The Rotating Liner Engine (RLE) Diesel Prototype: Reducing Internal Engine Friction by About 40% Under Idle Conditions

Total Page:16

File Type:pdf, Size:1020Kb

The Rotating Liner Engine (RLE) Diesel Prototype: Reducing Internal Engine Friction by About 40% Under Idle Conditions applied sciences Article The Rotating Liner Engine (RLE) Diesel Prototype: Reducing Internal Engine Friction by about 40% under Idle Conditions Dimitrios Dardalis 1,*, Amiyo Basu 2,*, Matt J. Hall 2,* and Ronald D. Mattthews 2,* 1 RSET Inc., University of Texas at Austin, Austin, TX 78712, USA 2 University of Texas at Austin, Austin, TX 78712, USA * Correspondence: [email protected] (D.D.); [email protected] (A.B.); [email protected] (M.J.H.); [email protected] (R.D.M.) Abstract: The Rotating Liner Engine (RLE) concept is a design concept for internal combustion engines, where the cylinder liner rotates at a surface speed of 2–4 m/s in order to assist piston ring lubrication. Specifically, we have evidence from prior art and from our own research that the above rotation has the potential to eliminate the metal-to-metal contact/boundary friction that exists close to the piston reversal areas. This frictional source becomes a significant energy loss, especially in the compression/expansion part of the cycle, when the gas pressure that loads the piston rings and skirts is high. This paper describes the Diesel RLE prototype constructed from a Cummins 4BT and the preliminary observations from initial low load testing. The critical technical challenge, namely the rotating liner face seal, appears to be operating with negligible gas leakage and within the hydrodynamic lubrication regime for the loads tested (peak cylinder pressures of the order of 100 bar) and up to about 10 bar BMEP (brake mean effective pressure). Preliminary testing has proven that the metal-to-metal contact in the piston assembly mostly vanished, and a friction reduction at idle conditions of about 40% as extrapolated to a complete engine has taken place. It is expected that as the speed increases, the friction reduction percentage will diminish, but as the load increases, the friction reduction will increase. The fuel economy benefit over the US Heavy-Duty driving cycle will likely be of the order of 10% compared to a standard engine. Citation: Dardalis, D.; Basu, A.; Hall, M.J.; Mattthews, R.D. The Rotating Keywords: engine efficiency; engine friction; engine lubrication; carbon emissions reduction Liner Engine (RLE) Diesel Prototype: Reducing Internal Engine Friction by about 40% under Idle Conditions. Appl. Sci. 2021, 11, 779. 1. Introduction https://doi.org/10.3390/app11020779 The Rotating Liner Engine (RLE, www.rotatingliner.com) is a unique lubrication Received: 30 November 2020 concept aimed at Diesel engines, where the cylinder liner rotates to eliminate the boundary Accepted: 12 January 2021 friction environment for the piston rings and skirt around the TDC (top dead center) of Published: 15 January 2021 compression-expansion. It is well understood from the literature that this specific form of friction loss is Publisher’s Note: MDPI stays neu- responsible for a substantial portion of the mechanical losses in Diesel engines (especially tral with regard to jurisdictional clai- at high loads). In fact, the observed considerable increase in FMEP (friction mean effective ms in published maps and institutio- pressure) as a function of engine load can be traced mostly to this particular factor and it is nal affiliations. also responsible for the principal wear mechanism that limits engine life. 1.1. Methods for Measuring Instantaneous Piston Assembly Friction Part of the challenge of evaluating the contribution of the piston ring and skirt bound- Copyright: © 2021 by the authors. Li- censee MDPI, Basel, Switzerland. ary friction is the fact that it is almost impossible to measure in a practical firing engine. The This article is an open access article floating liner method is one of the methods that has shown promise in isolating this term, distributed under the terms and con- but unfortunately, the increasing pressures also affect the sealing mechanism of the floating ditions of the Creative Commons At- liner while piston side loads also interfere with the axial force balance via deflections and tribution (CC BY) license (https:// friction. As a result, the measured piston assembly liner force does not necessarily represent creativecommons.org/licenses/by/ the actual friction. Another factor that limits the accuracy of floating liner testing is the fact 4.0/). that the state of wear of the cylinder liners and piston rings is generally in the close to new Appl. Sci. 2021, 11, 779. https://doi.org/10.3390/app11020779 https://www.mdpi.com/journal/applsci Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 32 necessarily represent the actual friction. Another factor that limits the accuracy of floating Appl. Sci. 2021, 11, 779 2 of 31 liner testing is the fact that the state of wear of the cylinder liners and piston rings is gen- erally in the close to new condition with the honing marks still fresh, and the piston ring profile is still mostly intact as it was optimized by its designers. However, a real heavy- conditionduty engine with as the it operates honing marks in the still field fresh, will and reach the a piston state relatively ring profile early is still in mostlyits useful intact life aswhere it was the optimized honing marks by its designers.have disappeared However, from a real much heavy-duty of the top engine pistonas ring it operates stroke, and in thethe field piston will rings reach have a state worn relatively out and reached early in thei its usefulr steady-state life where profile. the honing It would marks be imprac- have disappearedtical to run the from floating much liner of the for top sufficient piston ring hours stroke, (possibly and theover piston 1000) ringsin order have to wornreachout this andstate. reached Therefore, their this steady-state method has profile. value It in would isolating be impractical changes in tothe run frictional the floating characteristics liner for sufficientwith different hours operating (possibly overor design 1000) inparamete order tors. reach However, this state. these Therefore, results may this methodnot be suffi- has valueciently in accurate isolating to changes draw conclusions in the frictional on the characteristics absolute energy with differentcontribution operating of different or design fric- parameters.tion terms. However, these results may not be sufficiently accurate to draw conclusions on theAnother absolute method energy that contribution has been ofproposed different in friction the past terms. to isolate the individual compo- nentsAnother in a firing method engine, that the has P-w been method, proposed was in demonstrated the past to isolate by Marek the individual et al. in 1991. compo- The nentsprimary in a value firing of engine, this approach the P-w is method, that it gives was demonstratedthe overall instantaneous by Marek et friction al. in 1991. torque The of primarya single valuecylinder of this engine approach without is thatany itmodifica gives thetions overall to the instantaneous engine itself. friction One of torque the down- of a singlesides cylinderof this method engine is without that it anyonly modifications worked for low to the load engine cases itself. and Onefor single of the cylinder downsides en- ofgines this methodwith a low is that moment it only workedof inertia. for While low load the cases overall and instantaneous for single cylinder torque engines cannot with by aitself low identify moment and of inertia. separate While individual the overall compon instantaneousents, since we torque know, cannot when by in itselfthe cycle, identify high andinstantaneous separate individual friction torque components, takes place, since we can know, deduce when the in thelikely cycle, source. high Figure instantaneous 1 shows frictiona sample torque of the takes instantaneous place, we friction can deduce torque. the The likely conclusion source. Figurefrom this1 shows work ais sample that the offriction the instantaneous torque is dominated friction torque.by the high-press The conclusionure part from of the this cycle, work where is that the the piston friction as- torquesembly is boundary dominated terms by theare high-pressureactive (note, accord part ofing the to Miura cycle, whereet al [1]., the the piston frictional assembly losses boundaryof the crank terms bearings are active are almost (note, independent according to of Miura instantaneous et al. [1], thebearing frictional load, lossesand are of more the crank bearings are almost independent of instantaneous bearing load, and are more or or less constant throughout the cycle). This trend remains even when the engine load is less constant throughout the cycle). This trend remains even when the engine load is zero, zero, but not as pronounced as when the engine produces torque. This was the case, de- but not as pronounced as when the engine produces torque. This was the case, despite spite the fact that the oil sump temperatures for those tests were fairly low, amplifying the fact that the oil sump temperatures for those tests were fairly low, amplifying the the hydrodynamic terms. At increasing loads, the dominating spike increases, increasing hydrodynamic terms. At increasing loads, the dominating spike increases, increasing the the overall FMEP by 20% (despite the rather low brake mean effective pressure (BMEP) overall FMEP by 20% (despite the rather low brake mean effective pressure (BMEP) that that this air-cooled, naturally aspirated Diesel can generate). It can be safely deduced that this air-cooled, naturally aspirated Diesel can generate). It can be safely deduced that the the piston assembly boundary friction (plus the injector pump, but in these type of en- piston assembly boundary friction (plus the injector pump, but in these type of engines, the gines, the injection pressure was fairly low and, therefore, this contribution was small) is injection pressure was fairly low and, therefore, this contribution was small) is the primary the primary contributor for this 20% increase in total FMEP. It can also be deduced that contributor for this 20% increase in total FMEP.
Recommended publications
  • Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
    ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer
    [Show full text]
  • A Model-Based Design Approach to Redesign a Crankshaft for Powder Metal Manufacturing
    A model-based design approach to redesign a crankshaft for powder metal manufacturing VASILEIOS ANGELOPOULOS Master of Science Thesis Stockholm, Sweden 2015 A model-based design approach to redesign a crankshaft for powder metal manufacturing VASILEIOS ANGELOPOULOS Master of Science Thesis MMK 2015:100 MKN 154 KTH Industrial Engineering and Management Machine Design SE-100 44 STOCKHOLM Examensarbete MMK 2015:100 MKN 154 En modellbaserad designstrategi att omkonstruera en vevaxel för pulvermetallurgi Angelopoulos Vasileios Godkänt Examinator Handledare 2015-11-08 Ulf Sellgren Stefan Björklund Uppdragsgivare Kontaktperson Höganäs ab Marcus Persson Sammanfattning En vevaxel är en motorkomponent som används för att omvandla den fram- och återgående rörelsen hos kolv och vevstake till en roterande rörelse. De klassiska metoderna att tillverka vevaxlar har varit dominerande och inte gett någon plats för alternativa tillverkningsmetoder. Powder manufacturing är en metod som kan revolutionera produktionens effektivitet och ekonomi. För att denna tillverkningsmetod ska vara möjlig måste vevaxeln tillverkas i delar. Webs, counter-weights och journal shafts måste produceras individuellt för att sedan sammanfogas. Den största utmaningen för denna avhandling är att förstå om vevaxelns counter webs kan tillverkas med samma form eller med så få olika former som möjligt. Denna avhandling handlar främst om att fastställa dessa tekniska krav och föreslå en ny, modulär design för PM. En kinematisk-kinetisk analys utförs med hjälp av en befintlig vevaxel som skannats och omvandlats till en CAD-modell. De numeriska värdena jämförs med en MBS-modell från Adams. Vevaxeln analyseras med avseende på balansering då motvikternas placering, massa och geometriska egenskaper undersöks. Nya modeller som följer de tekniska krav som krävs skapas och utvärderas med Pugh-matris.
    [Show full text]
  • Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY
    Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY COPYRIGHT © 2021 by WÄRTSILÄ FINLAND OY All rights reserved. No part of this booklet may be reproduced or copied in any form or by any means (electronic, mechanical, graphic, photocopying, recording, taping or other information retrieval systems) without the prior written permission of the copyright owner. THIS PUBLICATION IS DESIGNED TO PROVIDE AN ACCURATE AND AUTHORITATIVE INFORMATION WITH REGARD TO THE SUBJECT-MATTER COVERED AS WAS AVAILABLE AT THE TIME OF PRINTING. HOWEVER, THE PUBLICATION DEALS WITH COMPLICATED TECHNICAL MATTERS SUITED ONLY FOR SPECIALISTS IN THE AREA, AND THE DESIGN OF THE SUBJECT-PRODUCTS IS SUBJECT TO REGULAR IMPROVEMENTS, MODIFICATIONS AND CHANGES. CONSEQUENTLY, THE PUBLISHER AND COPYRIGHT OWNER OF THIS PUBLICATION CAN NOT ACCEPT ANY RESPONSIBILITY OR LIABILITY FOR ANY EVENTUAL ERRORS OR OMISSIONS IN THIS BOOKLET OR FOR DISCREPANCIES ARISING FROM THE FEATURES OF ANY ACTUAL ITEM IN THE RESPECTIVE PRODUCT BEING DIFFERENT FROM THOSE SHOWN IN THIS PUBLICATION. THE PUBLISHER AND COPYRIGHT OWNER SHALL UNDER NO CIRCUMSTANCES BE HELD LIABLE FOR ANY FINANCIAL CONSEQUENTIAL DAMAGES OR OTHER LOSS, OR ANY OTHER DAMAGE OR INJURY, SUFFERED BY ANY PARTY MAKING USE OF THIS PUBLICATION OR THE INFORMATION CONTAINED HEREIN. Wärtsilä 32 Product Guide Introduction Introduction This Product Guide provides data and system proposals for the early design phase of marine engine installations. For contracted projects specific instructions for planning the installation are always delivered. Any data and information herein is subject to revision without notice. This 1/2021 issue replaces all previous issues of the Wärtsilä 32 Project Guides. Issue Published Updates 1/2021 15.03.2021 Technical data updated.
    [Show full text]
  • UNIVERSAL-- AMERICAN LEADER in MARINE POWER Slnce 1898
    MANUAL NO. 1-89 ---UNIVERSAL-- AMERICAN LEADER IN MARINE POWER SlNCE 1898 SERVICE MANUAL MODELS M-12 M2-t2 M3-20 M4-30 M-18 M-25 M-25XP M-35 -------[IDID]]~o~I----- MANUAL NO. 1-89 ---UNIVERSAL-- AMERICAN LEADER IN MARINE POWER SlNCE 1898 SERVICE MANUAL MODELS M-12 M2-t2 M3-20 M4-30 M-18 M-25 M-25XP M-35 -------[IDID]]~o~I----- CONTENTS NOTE: Refer to the beginning of the individual sections for a complete table of contents for that section. SECTION I - SPECIFICATIONS .................................................... 1-38 SECTION II - PREVENTIVE MAINTENANCE ........................................ 39-44 SECTION III - CONSTRUCTION AND FUNCTION .................................... 45-50 SECTION IV - LUBRICATION, COOLING, AND FUEL SYSTEMS ....................... 51-69 SECTION V - ELECTRICAL SYSTEM ............................................. 71-102 SECTION VI - DISASSEMBLY AND REASSEMBLy ................................ 103-150 SECTION VII - DYNAMO AND REGULATOR ...................................... 151-165 TROUBLESHOOTING ......................................................... 166-175 NOTES ii SECTION I - SPECIFICATIONS Model M-12 ..................................................................... 2,3 Model M2-12 .................................................................... 4,5 Model M3-20 . 6,7 Model M4-30 .................................................................... 8,9 Model M-18 ................................................................... 10,11 Model M-25 ..................................................................
    [Show full text]
  • Piston and Connecting Rod Assembly January 2013
    1 50-13 1 1 50-13 SUBJECT DATE Installation of the Piston and Connecting Rod Assembly January 2013 Additions, Revisions, or Updates Publication Number / Title Platform Section Title Change DDC-SVC-MAN-0081 Piston and Connecting DD Platform Added special tool chart. Altered wording in step 21. Rod Assembly All information subject to change without notice. 3 1 50-13 Copyright © 2013 DETROIT DIESEL CORPORATION 2 Installation of the Piston and Connecting Rod Assembly 2 Installation of the Piston and Connecting Rod Assembly Table 1. Service Tools Used in the Procedure Tool Number Description W470589011400 DD13 Carbon Scraper Ring tool W470589021400 DD15 Carbon Scraper Ring tool W470589005900 DD13 Piston Ring Compressor J-47386 DD15/16 Piston Ring Compressor W470589015900 DD15/16 Piston Ring Compressor W470589002500 DD15/16 Cylinder Head Leak Tool NOTICE: DO NOT over-expand the piston rings. Over expansion of the piston rings during installation can lead to hairline cracks resulting in ring failure. Install as follows: 1. If the rings have been removed, install them into the grooves of the piston and rotate 120° apart as follows: a. Install the oil ring expander in the lowest groove in the piston. b. Install the oil control ring (top label up) in the lowest groove around the oil ring expander. c. Install the compression ring (top label up) in the middle groove. d. Install the fire ring (top label up) in the top groove. 2. Allowable new ring end gaps for (A), (B), and (C) are shown below. 4 All information subject to change without notice. Copyright © 2013 DETROIT DIESEL CORPORATION 1 50-13 1 50-13 Table 2.
    [Show full text]
  • Section 02 - Block Basics
    Block Basics – Section 2 Section 02 - Block Basics 2.0 Small Block 330 & 350 Block Key Differences. The key differences between the 330 and 350 are the 350’s larger bore and the Generation 1 Cast Iron Small Block V-8 Facts 330’s forged crank. General. In 1964 Olds replaced their small block 215 V8 with 1964 – 1966 Valve Lifter Angle. All 1964–1966 blocks used a a cast iron block of completely new design. The 330 V-8 different valve lifter angle of attack on the cam (45). Thus shared none of its engine block architecture with that of the 1964–1966 330 blocks CANNOT USE 1967 AND LATER 215 V-8 and the 225 V-6 sourced from Buick. The engine CAMS. All 1964–1966 cams WILL NOT WORK in 1967 and was no longer aluminum, but cast iron, as weight became later blocks. Later blocks used a 39 lifter angle. Blocks with less of a factor with the engine going into both the larger a “1” or “1A” cast up near the oil filler tube used the 45 lifter mid-sized F-85s, Cutlasses and the full-size Jetstars angle and should be avoided, if possible. introduced in that year. The engine was designed as a replacement for the 215, but was cast iron and enlarged in Early 330 Rocker Arms. The first run of 330 blocks was anticipation of the growth in size of the mid-size cars, where equipped with rocker arms similar to the previous 394 block it was to be primarily used and as the workhorse for the that traces its heritage back to 1949.
    [Show full text]
  • Crankpin Bearings in High Output Aircraft Piston Engines the Evolution of Their Design and Loading by Robert J
    Crankpin Bearings in High Output Aircraft Piston Engines The Evolution of their Design and Loading by Robert J. Raymond July 2015 Abstract powered truck. There you will invariably find a 6-cylinder, 4-stroke cycle, open chamber, turbocharged, aftercooled The development of the crankpin bearing in high output engine with electronically controlled fuel injection. Gone are aircraft piston engines is traced over the period 1915-1950 in the two-stroke cycle, divided combustion chambers, and the a large number of liquid and air cooled engines of both many variants of mechanical injection systems found in American and European origin. The changes in bearing truck engines of the past. dimensions are characterized as dimensionless ratios and At the end of the large piston engine era there was still a the resulting changes in the associated weights of rotating broad spectrum of engine configurations being produced and reciprocating parts as weight densities at the crankpin. and actively developed. Along with the major division Bearing materials and developments are presented to indi- between liquid and air-cooled engines there was a turbo- cate how they accommodated increasing bearing loads. compounded engine, a four-row air-cooled radial engine, Bearing loads are characterized by maximum unit bearing engines with poppet valves and engines with sleeve valves, pressure and minimum oil film thickness and plotted as a all in production. There were also a two-stroke turbo-com- function of time. Most of the data was obtained from the lit- pounded Diesel engine, a 2-stroke spark ignition sleeve erature but some results were calculated by the author.
    [Show full text]
  • Cat-3408-3412-Torque
    3408 & 34 1 2 G EN E RATO R S ET E N G I N ES SE N R2561 -0 1 CATERPILLAR' Specifications 3408 & 3412 GENERATOR SET ENGINES Media Number -SENR2561-01 Publication Date -01/02/2001 Date Updated -15/10/2001 Engine Design (3408) CYLINDER AND VALVE LOCATION Bore ... 137.2 mm (5.40 in.) Stroke ... 152.4 mm (6.00 in.) Arrangement and Number of Cylinders ... 65° V-8 Valves per Cylinder ... 4 Combustion ... Direct Injection Firing Order (Injection Sequence) ... 1,8,4,3,6,5,7,2 Rotation of Crankshaft (when seen from flywheel end) ... counterclockwise Rotation of Fuel Pump Camshaft (when seen from pump drive end) ... counterclockwise NOTE: Front end of engine is opposite to flywheel end. 3 3408 & 34 1 2 G EN E RATO R S ET E N G I N ES SE N R2561 -0 1 CATERPILLAR' Specifications 3408 & 3412 GENERATOR SET ENGINES Media Number -SENR2561-01 Publication Date -01/02/2001 Date Updated -15/10/2001 Engine Design (3412) CYLINDER AND VALVE LOCATION Bore ... 137.2 mm (5.40 in.) Stroke ... 152.4 mm (6.00 in.) Arrangement and Number of Cylinders ... 65° V-12 Valves per Cylinder ... 4 Combustion ... Direct Injection Firing Order (Injection Sequence) ... 1,4,9,8,5,2,11,10,3,6,7,12 Rotation of Crankshaft (when seen from flywheel end) ... counterclockwise 5 3408 & 3412GENERATOR SET ENGINES S E N R256 1 -0 1 CATERPILLAR Specifications 3408 & 3412 GENERATOR SET ENGINES Media Number -SENR2561-01 Publication Date -01/02/2001 Date Updated -15/10/2001 Cylinder Heads (3408) (1) Large bolts (3/4 inch).
    [Show full text]
  • Mike Mavrigian Special Firing Order Camshafts Allow the Performance
    Performance Perspectives Special firing order camshafts allow the performance engine builder to create a smoother-running engine, with improved fuel distribution and enhanced crankshaft and main bearing durability. his article falls under the category for the same reasons...to smooth out the harmon- of “thinking outside the box.” It’s a ics in the pursuit of greater engine durability and trite phrase, I know, but the point to potentially generate more power. is that we don’t need to always Power gain potential aside, the primary reason think of an OE carmaker’s engine to address (and alter) cylinder firing order is to Mike firing order specification as gospel. achieve a smoother-running engine (a smoother, Mavrigian In certain racing applications, a special firing or- more lineal acceleration ramp), with less harmonic Tder (SFO) camshaft can be used as a tuning aid, effect (and crank deflection) on the crankshaft and [email protected] allowing the competition engine builder to fur- its main bearings. In theory, virtually all engines can ther address combustion heat and crankshaft dis- benefit from this. The engines that can most bene- turbance (harmonic) issues. fit include those that run at or near peak rpm levels In essence, the goal in changing the firing or- for long periods of time, such as oval track, road der is to create a smoother-running engine and race and marine engine applications, as well as en- more even fuel distribution, with enhanced gines that are called upon to produce maximum crankshaft and main bearing durability. In the power in a very short period of time (drag race).
    [Show full text]
  • Service Bulletin Mack Trucks Greensboro, NC USA Trucks
    Service Bulletin Mack Trucks Greensboro, NC USA Trucks Date Group No. Release Page This service bulletin replaces bulletin 200-321 dated 9.2016. 9.2016 200 321 17 1(56) Specifications MP8 Specifications W2005779 Specifications are included for MACK MP8 engines. Not all specifications apply to all engines. Note: This service bulletin also applies to MACK Trucks Australia. Contents • “General”, page 3 • “Engine”, page 6 • “Valve Mechanism”, page 8 • “Engine Timing Gears”, page 13 • “Crank Mechanism”, page 15 • “Lubricating and Oil System”, page 18 • “Fuel System”, page 20 • “Inlet and Exhaust System”, page 20 • “Cooling System”, page 22 • “Engine Control System”, page 26 • “Tightening Torques and Patterns”, page 27 • “Engine Lubricants and Sealants”, page 56 PV776-89271894 USA79451 Mack Trucks Date Group No. Release Page Service Bulletin 9.2016 200 321 17 2(56) Note: Information is subject to change without notice. Illustrations are used for reference only and may differ slightly from the actual vehicle being serviced. However, key components addressed in this information are represented as accurately as possible. Mack Trucks Date Group No. Release Page Service Bulletin 9.2016 200 321 17 3(56) Specifications General Weights and Dimensions, MP8 US07, US2010, US2014 Engine type In-line direct injection diesel Number of cylinders 6 Displacement 13 L Swept volume 12.78 L Cylinder bore and stroke 131 x 158 mm (5.16 x 6.22 inches) Emissions level EPA 07: 2.5g NOx; 0.1g Pt maximum US2010 and US2014: 0.2 g/hp-hr NOx maximum Fuel system Dual solenoid
    [Show full text]
  • ENGINES: an Engine Failure Is Always Bad News. Besides Taking Away
    ENGINES: An engine failure is always bad news. Besides taking away your wheels, it forces you to make a painful financial decision. If the cost to repair, overhaul or replace the engine is more than the resale value of your car or truck, the investment may not be worth it. But if your vehicle is in good condition otherwise, repairing or replacing the engine may be less expense than trading for another used vehicle (always a gamble), or taking on payments for a new car or truck. Assuming you have gotten past the initial trauma and has decided in favor of fixing the engine, you have to figure out why the engine failed so the repaired engine (or replacement engine) won't suffer the same fate. A good place to start your postmortem is to review the circumstances that preceded the failure. Sometimes failures occur unexpectedly. One minute the engine is running fine and you're keeping up with traffic, and the next you're sitting along side the road with the hood up wondering what happened. In most instances, though, there is ample warning that something is amiss long before the engine actually fails. Unusual engine noises, low oil pressure, engine overheating, loss of power, misfiring, hard starting and similar drivability and performance complaints can all be indications of problems that need attention. The underlying cause may be something minor or major. There is no way to know unless somebody checks it out. If a motorist ignores such warnings long enough, it can be a very costly mistake because eventually the engine may succumb to whatever is causing the problem, which is a classic example of the famous preventive maintenance line, "You can pay me now or you can pay me later." ENGINE OVERHEATING Overheating can be caused by any number of things.
    [Show full text]
  • 3.4L (DOHC) Engine Mechanical Specifications
    60DegreeV6.com 3.4L (DOHC) Engine Mechanical Specifications Millimeters Inches Application General Data Engine Type -- 60° V-6 Displacement -- 240 Cu In Liter (VIN) -- 3.4 (X) RPO -- LQ1 Bore 92 3.622 Stroke 84 3.307 Deck Height 224 8.818 Compression Ratio -- 9.50:1 Firing Order -- 1-2-3-4-5-6 Oil Pressure @ Operating 103 kPa @ 1100 RPM 15 psi min @ 1100 RPM Temperature Cylinder Bore Diameter 92.020-92.038 3.6228-3.6235 Out Of Round Maximum 0.010 0.0004 Taper -- Thrust Side Maximum 0.013 0.00051 Center Distance 111.76 4.4 Piston Diameter-gauged at skirt 91.985-92.000 3.6215-3.6220 10.44 mm (0.413 in) below centerline of piston pin bore Clearance 0.020-0.052 0.0008-0.0020 Pin Bore 23.003-23.010 0.9056-0.9059 Piston Ring Compression Groove 0.033-0.079 0.0013-0.0031 Clearance 1st and 2nd Gap (at gauge diameter) 1st 0.20-0.45 0.008-0.018 1 60DegreeV6.com Gap (at gauge diameter) 2nd 0.56-0.81 0.022-0.032 Oil Groove Clearance 0.028-0.206 0.0011-0.0081 Gap (segment at gauge 0.25-0.76 0.0098-0.0299 diameter) Tension 1st 27.6 N 6.2 lbs Tension 2nd 19.8 N 4.5 lbs Tension Oil 31.2 N 7.0 lbs Piston Pin Diameter 22.9915-22.9964 0.9052-0.9054 Clearance 0.0066-0.0185 0.00026-0.00073 Fit In Rod 0.0165-0.0464 0.0006-0.0018 Crankshaft Main Journal Diameter-All 67.239-67.257 2.6472-2.6479 Taper-Maximum 0.005 0.0002 Out Of Round-Maximum 0.005 0.0002 Cylinder Block Main Bearing 72.155-72.168 2.8407-2.8412 Bore Diameter Crankshaft Main Bearing Inner 67.289-67.316 2.6492-2.6502 Diameter Main Bearing Clearance 0.019-0.064 0.0008-0.0025 Main Thrust Bearing Clearance
    [Show full text]