High Technology Letters ISSN NO : 1006-6748 Satellite Backhaul Architecture for Next-Generation Cellular Networks: Necessity and Opportunities Dimov Stojce Ilcev Space Science Centre (SSC), Durban University of Technology (DUT), Durban, South Africa, E-mail:
[email protected] Abstract: In this paper is introduced a new 5G cellular communication systems and their possible integration with other radio or satellite networks, such as Digital Video Broadcasting-Return Channel via Satellite (DVB-RCS) standards as backhaul for rural, remote cellular networks. Within the next generation 5G framework, the Terrestrial Telecommunication Network (TTN) can be augmented with the backhaul of the development of High Throughput Satellite (HTS) and modern mega DVB-RCS constellations meeting 5G requirements, such as high bandwidth, low latency, and increased coverage for rural, remote and mobile environments. This integration of 5G with DVB-RCS standards will upgrade satellite Internet and IPTV for urban, remote, and mobile applications for ships, road, rails, and aeronautical applications via Geostationary Erath Orbit (GEO) satellites. Mobile Satellite Internet aims at providing the backbone for next-generation 5G broadcasting service through C, Ku and Ka-band DVB-S2 standard for ground and mobile subscribers. It is de facto a mobile interactive broadcast satellite access system, which provides both IPTV broadcasting and high-speed Internet broadband based on DVB-S/DVB-RCS standards, Internet Protocol (IP) network, World Wide Web, and E-solutions globally. Key Words: DVB-RCS, TTN, HTS, GEO, LTE, MIMO, eMBB, mMTC, LEO, MEO, URLLC, VSAT, HTS ISDN, ATM, UMTS, GPRS 1. Introduction Since the predominant Japanese cellular phone operator Nippon Telegraph and Telephone Public Corporation (NTT) DoCoMo Inc.