Not-So-Plain Bearings There’S a Lot More to Engine Bearings Than Meets the Eye

Total Page:16

File Type:pdf, Size:1020Kb

Not-So-Plain Bearings There’S a Lot More to Engine Bearings Than Meets the Eye MIKE BUSCH COMMENTARY / SAVVY AVIATOR Not-So-Plain Bearings There’s a lot more to engine bearings than meets the eye ACCORDING TO MERRIAM-WEBSTER, a bearing is “a machine part in swings. That’s why nearly all reciprocating which another part turns.” Most aircraft have lots of them. engines—from one-cylinder motorcycle Wheels spin on their axles with the help of tapered roller bear- engines to giant marine diesels—use plain ings. Magnetos, alternators, generators, and starter motors bearings instead of ball or roller bearings. incorporate ball bearings to support their rotors. The landing gear These plain bearings and bushings look trunnions on my Cessna 310 pivot on needle bearings. Variable-pitch simple, but they aren’t. There’s a lot more to propeller blades are supported by large-diameter ball bearings. them than meets the eye. Turbine engine rotor shafts spin in ball and roller bearings. All these bearings consist of inner and outer “races” with spherical or cylin- LUBRICATION drical rolling elements between them. Such “rolling-element When I had the engines in my Cessna 310 bearings” do a superb job of supporting a shaft in precise position torn down for overhaul in 1990, I made a while permitting it to rotate with very little friction. point of paying a visit to the engine shop to But tear down a Continental or Lycoming engine and you won’t survey the damage before the engine was fi nd bearings like those. The bearings in which the crankshaft, crank- put back together. The engines had accumu- pins, camshaft, rocker shafts, and piston pins run have no races, balls, lated 1,900 hours over 11 years, and I rollers, needles, or other moving parts. They’re just curved pieces of remember being rather astonished at the metal—known variously as “plain bearings” or “sleeve bearings” or appearance of the main and rod bearings; “bushings”—that rely on sliding elements rather than rolling ones. they looked nearly brand new! Plain bearings are usually constructed of two semicircular halves How can a plain bearing with no rolling called “shells”; one-piece plain bearings are usually called “bushings.” elements withstand the torturous environ- There’s a good reason that reciprocating engines use plain bear- ment of a high-performance turbocharged ings: They reciprocate! This means that the crankshaft, crankpin, reciprocating aircraft engine for 1,900 hours piston pin, rocker shaft, and camshaft bearings are subject to contin- and 11 years without showing any signifi cant uous sharp cyclic loads. Rolling-element bearings don’t handle such signs of wear? There’s a two-word answer: loads very well, because they concentrate loads into very tiny con- hydrodynamic lubrication. tact regions between the rolling elements and the races, resulting in Plain bearings rely on hydrodynamic extremely high pressures. If ball bearings were used in a reciprocat- lubrication to prevent metal-to-metal ing engine, the result would be peened races, fl at-spotted balls, and contact between the rotating journal and consequent short bearing life. the stationary bearing. (See Figure 2.) By contrast, plain bearings tolerate such cyclic loads better Pressurized oil is pumped continuously because they distribute the loads over a much larger area, so the into the gap between the journal and the pressure is greatly reduced. They also do a better job of accommo- bearing. This gap is only about 0.002 inch dating shaft fl exing, minor misalignments, and wide temperature wide—about the thickness of a human hair. 26 Sport Aviation March 2014 PHOTOGRAPHY COURTESY OF MIKE BUSCH 226-30_savvyMAR.indd6-30_savvyMAR.indd 2626 22/12/14/12/14 33:26:26 PPMM Rotation of the journal within the bearing, for hydrodynamic lubrication simply do not together with the viscosity of the oil, creates exist. Consequently, there is metal-to-metal a dynamic wedge of high-pressure oil that contact between the journal and the bearing, keeps the parts separated. So long as the and wear is inevitable. bearing gets adequate oil pressure and the This startup wear is mitigated in several journal rotates rapidly enough, there is no ways: The mating journal and bearing sur- metal-to-metal contact and therefore no faces are polished as smooth as possible. The wear on either the bearing or the journal. bearing surface is made of a material that has Does this mean that plain bearings can last low sliding friction against the steel journal. Figure 2—Plain bearings rely on hydrodynamic lubrication to prevent forever? Actually yes, provided the engine is Anti-wear additives in the oil react with the metal-to-metal contact between the rotating journal and the run continuously (as it might be in a test cell) metal to form a thin protective fi lm on the stationary bearing. with an uninterrupted oil supply and uninter- surfaces that further reduces friction through rupted journal rotation. Unfortunately, that’s a phenomenon known as “boundary lubrica- not what happens in the real world. We start tion.” (See Figure 3.) up our engines, run them for an hour or three while we’re fl ying from point A to point B, GETTING OIL TO THE BEARINGS and then shut them down. It’s mainly those Once the engine is running, pressurized oil pesky startups and shutdowns that limit the passes through “galleries” (often misspelled useful life of plain bearings. “galleys”), which are internal passageways When we fi rst crank the engine, there’s machined into the crankcase halves to con- Figure 3—Hydrodynamic lubrication depends on adequate oil pressure no oil pressure and the crankshaft cranking duct oil to key components such as main and journal rotation speed. If those aren’t present (as at engine startup speed is pathetically slow. The conditions bearings and hydraulic lifters. Oil passages in and shutdown), the parts must depend on boundary lubrication. www.eaa.org 27 226-30_savvyMAR.indd6-30_savvyMAR.indd 2727 22/12/14/12/14 33:26:26 PPMM each main bearing saddle connect to the that strength under high heat. It also galleries. (See Figure 4.) Each main bearing needs to be resistant to corrosive attack by shell has an oil supply hole that lines up moisture and acids. Yet another key prop- with the oil passage in the saddle. erty is called “embeddability” and means Getting oil to the crankpin bearings in the that the bearing’s running surface is soft big ends of the connecting rods is a bit trick- enough to allow small particles of dirt, ier. The crankshaft is machined with diagonal metal, or other foreign material to become passages to conduct oil from the main bear- embedded in the bearing so it doesn’t ings to the crankpin journals. (See Figure 5.) scratch the crankshaft journal or jam the Oil pumped into the main and rod bear- tiny oil clearance zone between the jour- ings is extruded from the edges of the nal and the bearing. (See Figure 6.) bearings and returns to the engine’s oil Most bearings in piston aircraft engines sump or tank. The rapidly rotating crank- have a running surface made of a family of shaft fl ings this oil in all directions, fi lling alloys known as “babbitt” or “white metal” the crankcase with a dense oil mist that pro- that are about 90 percent tin combined vides “splash lubrication” to other engine with small quantities of antimony and cop- components like the cam lobes, lifter faces, per. (The term “babbitt” derives from Isaac piston pin bushings, and cylinder barrels. Babbitt, who invented the original version of this bearing alloy in 1839 in Taunton, MATERIAL PROPERTIES Massachusetts.) Babbitt off ers exceptional Plain bearings must have a running sur- slipperiness and embeddability, but its face that will slide against steel journals fatigue resistance and temperature strength with low friction and be highly resistant to deteriorate rapidly if more than a few thou- galling (i.e., adhering). Because the bear- sandths of an inch thick. ing is exposed to high cyclic loads and high temperatures, its running surface TRIMETAL BEARINGS must have good fatigue strength and retain Consequently, most piston aircraft engine bearings use a layered construction referred to as “trimetal,” although they actually have four or fi ve layers. (See Figure 7.) The bearing shell starts out with a semi- circular steel backing, to which is bonded an intermediate layer of copper/lead alloy designed to provide the necessary cushion- ing, fatigue strength, and temperature conduction. A thin overlay of babbitt is then electroplated over the intermediate layer in order to provide the required surface prop- Figure 4—Oil supply passages (yellow arrows) in each main erties (slipperiness, embeddability, bearing saddle in the crankcase provide a fl ow of pressurized corrosion-resistance). A micro-thin layer of oil to the main bearings. nickel is deposited between the intermedi- ate layer and overlay in order to prevent tin from migrating from the babbitt into the copper/lead alloy. Sometimes, another micro-thin layer of pure tin is deposited on top of the babbitt overlay to protect it from corrosion prior to installation in the engine. It can be useful to think of the construc- tion of a trimetal bearing as being like a Figure 5—The crankshaft is machined with diagonal oil pas- bed: The steel backing is like the box spring sages to conduct oil from the main bearings to the crankpin (providing support), the intermediate layer journals in order to lubricate the big-end rod bearings. is like the mattress (providing cushioning), 28 Sport Aviation March 2014 PHOTOGRAPHY COURTESY OF MIKE BUSCH 226-30_savvyMAR.indd6-30_savvyMAR.indd 2828 22/12/14/12/14 33:26:26 PPMM Figure 6—“Embeddability” means the ability of a bearing’s running surface to capture particles of dirt, metal, or other foreign materials.
Recommended publications
  • Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
    ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer
    [Show full text]
  • SKF Spherical Plain Bearings and Rod Ends Contents
    SKF spherical plain bearings and rod ends SKF spherical plain bearings and rod ends Contents The SKF brand now stands for more than ever before, 1 Product information ................................................ 4 and means more to you as a valued customer. Where self-alignment is called for................................ 4 When flexibility pays ...................................................... 6 While SKF maintains its leadership as the hallmark of An incomparable range ................................................. 9 quality bearings throughout the world, new dimensions Multi-purpose performance .......................................... 12 in technical advances, product support and services have evolved SKF into a truly solutions-oriented supplier, 2 Recommendations .................................................. 16 creating greater value for customers. Selection of bearing size ............................................... 16 These solutions encompass ways to bring greater Load ratings................................................................. 16 productivity to customers, not only with breakthrough Basic rating life ............................................................ 17 application-specific products, but also through leading- Load............................................................................. 18 edge design simulation tools and consultancy services, Equivalent dynamic bearing load ............................ 18 plant asset efficiency maintenance programs, and the Equivalent static bearing
    [Show full text]
  • Plain Bearings
    PB_FBcvrs_8-29-16_Layout 1 8/29/16 8:35 PM Page 1 RBC AEROSPACE BEARINGS RBC Aerospace Bearing Products RBC Bearings Incorporated has been producing bearings in the USA since 1919. RBC offers a full line of aerospace bearings, including unique custom configurations. Spherical Bearings Rod End Bearings • MS approved to AS81820 • MS approved to AS81935 Plain Bearings (formerly MIL-B-81820) (formerly MIL-B-81935) • Boeing and Airbus approved • Boeing and Airbus approved • Self-lubricating • Metal-to-Metal • Self-lubricating • Metal-to-Metal • Loader slots • High temperature • Loader slots • High temperature • Low coefficient of friction • Low coefficient of friction • Special configurations and materials • Special configurations and materials Thin Section Ball Bearings Cargo Roller Bearings • Standard cross-sections to one inch • Boeing approved PLAIN BEARINGS • Stainless steel and other materials are • Features precision ground, semi-ground, unique design solutions available • Sizes to 40 inches and unground ball bearings • Seals available on all sizes and • Offered in caged and full complement to complex problems standard cross-sections configurations • Super duplex configurations Journal Bearings Track Rollers • MS approved to AS81934 • MS approved to AS39901 (formerly MIL-B-81934) (formerly MIL-B-3990) • Boeing and Airbus approved • Boeing and Airbus approved • Plain and flanged • Self-lubricating • ATF single row and ATL double row • High temperature • High loads • Sealed with lube holes and grooves • Available in inch and metric sizes
    [Show full text]
  • SKF Bushings, Thrust Washers and Strips a Wide Assortment for Virtually Every Application Contents
    SKF bushings, thrust washers and strips A wide assortment for virtually every application Contents The SKF brand now stands for more 1 Product information than ever before, and means more to you as a valued customer. A wide assortment to meet your needs . 3 While SKF maintains its leadership SKF solid bronze bushings . 4 as the hallmark of quality bearings throughout the world, new dimensions SKF sintered bronze bushings . 6 in technical advances, product support and services have evol ved SKF into SKF wrapped bronze bushings . 8 a truly solutions-oriented supplier, creating greater value for customers. SKF PTFE composite bushings, thrust washers and strips . 10 These solutions encompass ways to SKF POM composite bushings, thrust washers and strips . 12 bring greater productivity to customers, not only with breakthrough application- SKF PTFE polyamide bushings . 14 specific products, but also through leading-edge design simulation tools SKF filament wound bushings . 16 and consultancy services, plant asset efficiency maintenance program mes, and the industry’s most advanced 2 Product data supply management techniques. SKF bushings – product selection guide . 18 The SKF brand still stands for the very best in rolling bearings, but it now SKF bushings – technical data . 20 stands for much more. Bushing selection – overwiew of technical data . 21 SKF – the knowledge engineering company Product tables . 24 2 A wide assortment to 1 meet your needs SKF – number one in bearings SKF solid bronze bushings The traditional and robust bushing material SKF has gained a reputation for excellence in the roller bearing industry by providing customers with the highest quality products, solutions and services .
    [Show full text]
  • A Model-Based Design Approach to Redesign a Crankshaft for Powder Metal Manufacturing
    A model-based design approach to redesign a crankshaft for powder metal manufacturing VASILEIOS ANGELOPOULOS Master of Science Thesis Stockholm, Sweden 2015 A model-based design approach to redesign a crankshaft for powder metal manufacturing VASILEIOS ANGELOPOULOS Master of Science Thesis MMK 2015:100 MKN 154 KTH Industrial Engineering and Management Machine Design SE-100 44 STOCKHOLM Examensarbete MMK 2015:100 MKN 154 En modellbaserad designstrategi att omkonstruera en vevaxel för pulvermetallurgi Angelopoulos Vasileios Godkänt Examinator Handledare 2015-11-08 Ulf Sellgren Stefan Björklund Uppdragsgivare Kontaktperson Höganäs ab Marcus Persson Sammanfattning En vevaxel är en motorkomponent som används för att omvandla den fram- och återgående rörelsen hos kolv och vevstake till en roterande rörelse. De klassiska metoderna att tillverka vevaxlar har varit dominerande och inte gett någon plats för alternativa tillverkningsmetoder. Powder manufacturing är en metod som kan revolutionera produktionens effektivitet och ekonomi. För att denna tillverkningsmetod ska vara möjlig måste vevaxeln tillverkas i delar. Webs, counter-weights och journal shafts måste produceras individuellt för att sedan sammanfogas. Den största utmaningen för denna avhandling är att förstå om vevaxelns counter webs kan tillverkas med samma form eller med så få olika former som möjligt. Denna avhandling handlar främst om att fastställa dessa tekniska krav och föreslå en ny, modulär design för PM. En kinematisk-kinetisk analys utförs med hjälp av en befintlig vevaxel som skannats och omvandlats till en CAD-modell. De numeriska värdena jämförs med en MBS-modell från Adams. Vevaxeln analyseras med avseende på balansering då motvikternas placering, massa och geometriska egenskaper undersöks. Nya modeller som följer de tekniska krav som krävs skapas och utvärderas med Pugh-matris.
    [Show full text]
  • Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY
    Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY COPYRIGHT © 2021 by WÄRTSILÄ FINLAND OY All rights reserved. No part of this booklet may be reproduced or copied in any form or by any means (electronic, mechanical, graphic, photocopying, recording, taping or other information retrieval systems) without the prior written permission of the copyright owner. THIS PUBLICATION IS DESIGNED TO PROVIDE AN ACCURATE AND AUTHORITATIVE INFORMATION WITH REGARD TO THE SUBJECT-MATTER COVERED AS WAS AVAILABLE AT THE TIME OF PRINTING. HOWEVER, THE PUBLICATION DEALS WITH COMPLICATED TECHNICAL MATTERS SUITED ONLY FOR SPECIALISTS IN THE AREA, AND THE DESIGN OF THE SUBJECT-PRODUCTS IS SUBJECT TO REGULAR IMPROVEMENTS, MODIFICATIONS AND CHANGES. CONSEQUENTLY, THE PUBLISHER AND COPYRIGHT OWNER OF THIS PUBLICATION CAN NOT ACCEPT ANY RESPONSIBILITY OR LIABILITY FOR ANY EVENTUAL ERRORS OR OMISSIONS IN THIS BOOKLET OR FOR DISCREPANCIES ARISING FROM THE FEATURES OF ANY ACTUAL ITEM IN THE RESPECTIVE PRODUCT BEING DIFFERENT FROM THOSE SHOWN IN THIS PUBLICATION. THE PUBLISHER AND COPYRIGHT OWNER SHALL UNDER NO CIRCUMSTANCES BE HELD LIABLE FOR ANY FINANCIAL CONSEQUENTIAL DAMAGES OR OTHER LOSS, OR ANY OTHER DAMAGE OR INJURY, SUFFERED BY ANY PARTY MAKING USE OF THIS PUBLICATION OR THE INFORMATION CONTAINED HEREIN. Wärtsilä 32 Product Guide Introduction Introduction This Product Guide provides data and system proposals for the early design phase of marine engine installations. For contracted projects specific instructions for planning the installation are always delivered. Any data and information herein is subject to revision without notice. This 1/2021 issue replaces all previous issues of the Wärtsilä 32 Project Guides. Issue Published Updates 1/2021 15.03.2021 Technical data updated.
    [Show full text]
  • SL2016-634: Ridge Wear at Crankpin Journals
    Service Letter SL2016-634/JNN Action code: WHEN CONVENIENT Ridge Wear at Crankpin Journals SL2016-634/JNN November 2016 Dear Sirs Concerns This service letter contains important information about the develop- Owners and operators of ment of ridge wear at the crankshaft journal and the precautions re- MAN four-stroke diesel engines. quired in connection with the replacement of connecting rod bearings. Type: If the ridge is not addressed, this may cause severe engine damage GenSets: L16/24(S), L21/31(S), with a possible loss of property and life. L27/38(S), L23/30H/DF, L23/30S, Ridge wear will inevitably develop over time at the crank pin journal. L28/32H/DF, L28/32S, V28/32H, The wear pattern is caused by abrasive impurities that remain in the V28/32S lube oil. Efficient lube oil cleaning is therefore essential to keep the Propulsion: L21/31, L27/38, L23/30(A), development of ridge wear as low as possible in trunk engines. V23/30(A), L28/32(A), V28/32(A) If you have any questions or comments, please forward your email to [email protected] with reference to this service letter. Yours faithfully Mikael C. Jensen Jørgen Paaske Nielsen Vice President Superintendent Engineer Engineering Operation MAN Diesel & Turbo MAN Diesel & Turbo MAN Diesel & Turbo H. Christoffersensvej 6 Niels Juels Vej 15 Branch of MAN Diesel & Turbo SE, 4960 Holeby 9900 Frederikshavn Germany Denmark Denmark CVR No.: 31611792 Phone: +45 54 69 31 00 Phone: +45 96 20 41 00 Head office: Teglholmsgade 41 Fax: +45 54 69 30 30 Fax: +45 96 20 40 30 2450 Copenhagen SV, Denmark [email protected] [email protected] German Reg.No.: HRB 22056 Amtsgericht Augsburg www.mandieselturbo.com Service Letter SL2016-634/JNN Ridge wear will inevitably develop over time at the crank pin journal.
    [Show full text]
  • Spherical Plain Bearings Quadlube®, Spreadlock® Seal, Impacttuff
    QuadLube®, SpreadLock® Seal, ImpactTuff®, DuraLube™ Spherical Plain Bearings Innovative product features that provide unique performance advantages. High load capacity, re-lubrication options, and patented designs. ISO 9001:2000 www.rbcbearings.com 800.390.3300 RBC Bearings Incorporated (RBC Bearings, RBC) has had a long tradi- RBC Sphercial Plain Bearings tion of innovation, commitment, and quality since the company was founded in 1919. Today, RBC Bearings has grown into a world-class RBC has been a pioneer in spherical plain bearing technology since manufacturer of standard and custom-engineered bearings and related inventing the fractured outer race design many years ago. Since that products, with a product focus on research, testing, and development of time, RBC has continued to introduce industry leading innovations such the best product for specific applications. as high misalignment, angular contact, extended inner ring, tapered bore, and extended lubrication groove spherical plain bearing designs. What We Manufacture These advanced products are used wherever pivoting, high load bearing applications are found. Most typically, RBC spherical plain bearings RBC Bearings, with facilities throughout North America and Europe, are employed in hydraulic cylinder rod ends, vehicle suspensions, provides bearings and precision products for applications in the con- heavy equipment articulated joints, and other severe duty uses. struction, mining, material handling, transportation and off-highway equipment, robotics and automation, farming, machine tool, and semi- Industries served include off-highway mobile construction equipment, conductor equipment industries. Through RBC Aerospace Bearings, large agricultural machinery, mining equipment, forestry products, and the company is a major manufacturer of highly-engineered bearings and other large equipment requiring bearings that provide misalignment precision products for military, defense, and commercial aerospace capabilities while carrying high loads.
    [Show full text]
  • DNVGL-CG-0037 Calculation of Crankshafts for Reciprocating
    CLASS GUIDELINE DNVGL-CG-0037 Edition November 2015 Calculation of crankshafts for reciprocating internal combustion engines The electronic pdf version of this document, available free of charge from http://www.dnvgl.com, is the officially binding version. DNV GL AS FOREWORD DNV GL class guidelines contain methods, technical requirements, principles and acceptance criteria related to classed objects as referred to from the rules. © DNV GL AS November 2015 Any comments may be sent by e-mail to [email protected] If any person suffers loss or damage which is proved to have been caused by any negligent act or omission of DNV GL, then DNV GL shall pay compensation to such person for his proved direct loss or damage. However, the compensation shall not exceed an amount equal to ten times the fee charged for the service in question, provided that the maximum compensation shall never exceed USD 2 million. In this provision "DNV GL" shall mean DNV GL AS, its direct and indirect owners as well as all its affiliates, subsidiaries, directors, officers, employees, agents and any other acting on behalf of DNV GL. CHANGES – CURRENT This is a new document. Editorial corrections In addition to the above stated main changes, editorial corrections may have been made. Changes - current Class guideline — DNVGL-CG-0037. Edition November 2015 Page 3 Calculation of crankshafts for reciprocating internal combustion engines DNV GL AS CONTENTS Changes – current...................................................................................................... 3
    [Show full text]
  • Section 02 - Block Basics
    Block Basics – Section 2 Section 02 - Block Basics 2.0 Small Block 330 & 350 Block Key Differences. The key differences between the 330 and 350 are the 350’s larger bore and the Generation 1 Cast Iron Small Block V-8 Facts 330’s forged crank. General. In 1964 Olds replaced their small block 215 V8 with 1964 – 1966 Valve Lifter Angle. All 1964–1966 blocks used a a cast iron block of completely new design. The 330 V-8 different valve lifter angle of attack on the cam (45). Thus shared none of its engine block architecture with that of the 1964–1966 330 blocks CANNOT USE 1967 AND LATER 215 V-8 and the 225 V-6 sourced from Buick. The engine CAMS. All 1964–1966 cams WILL NOT WORK in 1967 and was no longer aluminum, but cast iron, as weight became later blocks. Later blocks used a 39 lifter angle. Blocks with less of a factor with the engine going into both the larger a “1” or “1A” cast up near the oil filler tube used the 45 lifter mid-sized F-85s, Cutlasses and the full-size Jetstars angle and should be avoided, if possible. introduced in that year. The engine was designed as a replacement for the 215, but was cast iron and enlarged in Early 330 Rocker Arms. The first run of 330 blocks was anticipation of the growth in size of the mid-size cars, where equipped with rocker arms similar to the previous 394 block it was to be primarily used and as the workhorse for the that traces its heritage back to 1949.
    [Show full text]
  • Crankpin Bearings in High Output Aircraft Piston Engines the Evolution of Their Design and Loading by Robert J
    Crankpin Bearings in High Output Aircraft Piston Engines The Evolution of their Design and Loading by Robert J. Raymond July 2015 Abstract powered truck. There you will invariably find a 6-cylinder, 4-stroke cycle, open chamber, turbocharged, aftercooled The development of the crankpin bearing in high output engine with electronically controlled fuel injection. Gone are aircraft piston engines is traced over the period 1915-1950 in the two-stroke cycle, divided combustion chambers, and the a large number of liquid and air cooled engines of both many variants of mechanical injection systems found in American and European origin. The changes in bearing truck engines of the past. dimensions are characterized as dimensionless ratios and At the end of the large piston engine era there was still a the resulting changes in the associated weights of rotating broad spectrum of engine configurations being produced and reciprocating parts as weight densities at the crankpin. and actively developed. Along with the major division Bearing materials and developments are presented to indi- between liquid and air-cooled engines there was a turbo- cate how they accommodated increasing bearing loads. compounded engine, a four-row air-cooled radial engine, Bearing loads are characterized by maximum unit bearing engines with poppet valves and engines with sleeve valves, pressure and minimum oil film thickness and plotted as a all in production. There were also a two-stroke turbo-com- function of time. Most of the data was obtained from the lit- pounded Diesel engine, a 2-stroke spark ignition sleeve erature but some results were calculated by the author.
    [Show full text]
  • Engine Driven CHAMPION | ENGINE DRIVEN
    9.1–22.5 HP | RECIPROCATING AIR COMPRESSORS Engine Driven CHAMPION | ENGINE DRIVEN Service trucks, contractors, and farmers all need a reliable compressor that will be suitable for the tools they will use. 2 A Winning Combination Champion is the leader in manufacturing dependable compressed air systems. Champion offers a complete line of engine driven compressor packages from 9.1–22.5 HP to meet any application. With an engine driven package there is no need to worry about electrical service. Engine driven air compressors are designed to provide compressed air in remote locations or for emergency production line needs. Champion is committed to delivering superior products built with the exceptional standards you expect from Champion. 3 R & PL-Series Design Features 1 Engine 4 High Mounted 8 Top Plate Design Comprehensive gas or diesel Pressure Gauge Extra clearance allows an engine offering with sizes from Easy to read and reduces the abundant amount of room 9.1–22.5 HP. risk of damage. for hands and tools when servicing. 2 Flexible Oil Drain Hose 5 Simple Mounting Feet Clean services without messy One piece design for easy 9 Pilot Unloader Valve oil spills. mounting. No more draining the tank pressure from job site to job site. With a simple flip of the 3 Belt Tensioning 6 Precise Throttle Control valve, the package can be System with Designed to provide accurate started with a fully pressurized load control and easy starting. Engine Slide Base tank. Provides easy service adjustments to the drive belt. 7 Industrial Duty 10 Legendary The base plate also provides Cogged V-Belts Compressor Pumps a sturdy platform to assist in Provides maximum reliability Utilizes the R & PL Series vibration reduction.
    [Show full text]