purdy ● 4 5 1 Ruth Airs ● J. Colin Murrell ● Yin Chen Received: 22 January 2018 / Revised: 11 June 2018 / Accepted: 26 July 2018 © The Author(s) 2018. This article is published with open access Abstract Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope 13 probing with high throughput sequencing of 16S rRNA genes and C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm 13 incubation with C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that 1234567890();,: 1234567890();,: choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway.
    [Show full text]
  • Final Report (Posted 2/18)
    FINAL REPORT Post-Remediation Evaluation of EVO Treatment - How Can We Improve Performance? ESTCP Project ER-201581 NOVEMBER 2017 Robert C. Borden Solutions-IES, Inc. Distribution Statement A This document has been cleared for public release Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Environmental Security Technology Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
    [Show full text]
  • Community Analysis of Biofilms on Flame-Oxidized Stainless Steel
    Eyiuche et al. BMC Microbiology (2017) 17:145 DOI 10.1186/s12866-017-1053-z RESEARCH ARTICLE Open Access Community analysis of biofilms on flame- oxidized stainless steel anodes in microbial fuel cells fed with different substrates Nweze Julius Eyiuche1,2, Shiho Asakawa3, Takahiro Yamashita4, Atsuo Ikeguchi3, Yutaka Kitamura1 and Hiroshi Yokoyama4* Abstract Background: The flame-oxidized stainless steel anode (FO-SSA) is a newly developed electrode that enhances microbial fuel cell (MFC) power generation; however, substrate preference and community structure of the biofilm developed on FO-SSA have not been well characterized. Herein, we investigated the community on FO-SSA using high-throughput sequencing of the 16S rRNA gene fragment in acetate-, starch-, glucose-, and livestock wastewater-fed MFCs. Furthermore, to analyze the effect of the anode material, the acetate-fed community formed on a common carbon-based electrode—carbon-cloth anode (CCA)—was examined for comparison. Results: Substrate type influenced the power output of MFCs using FO-SSA; the highest electricity was generated using acetate as a substrate, followed by peptone, starch and glucose, and wastewater. Intensity of power generation using FO-SSA was related to the abundance of exoelectrogenic genera, namely Geobacter and Desulfuromonas, of the phylum Proteobacteria, which were detected at a higher frequency in acetate-fed communities than in communities fed with other substrates. Lactic acid bacteria (LAB)—Enterococcus and Carnobacterium—were predominant in starch- and glucose-fed communities, respectively. In the wastewater-fed community, members of phylum Planctomycetes were frequently detected (36.2%). Exoelectrogenic genera Geobacter and Desulfuromonas were also detected in glucose-, starch-, and wastewater-fed communities on FO-SSA, but with low frequency (0–3.2%); the lactate produced by Carnobacterium and Enterococcus in glucose- and starch-fed communities might affect exoelectrogenic bacterial growth, resulting in low power output by MFCs fed with these substrates.
    [Show full text]
  • Comparative Analysis of Type IV Pilin in Desulfuromonadales
    ORIGINAL RESEARCH published: 21 December 2016 doi: 10.3389/fmicb.2016.02080 Comparative Analysis of Type IV Pilin in Desulfuromonadales Chuanjun Shu, Ke Xiao, Qin Yan and Xiao Sun * State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China During anaerobic respiration, the bacteria Geobacter sulfurreducens can transfer electrons to extracellular electron accepters through its pilus. G. sulfurreducens pili have been reported to have metallic-like conductivity that is similar to doped organic semiconductors. To study the characteristics and origin of conductive pilin proteins found in the pilus structure, their genetic, structural, and phylogenetic properties were analyzed. The genetic relationships, and conserved structures and sequences that were obtained were used to predict the evolution of the pilins. Homologous genes that encode conductive pilin were found using PilFind and Cluster. Sequence characteristics and protein tertiary structures were analyzed with MAFFT and QUARK, respectively. The origin of conductive pilins was explored by building a phylogenetic tree. Truncation is a characteristic of conductive pilin. The structures of truncated pilins and their accompanying proteins were found to be similar to the N-terminal and C-terminal ends Edited by: of full-length pilins respectively. The emergence of the truncated pilins can probably be Marina G. Kalyuzhanaya, ascribed to the evolutionary pressure of their extracellular electron transporting function. San Diego State University, USA Genes encoding truncated pilins and proteins similar to the C-terminal of full-length pilins, Reviewed by: Fengfeng Zhou, which contain a group of consecutive anti-parallel beta-sheets, are adjacent in bacterial Shenzhen Institutes of Advanced genomes.
    [Show full text]
  • Electron Donors and Acceptors for Members of the Family Beggiatoaceae
    Electron donors and acceptors for members of the family Beggiatoaceae Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. nat. - dem Fachbereich Biologie/Chemie der Universit¨at Bremen vorgelegt von Anne-Christin Kreutzmann aus Hildesheim Bremen, November 2013 Die vorliegende Doktorarbeit wurde in der Zeit von Februar 2009 bis November 2013 am Max-Planck-Institut f¨ur marine Mikrobiologie in Bremen angefertigt. 1. Gutachterin: Prof. Dr. Heide N. Schulz-Vogt 2. Gutachter: Prof. Dr. Ulrich Fischer 3. Pr¨uferin: Prof. Dr. Nicole Dubilier 4. Pr¨ufer: Dr. Timothy G. Ferdelman Tag des Promotionskolloquiums: 16.12.2013 To Finn Summary The family Beggiatoaceae comprises large, colorless sulfur bacteria, which are best known for their chemolithotrophic metabolism, in particular the oxidation of re- duced sulfur compounds with oxygen or nitrate. This thesis contributes to a more comprehensive understanding of the physiology and ecology of these organisms with several studies on different aspects of their dissimilatory metabolism. Even though the importance of inorganic sulfur substrates as electron donors for the Beggiatoaceae has long been recognized, it was not possible to derive a general model of sulfur compound oxidation in this family, owing to the fact that most of its members can currently not be cultured. Such a model has now been developed by integrating information from six Beggiatoaceae draft genomes with available literature data (Section 2). This model proposes common metabolic pathways of sulfur compound oxidation and evaluates whether the involved enzymes are likely to be of ancestral origin for the family. In Section 3 the sulfur metabolism of the Beggiatoaceae is explored from a dif- ferent perspective.
    [Show full text]
  • Comparative Insights Into Genome Signatures of Ferric Iron Oxide-And
    Guo et al. BMC Genomics (2021) 22:475 https://doi.org/10.1186/s12864-021-07809-6 RESEARCH Open Access Comparative insights into genome signatures of ferric iron oxide- and anode- stimulated Desulfuromonas spp. strains Yong Guo, Tomo Aoyagi and Tomoyuki Hori* Abstract Background: Halotolerant Fe (III) oxide reducers affiliated in the family Desulfuromonadaceae are ubiquitous and drive the carbon, nitrogen, sulfur and metal cycles in marine subsurface sediment. Due to their possible application in bioremediation and bioelectrochemical engineering, some of phylogenetically close Desulfuromonas spp. strains have been isolated through enrichment with crystalline Fe (III) oxide and anode. The strains isolated using electron acceptors with distinct redox potentials may have different abilities, for instance, of extracellular electron transport, surface recognition and colonization. The objective of this study was to identify the different genomic signatures between the crystalline Fe (III) oxide-stimulated strain AOP6 and the anode-stimulated strains WTL and DDH964 by comparative genome analysis. Results: The AOP6 genome possessed the flagellar biosynthesis gene cluster, as well as diverse and abundant genes involved in chemotaxis sensory systems and c-type cytochromes capable of reduction of electron acceptors with low redox potentials. The WTL and DDH964 genomes lacked the flagellar biosynthesis cluster and exhibited a massive expansion of transposable gene elements that might mediate genome rearrangement, while they were deficient in some of the chemotaxis and cytochrome genes and included the genes for oxygen resistance. Conclusions: Our results revealed the genomic signatures distinctive for the ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. These findings highlighted the different metabolic abilities, such as extracellular electron transfer and environmental stress resistance, of these phylogenetically close bacterial strains, casting light on genome evolution of the subsurface Fe (III) oxide reducers.
    [Show full text]
  • 1715549114.Full.Pdf
    Metagenomics-guided analysis of microbial PNAS PLUS chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway Israel A. Figueroaa, Tyler P. Barnuma, Pranav Y. Somasekhara, Charlotte I. Carlströma,1, Anna L. Engelbrektsona, and John D. Coatesa,2 aDepartment of Plant and Microbial Biology, University of California, Berkeley, CA 94720 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved November 2, 2017 (received for review September 5, 2017) Dissimilatory phosphite oxidation (DPO), a microbial metabolism PtxD is a phosphite dehydrogenase that catalyzes the NAD- 2− 3− by which phosphite (HPO3 ) is oxidized to phosphate (PO4 ), is dependent oxidation of phosphite to phosphate, and PtxE is a the most energetically favorable chemotrophic electron-donating transcriptional regulator. The remaining five genes (ptdFCGHI) process known. Only one DPO organism has been described to have so far been found only in FiPS-3 (13, 22, 23). PtdC is an date, and little is known about the environmental relevance of this inner membrane transporter that facilitates phosphite uptake, metabolism. In this study, we used 16S rRNA gene community anal- possibly by functioning as a phosphite/phosphate antiporter (22, ysis and genome-resolved metagenomics to characterize anaerobic 23). PtdFGHI are likely involved in energy conservation during wastewater treatment sludge enrichments performing DPO coupled DPO, but their functions have yet to be experimentally con- to CO2 reduction. We identified an uncultivated DPO bacterium, Candidatus Ca. firmed (5). Whether this gene cluster is conserved in all DPOM Phosphitivorax ( P.) anaerolimi strain Phox-21, that is uncertain. belongs to candidate order GW-28 within the Deltaproteobacteria, which has no known cultured isolates.
    [Show full text]
  • Desulfuromonas Thiophila Sp. Nov., a New Obligately Sulfur-Reducing Bacterium from Anoxic Freshwater Sediment
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1997, p. 754-758 Vol. 47, No. 3 0020-7713/97/$04.00 + 0 Copyright 0 1997, International Union of Microbiological Societies Desulfuromonas thiophila sp. nov., a New Obligately Sulfur-Reducing Bacterium from Anoxic Freshwater Sediment KAI FINSTER,’” JOHN D. COATES,* WERNER LIESACK,3 AND NORBERT PFENNIG4 Institute of Biological Sciences, Department of Microbial Ecology7 University of hhus, Ny Munkegade, DK-8000 hhus C, Denmark‘; Water Resources Division, U.S. Geological Survey, Reston, Virginia 220922; and Max-Planck-Institut fur terrestrische Mikrobiologie, D-35043 Marburg, and Primelweg 12, 0-88662 Uberlingen, Germany A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27T, was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27T is affiliated with the genus Desulfiromonas. A phylogenetic analysis based on the results of comparative 16s ribosomal DNA sequencing confirmed that strain NZ27Tbelongs to the Desulfiromonas cluster in the recently proposed family “Geobacter- aceae” in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27T represents a novel species. Desulfiromonas thiophila, a name tentatively used in previous publications, is the name proposed for strain NZ27T in this paper. Bacteria that are able to grow by linking the oxidation of Finally, the medium was dispensed into 50-ml screw-cap bottles, leaving a small acetate to the reduction of elemental sulfur have been known air bubble in each bottle.
    [Show full text]