Probabilistically Checkable Proofs

Total Page:16

File Type:pdf, Size:1020Kb

Probabilistically Checkable Proofs Probabilistically checkable proofs The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Sudan, Madhu. “Probabilistically checkable proofs.” Commun. ACM 52.3 (2009): 76-84. As Published http://dx.doi.org/10.1145/1467247.1467267 Publisher Association for Computing Machinery Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/52308 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Probabilistically checkable proofs ∗ Madhu Sudan MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA ABSTRACT be confident that if the proof was buggy you would be able Can a proof be checked without reading it? That certainly to find an error by such a superficial reading? seems impossible, no matter how much reviewers of mathe- Alas, the current day formats of proofs don’t allow such matical papers may wish for this. But theoretical computer simple checks. It is possible to build a “proof” of any “as- science has shown that we can get very close to this objec- sertion” (in particular ones that are not true) with just one tive! Namely random consistency checks could reveal errors single error, which is subtly hidden. Indeed, if you think in proofs, provided one is careful in choosing the format in back to the “proofs” of “1 = 2” that you may have seen in which proofs should be written. In this article we explain the past, they reveled in this flaw of current proof systems. this notion, constructions of such probabilistically checkable Fortunately this shortcoming of proofs is not an inherent proofs, and why this is important to all of combinatorial flaw of logic. Over the past two decades, theoretical com- optimization. puter scientists have come up with novel formats for writing proofs of mathematical assertions. Associated with these formats are probabilistic algorithms that reviewers could Categories and Subject Descriptors (should?) use to verify the proofs. A reviewer using such F.4.1 [Mathematical Logic and Formal Languages]: a verification algorithm would be spared from reading the Mathematical Logic; F.0 [Theory of Computation]: Gen- entire proof (and indeed will only read a “constant number eral of bits of the proof” - a notion we will elaborate on, and explain later). Any researcher who has a proof of a theorem can rewrite the proof in the prescribed format and offer it General Terms to the reviewer, with the assurance that the reviewer will be Algorithms, Theory, Verification convinced of this new proof. On the other hand if someone claims a faulty assertion to be a theorem, and offers any Keywords proof (whether in the new format or not), the reviewer will discover an error with overwhelming probability. Randomness, Logic, Compuational Complexity, Combinato- In what follows we will attempt to formalize some of the rial Optimization notions that we have been using in a casual sense above. The central notion that will emerge is that of a “Probabilis- 1. INTRODUCTION tically Checkable Proof (PCP)”. Existence of such formats and verification algorithms often runs contrary to our in- The task of verifying a mathematical proof is extremely tuition. Nevertheless they do exist, and in Section 4 we onerous, and the problem is compounded when a reviewer discuss two different approaches that have been used thus really suspects a fatal error in the proof but still has to find far to construct such PCPs. an explicit one so as to convincingly reject a proof. Is there PCPs are arguably fascinating objects. They offer a cer- any way to simplify this task? Wouldn’t it be great if it tain robustness to the logical process of verification that may were possible to scan the proof cursorily (i.e., flip the pages not have been suspected before. While the process of prov- randomly, reading a sentence here and a sentence there) and ing and verifying theorems may seem of limited interest (say, ∗Research supported in part by NSF Awards CCR-0726525 only to mathematicians), we stress that the notion of a “con- and CCR-0829672. The views expressed in this article are vincing” argument/evidence applies much more broadly in those of the author and not endorsed by NSF. all walks of life. PCPs introduce the fascinating possibility that in all such cases, the time taken to assess the validity of the evidence in supporting some claims, may be much smaller than the volume of the evidence. In addition to this philosophical interest in PCPs, there is a very different Permission to make digital or hard copies of all or part of this work for (and much more concrete) reason to study PCPs. It turns personal or classroom use is granted without fee provided that copies are out that PCPs shed light in the area of combinatorial op- not made or distributed for profit or commercial advantage and that copies timization. Unfortunately this light is “dark”: The ability bear this notice and the full citation on the first page. To copy otherwise, to to construct PCPs mostly says that for many optimization republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. problems where we knew that optimal solutions were (NP- Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00. )hard to find, even near-optimal solutions are hard to find. Completeness If A is a theorem (in V0), then A is a theo- We discuss these connections soon after we discuss the defi- rem in V . Furthermore there is a proof of A in V that nitions of PCPs, in Section 3. is at most a polynomial factor longer than its proof in V0. Soundness If A is not a theorem (in V0) then A is not a 2. DEFINITIONS theorem in V . We start by formalizing what we mean by “theorems”, “‘proofs”, a “format” for proving them, and what it means By allowing different verifiers, or proof systems, for the to “change” such a format, i.e., what changes are allowed, same system of logic, one encounters many different ways and what qualities should be preserved. Hopefully, in the in which theorems can be proved. As an example, we show process we will also manage to establish some links between how the NP-completeness of the famous problem 3SAT al- the topic of this article and computer science. lows one to produce formats for proofs that “localize” er- To answer these questions we go to back to the essentials rors in erroneous proofs. Recall that an instance of 3SAT of mathematical logic. A system of logic attempts to clas- is a logical formula φ = C1 ∧ · · · ∧ Cm where Cj is the dis- sify “assertions” based on their “truth value”, i.e., separate junction of 3 literals (variables or their complement). The true theorems from false assertions. In particular, theorems NP-completeness of 3SAT implies the following: Given any are those assertions that have “proofs”. In such a system assertion A and integer N, there is a 3CNF formula φ (of every sentence, including theorems, assertions, and proofs, length bounded by a polynomial in N) such that φ is satisfi- is syntactically just a finite string of letters from a finite able if and only if A has a proof of length at most N (in V0). alphabet. (Without loss of generality the alphabet may be Thus the deep logical question about the truth of A seems binary i.e., {0, 1}.) The system of logic prescribes some ax- to reduce to a merely combinatorial question about the sat- ioms and some derivation rules. For an assertion to be true, isfiability of φ. The natural evidence for the satisfiability of it must be derivable from the axioms by applying a sequence φ would be an assignment and this is what we refer to as a of derivation rules. A proof of an assertion A may thus be a “format” for proofs. The advantage of this format is that in sequence of more and more complex assertions ending in the order to reject an “erroneous proof”, i.e., an assignment x assertion A, with each intermediate assertion being accom- that fails to satisfy φ, one only needs to point to one clause panied with an explanation of how the assertion is derived of φ that is not satisfied and thus only point to the three from previous assertions, or from the axioms. The exact set bits of the proof of x that this clause depends on to reveal of derivation rules used and the complexity of a single step the error. Thus errors are easily localized in this format. of reasoning may vary from one logical system to another, Can one go further and even “find” this error efficiently? but the intent is that eventually all logical systems (based This is where probabilistically checkable proofs come in. In on the same axioms) should preserve two essentials aspects: what follows we will attempt to describe verifiers that can The set of theorems provable in any given system of logic verify proofs of satisfiability of 3CNF formulae (noticing that should be the same as in any other. Furthermore, proofs by the discussion above, this is as general as verifying proofs should be “easy” to verify in each. of any mathematical statement in any formal system). This final attempt to abstract the nature of a logical sys- tem leaves us with the question: What is “easy”? It is this 2.1 Probabilistically checkable proofs aspect that led to the development of Turing and Church’s We start by formalizing the notion of the number of bits work on the Turing machine.
Recommended publications
  • CS601 DTIME and DSPACE Lecture 5 Time and Space Functions: T, S
    CS601 DTIME and DSPACE Lecture 5 Time and Space functions: t, s : N → N+ Definition 5.1 A set A ⊆ U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M) ≡ w ∈ U M(w)=1 , and 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps. Definition 5.2 A set A ⊆ U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M), and 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells. (Input tape is “read-only” and not counted as space used.) Example: PALINDROMES ∈ DTIME[n], DSPACE[n]. In fact, PALINDROMES ∈ DSPACE[log n]. [Exercise] 1 CS601 F(DTIME) and F(DSPACE) Lecture 5 Definition 5.3 f : U → U is in F (DTIME[t(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. Definition 5.4 f : U → U is in F (DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. (Input tape is “read-only”; Output tape is “write-only”.
    [Show full text]
  • Interactive Proof Systems and Alternating Time-Space Complexity
    Theoretical Computer Science 113 (1993) 55-73 55 Elsevier Interactive proof systems and alternating time-space complexity Lance Fortnow” and Carsten Lund** Department of Computer Science, Unicersity of Chicago. 1100 E. 58th Street, Chicago, IL 40637, USA Abstract Fortnow, L. and C. Lund, Interactive proof systems and alternating time-space complexity, Theoretical Computer Science 113 (1993) 55-73. We show a rough equivalence between alternating time-space complexity and a public-coin interactive proof system with the verifier having a polynomial-related time-space complexity. Special cases include the following: . All of NC has interactive proofs, with a log-space polynomial-time public-coin verifier vastly improving the best previous lower bound of LOGCFL for this model (Fortnow and Sipser, 1988). All languages in P have interactive proofs with a polynomial-time public-coin verifier using o(log’ n) space. l All exponential-time languages have interactive proof systems with public-coin polynomial-space exponential-time verifiers. To achieve better bounds, we show how to reduce a k-tape alternating Turing machine to a l-tape alternating Turing machine with only a constant factor increase in time and space. 1. Introduction In 1981, Chandra et al. [4] introduced alternating Turing machines, an extension of nondeterministic computation where the Turing machine can make both existential and universal moves. In 1985, Goldwasser et al. [lo] and Babai [l] introduced interactive proof systems, an extension of nondeterministic computation consisting of two players, an infinitely powerful prover and a probabilistic polynomial-time verifier. The prover will try to convince the verifier of the validity of some statement.
    [Show full text]
  • Arxiv:Quant-Ph/0202111V1 20 Feb 2002
    Quantum statistical zero-knowledge John Watrous Department of Computer Science University of Calgary Calgary, Alberta, Canada [email protected] February 19, 2002 Abstract In this paper we propose a definition for (honest verifier) quantum statistical zero-knowledge interactive proof systems and study the resulting complexity class, which we denote QSZK. We prove several facts regarding this class: The following natural problem is a complete promise problem for QSZK: given instructions • for preparing two mixed quantum states, are the states close together or far apart in the trace norm metric? By instructions for preparing a mixed quantum state we mean the description of a quantum circuit that produces the mixed state on some specified subset of its qubits, assuming all qubits are initially in the 0 state. This problem is a quantum generalization of the complete promise problem of Sahai| i and Vadhan [33] for (classical) statistical zero-knowledge. QSZK is closed under complement. • QSZK PSPACE. (At present it is not known if arbitrary quantum interactive proof • systems⊆ can be simulated in PSPACE, even for one-round proof systems.) Any honest verifier quantum statistical zero-knowledge proof system can be parallelized to • a two-message (i.e., one-round) honest verifier quantum statistical zero-knowledge proof arXiv:quant-ph/0202111v1 20 Feb 2002 system. (For arbitrary quantum interactive proof systems it is known how to parallelize to three messages, but not two.) Moreover, the one-round proof system can be taken to be such that the prover sends only one qubit to the verifier in order to achieve completeness and soundness error exponentially close to 0 and 1/2, respectively.
    [Show full text]
  • Spring 2020 (Provide Proofs for All Answers) (120 Points Total)
    Complexity Qual Spring 2020 (provide proofs for all answers) (120 Points Total) 1 Problem 1: Formal Languages (30 Points Total): For each of the following languages, state and prove whether: (i) the lan- guage is regular, (ii) the language is context-free but not regular, or (iii) the language is non-context-free. n n Problem 1a (10 Points): La = f0 1 jn ≥ 0g (that is, the set of all binary strings consisting of 0's and then 1's where the number of 0's and 1's are equal). ∗ Problem 1b (10 Points): Lb = fw 2 f0; 1g jw has an even number of 0's and at least two 1'sg (that is, the set of all binary strings with an even number, including zero, of 0's and at least two 1's). n 2n 3n Problem 1c (10 Points): Lc = f0 #0 #0 jn ≥ 0g (that is, the set of all strings of the form 0 repeated n times, followed by the # symbol, followed by 0 repeated 2n times, followed by the # symbol, followed by 0 repeated 3n times). Problem 2: NP-Hardness (30 Points Total): There are a set of n people who are the vertices of an undirected graph G. There's an undirected edge between two people if they are enemies. Problem 2a (15 Points): The people must be assigned to the seats around a single large circular table. There are exactly as many seats as people (both n). We would like to make sure that nobody ever sits next to one of their enemies.
    [Show full text]
  • Some Hardness Escalation Results in Computational Complexity Theory Pritish Kamath
    Some Hardness Escalation Results in Computational Complexity Theory by Pritish Kamath B.Tech. Indian Institute of Technology Bombay (2012) S.M. Massachusetts Institute of Technology (2015) Submitted to Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering & Computer Science at Massachusetts Institute of Technology February 2020 ⃝c Massachusetts Institute of Technology 2019. All rights reserved. Author: ............................................................. Department of Electrical Engineering and Computer Science September 16, 2019 Certified by: ............................................................. Ronitt Rubinfeld Professor of Electrical Engineering and Computer Science, MIT Thesis Supervisor Certified by: ............................................................. Madhu Sudan Gordon McKay Professor of Computer Science, Harvard University Thesis Supervisor Accepted by: ............................................................. Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science, MIT Chair, Department Committee on Graduate Students Some Hardness Escalation Results in Computational Complexity Theory by Pritish Kamath Submitted to Department of Electrical Engineering and Computer Science on September 16, 2019, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science & Engineering Abstract In this thesis, we prove new hardness escalation results in computational complexity theory; a phenomenon where hardness results against seemingly weak models of computation for any problem can be lifted, in a black box manner, to much stronger models of computation by considering a simple gadget composed version of the original problem. For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof system, we show that a gadget-composed version of F is hard to refute in any proof system whose lines are computed by efficient communication protocols.
    [Show full text]
  • Computational Complexity Theory
    Computational Complexity Theory Markus Bl¨aser Universit¨atdes Saarlandes Draft|February 5, 2012 and forever 2 1 Simple lower bounds and gaps Lower bounds The hierarchy theorems of the previous chapter assure that there is, e.g., a language L 2 DTime(n6) that is not in DTime(n3). But this language is not natural.a But, for instance, we do not know how to show that 3SAT 2= DTime(n3). (Even worse, we do not know whether this is true.) The best we can show is that 3SAT cannot be decided by a O(n1:81) time bounded and simultaneously no(1) space bounded deterministic Turing machine. aThis, of course, depends on your interpretation of \natural" . In this chapter, we prove some simple lower bounds. The bounds in this section will be shown for natural problems. Furthermore, these bounds are unconditional. While showing the NP-hardness of some problem can be viewed as a lower bound, this bound relies on the assumption that P 6= NP. However, the bounds in this chapter will be rather weak. 1.1 A logarithmic space bound n n Let LEN = fa b j n 2 Ng. LEN is the language of all words that consists of a sequence of as followed by a sequence of b of equal length. This language is one of the examples for a context-free language that is not regular. We will show that LEN can be decided with logarithmic space and that this amount of space is also necessary. The first part is easy. Exercise 1.1 Prove: LEN 2 DSpace(log).
    [Show full text]
  • Computational Complexity
    Computational complexity Plan Complexity of a computation. Complexity classes DTIME(T (n)). Relations between complexity classes. Complete problems. Domino problems. NP-completeness. Complete problems for other classes Alternating machines. – p.1/17 Complexity of a computation A machine M is T (n) time bounded if for every n and word w of size n, every computation of M has length at most T (n). A machine M is S(n) space bounded if for every n and word w of size n, every computation of M uses at most S(n) cells of the working tape. Fact: If M is time or space bounded then L(M) is recursive. If L is recursive then there is a time and space bounded machine recognizing L. DTIME(T (n)) = fL(M) : M is det. and T (n) time boundedg NTIME(T (n)) = fL(M) : M is T (n) time boundedg DSPACE(S(n)) = fL(M) : M is det. and S(n) space boundedg NSPACE(S(n)) = fL(M) : M is S(n) space boundedg . – p.2/17 Hierarchy theorems A function S(n) is space constructible iff there is S(n)-bounded machine that given w writes aS(jwj) on the tape and stops. A function T (n) is time constructible iff there is a machine that on a word of size n makes exactly T (n) steps. Thm: Let S2(n) be a space-constructible function and let S1(n) ≥ log(n). If S1(n) lim infn!1 = 0 S2(n) then DSPACE(S2(n)) − DSPACE(S1(n)) is nonempty. Thm: Let T2(n) be a time-constructible function and let T1(n) log(T1(n)) lim infn!1 = 0 T2(n) then DTIME(T2(n)) − DTIME(T1(n)) is nonempty.
    [Show full text]
  • DTIME, NTIME, DSPACE, Measured on Multi-Tape Turing Machines. Th
    CMPSCI 601: Recall From Last Time Lecture 9 Def: DTIME, NTIME, DSPACE, measured on Multi-tape Turing Machines. ¡¤£¥§ © £¡¤£¥§§© Th: DTIME ¢¡¤£¦¥¨§ © RAM-TIME DTIME ¥© L DSPACE + ¥! #"%$'&(© ¥ © ) * P DTIME +-, DTIME $ + #"%$'& ¥ © ¥ © * ) NP NTIME +-, NTIME $ + ¥! ."/$ &0© ¢¥ © ) * PSPACE DSPACE +-, DSPACE $ ¥43657£¦¥§81 ¥ Th: For ¡¤£¥§21 , ¢¡¤£¦¥§:© ¡9£¦¥§ © DTIME ¡9£¦¥§ © NTIME DSPACE #">"@?9&%& =< © DSPACE ;57£¦¥§:© DTIME Cor: L P NP PSPACE 1 CMPSCI 601: NTIME and NP Lecture 9 ¢¡¤£¦¥¨§ © £¦¡¤£¦¥§§ NTIME probs. accepted by NTMs in time + ."/$ & ¢¥ © ¥ © ) * NP NTIME +-, NTIME $ Theorem 9.1 For any function ¡¤£¦¥§ , ¢¡¤£¦¥§:© ¡9£¦¥§ © DTIME ¡9£¦¥§ © NTIME DSPACE Proof: The first inclusion is obvious. For the second, £¡¤£¥§§ note that in space we can simulate all computa- £¡¤£¦¥¨§§ tions of length , so we will find the shortest ac- cepting one if it exists. ¡ =< #"£¢ " ?9&%&(© Recall: DSPACE ¡¤£¥§ © DTIME Corollary 9.2 L P NP PSPACE 2 So we can simulate NTM’s by DTM’s, at the cost of an exponential increase in the running time. It may be pos- sible to improve this simulation, though no essentially better one is known. If the cost could be reduced to poly- nomial, we would have that P NP. There is probably such a quantitative difference between the power of NTM’s and DTM’s. But note that qualita- tively there is no difference. If ¡ is the language of some NTM ¢ , it must also be r.e. because there is a DTM that £ searches through all computations of ¢ on , first of one ¡ ¤ ¥ step, then of two steps, and so on. If £ , will eventually find an accepting computation. If not, it will search forever. What about an NTM-based definition of “recursive” or “Turing-decidable” sets? This is less clear because NTM’s don’t decide – they just have a range of possible actions.
    [Show full text]
  • Advanced Complexity
    Advanced Complexity TD n◦3 Charlie Jacomme September 27, 2017 Exercise 1 : Space hierarchy theorem Using a diagonal argument, prove that for two space-constructible functions f and g such that f(n) = o(g(n)) (and as always f; g ≥ log) we have SPACE(f(n)) ( SPACE(g(n)). Solution: We dene a language which can be recognized using space O(g(n)) but not in f(n). L = f(M; w)jM reject w using space ≤ g(j(M; w)j andjΓj = 4g Where Γis the alphabet of the Turing Machine We show that L 2 SPACE(g(n)) by constructing the corresponding TM. This is where we need the fact that the alphabet is bounded. Indeed, we want to construct one xed machine that recognizes L for any TM M, and if we allow M to have an arbitrary size of alphabet, the xed machine might need a lot of space in order to represent the alphabet of M, and it might go over O(g(n)). On an input x, we compute g(x) and mark down an end of tape marker at position f(x), so that we reject if we use to much space. If x is not of the form (M; w), we reject, else we simulate M on w for at most jQj × 4g(x) × n steps. If we go over the timeout, we reject. Else, if w is accepted, we reject, and if w is rejected, we accept. This can be done in SPACE(O(g(n))), and we conclude with the speed up theorem.
    [Show full text]
  • A Study of Statistical Zero-Knowledge Proofs Salil Pravin
    A Study of Statistical Zero-Knowledge Proofs by Salil Pravin Vadhan A.B., Mathematics and Computer Science, Harvard University (1995) Certificate of Advanced Study in Mathematics, Cambridge University (1996) Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1999 @ Salil Pravin Vadhan, 1999. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. A uthor ........... .'v --~-- g -. - --- ---. - .---------------------------- Dtopartment of Mathematics August 6, 1999 ,/1 I; Certified by ....... .. .. - .. -. .... - ...- .. .-- fi Gold asser RSA Professor of Computer Science Thesis Supervisor .. V... ...... V J .. ................ Accepted by ......... c alS p. e Michael Sipser Chairman, Applied Mathematics Committee A A ccepted by ................. ...--.. - -- -- - Tomasz Mrowka Chairman, Departmental Committee on Graduate Students MASSACHUSETTS INSTITUTE LIBRARIES A Study of Statistical Zero-Knowledge Proofs by Sail Pravin Vadhan Submitted to the Department of Mathematics on August 6, 1999, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Zero-knowledge interactive proofs, introduced by Goldwasser, Micali, and Rackoff, are fas- cinating constructs which enable one party (the "prover") to convince another party (the "verifier") of an assertion, with the property that the verifier learns nothing other than the fact that the assertion being proven is true. In addition to being powerful tools for construct- ing secure cryptographic protocols, zero-knowledge proofs yield rich classes of computational problems that are of both complexity-theoretic and cryptographic interest. This thesis is a detailed investigation of statisticalzero-knowledge proofs, which are zero- knowledge proofs in which the condition that the verifier "learns nothing" is interpreted in a strong statistical sense.
    [Show full text]
  • The NP-Completeness of Some Lesser Known Logic Puzzles
    The NP-completeness of some lesser known logic puzzles Author: Mieke Maarse - 5750032 Supervisor: Dr. Benjamin Rin Second evaluator: Prof. dr. Michael Moortgat 7.5 ECTS Bachelor Kunstmatige Intelligentie Utrecht University June 28, 2019 1 Abstract Logic puzzles have been gaining popularity and many puzzles have been proved to be NP-complete. When a puzzle is NP-complete, it is not feasible to try to compute a solution. In this case algorithms that approximate the solution, or programs that are limited in input size can be used. In this paper we use the Hamiltonian path and cycle problems in grid graphs, and the Latin square completion problem to show that the puzzles unequal and adjacent, towers, chains and linesweeper are NP- complete. 2 Contents 1 Introduction4 1.1 The Hamiltonian path and cycle problem in grid graphs.....5 1.2 The Latin square completion problem...............6 1.3 Structure of this paper........................6 2 Trivial proofs7 2.1 unequal and adjacent .........................7 2.1.1 NP...............................8 2.1.2 NP-hardness.........................8 2.2 towers .................................8 2.2.1 NP...............................9 2.2.2 NP-hardness.........................9 3 chains 9 3.1 NP-completeness........................... 10 4 linesweeper 13 4.1 NP-completeness........................... 13 5 Conclusion 18 3 1 Introduction Logic puzzles are puzzles that can be solved through deductive reasoning, like sudoku or kakuro. These puzzles are satisfying to solve because, when finished, it is immediately clear if a solution is correct, but solving one is a challenge. This type of puzzle is gaining popularity, and so more research on the topic of these puzzles is being done [1][2].
    [Show full text]
  • Dspace Cover Page
    Efficient Semantic Communication via Compatible Beliefs The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Juba, Brendan and Madhu Sudan. "Efficient Semantic Communication via Compatible Beliefs." Proceedings of the Second Symposium on Innovations in Computer Science - ICS 2011, Tsinghua University, Beijing, China, January 7-9, 2011. As Published http://conference.itcs.tsinghua.edu.cn/ICS2011/content/ paper/19.pdf Publisher Institute for Computer Science, Tsinghua University Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/64417 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ Efficient Semantic Communication via Compatible Beliefs∗ Brendan Juba Madhu Sudan Harvard University and MIT CSAIL Microsoft Research [email protected] [email protected] October 14, 2010 Abstract In previous works, Juba and Sudan [6] and Goldreich, Juba and Sudan [4] considered the idea of \semantic communication", wherein two players, a user and a server, attempt to communicate with each other without any prior common language (or communication) protocol. They showed that if communication was goal-oriented and the user could sense progress towards the goal (or verify when it has been achieved), then meaningful communication is possible, in that the user's goal can be achieved whenever the server is helpful. A principal criticism of their result has been that it is inefficient: in order to determine the \right" protocol to communicate with the server, the user enumerates protocols and tries them out with the server until it finds one that allows it to achieve its goal.
    [Show full text]