Databases on Food Phytochemicals and Their Health-Promoting Effects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
The Following Carcinogenic Essential Oils Should Not Be Used In
Aromatherapy Undiluted- Safety and Ethics Copyright © Tony Burfield and Sylla Sheppard-Hanger (2005) [modified from a previous article “A Brief Safety Guidance on Essential Oils” written for IFA, Sept 2004]. Intro In the last 20 years aromatherapy has spread its influence to the household, toiletries and personal care areas: consumer products claiming to relax or invigorate our psyche’s have invaded our bathrooms, kitchen and living room areas. The numbers of therapists using essential oils in Europe and the USA has grown from a handful in the early 1980’s to thousands now worldwide. We have had time to add to our bank of knowledge on essential oils from reflecting on many decades of aromatherapeutic development and history, the collection of anecdotal information from practicing therapists, as well as from clinical & scientific investigations. We have also had enough time to consider the risks in employing essential oils in therapy. In the last twenty years, many more people have had accidents, been ‘burnt’, developed rashes, become allergic, and become sensitized to our beloved tools. Why is this? In this paper, we hope to shed light on this issue, clarify current safety findings, and discuss how Aromatherapists and those in the aromatherapy trade (suppliers, spas, etc.) can interpret this data for continued safe practice. After a refresher on current safety issues including carcinogenic and toxic oils, irritant and photo-toxic oils, we will look at allergens, oils without formal testing, pregnancy issues and medication interactions. We will address the increasing numbers of cases of sensitization and the effect of diluting essential oils. -
Anti-Eczema Mechanism of Action of Nigella Sativa for Atopic Dermatitis: Computer-Aided Prediction and Pathway Analysis Based on Protein-Chemical Interaction Networks
68 BIOMOLECULAR AND HEALTH SCIENCE JOURNAL 2019 OCTOBER, VOL 02 (02) ORIGINAL ARTICLE Anti-eczema Mechanism of Action of Nigella sativa for Atopic Dermatitis: Computer-aided Prediction and Pathway Analysis Based on Protein-chemical Interaction Networks Meidyta Sinantryana Widyaswari1, Iis Noventi2, Herdiantri Sufriyana3,4* 1Department of Dermatology and Venereology, College of Medicine, University of Nahdlatul Ulama Surabaya, Indonesia 2Department of Medical-Surgical Nursing, College of Nursing and Midwifery, University of Nahdlatul Ulama Surabaya, Indonesia 3Department of Medical Physiology, College of Medicine, University of Nahdlatul Ulama Surabaya, Surabaya, Indonesia 4Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan A R T I C L E I N F O A B S T R A C T Article history: Introduction: Black cumin (Nigella sativa) is widely used to treat various diseases. It is also Received 26 August 2019 believed to relief skin conditions accompanied by itching symptom, such as atopic dermatitis Received in revised form 14 (AD) or eczema. However, the anti-eczema mechanism of action is still unclear. The aims of this October 2019 syudy was to identify anti-eczema mechanism of action of N. sativa for AD using computer aided Accepted 21 October 2019 prediction and pathway analysis based on protein-chemical networks. Available online 31 October 2019 Methods: We utilized dataset consisting chemical compounds of N. sativa from KNApSAcK. It is a comprehensive species-metabolite relationship database. Using canonical SMILES strings that Keywords: encode molecular structures of each compound, we predicted the probabilities of activity (Pa) for Nigella sativa, anti-eczema effect based on PASS algorithms. -
Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group. -
Changes in Physical Properties and Chemical Composition
Health Benefits and Bioactive Components of the Fruits from Opuntia ficus-indica [L.] Mill.♦ Maria A. Livrea* and Luisa Tesoriere Dipartimento Farmacochimico Tossicologico e Biologico, Università di Palermo Via Michele Cipolla 74, 90128 Palermo. Italy *corresponding author [email protected] ABSTRACT The health-promoting properties of edible fruits from Opuntia ficus-indica have been the object of recent interest. Scientific evidence has been provided about benefits from the consumption of the fruits in humans, with special attention to the non-nutritive components as potentially active antioxidant phytochemicals. Information about bioavailability and bioactivity of betalains, mode of action as antioxidants in cells, and other biological models are now available. The use of cactus pear components as nutraceuticals and functional food is discussed. Keywords: Opuntia ficus-indica, edible cactus, betanin, indicaxanthin, betalains, health benefits, in vivo, in vitro, natural oxidants, free-radical scavengers 1. INTRODUCTION An equilibrated life-style, a balanced diet, no smoking, and moderate physical activity are fundamental for maintaining a healthy status. Importantly, epidemiological evidence has been provided that various age-related pathologies, including cardiovascular diseases, cancer and neurodegenerative disorders have a minor incidence among people usually consuming a traditional Mediterranean-style diet, rich in fruit and vegetables (Ames et al., 1993; Lampe, 1999; Lee et al., 2004; Rice-Evans and Miller, 1985). Since these diseases -
A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits. -
Studies on Betalain Phytochemistry by Means of Ion-Pair Countercurrent Chromatography
STUDIES ON BETALAIN PHYTOCHEMISTRY BY MEANS OF ION-PAIR COUNTERCURRENT CHROMATOGRAPHY Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Thu Tran Thi Minh aus Vietnam 1. Referent: Prof. Dr. Peter Winterhalter 2. Referent: apl. Prof. Dr. Ulrich Engelhardt eingereicht am: 28.02.2018 mündliche Prüfung (Disputation) am: 28.05.2018 Druckjahr 2018 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Tagungsbeiträge T. Tran, G. Jerz, T.E. Moussa-Ayoub, S.K.EI-Samahy, S. Rohn und P. Winterhalter: Metabolite screening and fractionation of betalains and flavonoids from Opuntia stricta var. dillenii by means of High Performance Countercurrent chromatography (HPCCC) and sequential off-line injection to ESI-MS/MS. (Poster) 44. Deutscher Lebensmittelchemikertag, Karlsruhe (2015). Thu Minh Thi Tran, Tamer E. Moussa-Ayoub, Salah K. El-Samahy, Sascha Rohn, Peter Winterhalter und Gerold Jerz: Metabolite profile of betalains and flavonoids from Opuntia stricta var. dilleni by HPCCC and offline ESI-MS/MS. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). Thu Tran Thi Minh, Binh Nguyen, Peter Winterhalter und Gerold Jerz: Recovery of the betacyanin celosianin II and flavonoid glycosides from Atriplex hortensis var. rubra by HPCCC and off-line ESI-MS/MS monitoring. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). ACKNOWLEDGEMENT This PhD would not be done without the supports of my mentor, my supervisor and my family. -
Functional Role of Betalains in Disphyma Australe Under Salinity Stress
FUNCTIONAL ROLE OF BETALAINS IN DISPHYMA AUSTRALE UNDER SALINITY STRESS BY GAGANDEEP JAIN A thesis submitted to the Victoria University of Wellington In fulfillment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington (2016) i “ An understanding of the natural world and what’s in it is a source of not only a great curiosity but great fulfillment” -- David Attenborough ii iii Abstract Foliar betalainic plants are commonly found in dry and exposed environments such as deserts and sandbanks. This marginal habitat has led many researchers to hypothesise that foliar betalains provide tolerance to abiotic stressors such as strong light, drought, salinity and low temperatures. Among these abiotic stressors, soil salinity is a major problem for agriculture affecting approximately 20% of the irrigated lands worldwide. Betacyanins may provide functional significance to plants under salt stress although this has not been unequivocally demonstrated. The purpose of this thesis is to add knowledge of the various roles of foliar betacyanins in plants under salt stress. For that, a series of experiments were performed on Disphyma australe, which is a betacyanic halophyte with two distinct colour morphs in vegetative shoots. In chapter two, I aimed to find the effect of salinity stress on betacyanin pigmentation in D. australe and it was hypothesised that betacyanic morphs are physiologically more tolerant to salinity stress than acyanic morphs. Within a coastal population of red and green morphs of D. australe, betacyanin pigmentation in red morphs was a direct result of high salt and high light exposure. Betacyanic morphs were physiologically more tolerant to salt stress as they showed greater maximum CO2 assimilation rates, water use efficiencies, photochemical quantum yields and photochemical quenching than acyanic morphs. -
Betalains and Phenolics in Red Beetroot (Beta Vulgaris)
Betalains and Phenolics in Red Beetroot (Beta vulgaris) Peel Extracts: Extraction and Characterisation Tytti Kujala*, Jyrki Loponen and Kalevi Pihlaja Department of Chemistry, Vatselankatu 2, FIN-20014 University of Turku, Finland. Fax: +3582-333 67 00. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56 c, 343-348 (2001); received January 9/February 12, 2001 Beta vulgaris , Betalains, Phenolics The extraction of red beetroot (Beta vulgaris ) peel betalains and phenolics was compared with two extraction methods and solvents. The content of total phenolics in the extracts was determined according to a modification of the Folin-Ciocalteu method and expressed as gallic acid equivalents (GAE). The profiles of extracts were analysed by high-performance liquid chromatography (HPLC). The compounds of beetroot peel extracted with 80% aqueous methanol were characterised from separated fractions using HPLC- diode array detection (HPLC-DAD) and HPLC- electrospray ionisation-mass spectrometry (HPLC-ESI-MS) tech niques. The extraction methods and the choice of solvent affected noticeably the content of individual compounds in the extract. The betalains found in beetroot peel extract were vulgaxanthin I, vulgaxanthin II, indicaxanthin, betanin, prebetanin, isobetanin and neobe- tanin. Also cyclodopa glucoside, /V-formylcyclodopa glucoside, glucoside of dihydroxyindol- carboxylic acid, betalamic acid, L-tryptophan, p-coumaric acid, ferulic acid and traces of un identified flavonoids were detected. Introduction acid in their cell walls (Jackman and Smith, 1996). Phenolic compounds are ubiquitous in the plant Except ferulic acid, also other phenolic acids and kingdom and they have been reported to possess phenolic acid conjugates have been reported in many biological effects. -
Betanin, the Main Pigment of Red Beet
Betanin, the main pigment of red beet - molecular origin of its exceptionally high free radical scavenging activity Anna Gliszczyńska-Świglo, Henryk Szymusiak, Paulina Malinowska To cite this version: Anna Gliszczyńska-Świglo, Henryk Szymusiak, Paulina Malinowska. Betanin, the main pigment of red beet - molecular origin of its exceptionally high free radical scavenging activity. Food Additives and Contaminants, 2006, 23 (11), pp.1079-1087. 10.1080/02652030600986032. hal-00577387 HAL Id: hal-00577387 https://hal.archives-ouvertes.fr/hal-00577387 Submitted on 17 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Food Additives and Contaminants For Peer Review Only Betanin, the main pigment of red beet - molecular origin of its exceptionally high free radical scavenging activity Journal: Food Additives and Contaminants Manuscript ID: TFAC-2005-377.R1 Manuscript Type: Original Research Paper Date Submitted by the 20-Aug-2006 Author: Complete List of Authors: Gliszczyńska-Świgło, Anna; The Poznañ University of Economics, Faculty of Commodity Science -
Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications
biomolecules Review Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications Nagaraj Basavegowda and Kwang-Hyun Baek * Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-52-810-3029 Abstract: The development of food-borne and infectious diseases has increased globally at an anomalous rate and is combined with emerging social and economic problems. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action at regular intervals. Some chemical or artificial food additives are considered harmful if they are used beyond their permissible levels. Today, consumers are demanding alternative, green, safer, and natural food additives to increase the shelf life of food. Essential oils (EOs) are concentrated liquid mixtures of volatile compounds with antioxidant and antibacterial properties that can be used as natural, eco-friendly, renewable, and cost-effective additives. The use of combinations of different EOs and their components is a promising strategy to increase the synergistic and additive effects of EOs in foods. In this article, we review the recent literature on EOs concerning the chemical constituents, extraction methods, antioxidant and antibacterial activities, and their mechanisms of action. Additionally, we discuss the synergistic interaction of different EOs and their components, challenges, and future directions of EOs as natural food preservatives, with special emphasis on shelf life extension and applications in the packaging of food products. Citation: Basavegowda, N.; Baek, K.-H. Synergistic Antioxidant Keywords: essential oils; antioxidant; antibacterial; synergistic; food packaging; food additives and Antibacterial Advantages of Essential Oils for Food Packaging Applications. -
Mechanism of Interaction of Betanin and Indicaxanthin with Human Myeloperoxidase and Hypochlorous Acid
BBRC Biochemical and Biophysical Research Communications 332 (2005) 837–844 www.elsevier.com/locate/ybbrc Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid Mario Allegra a, Paul Georg Furtmu¨ller b, Walter Jantschko b, Martina Zederbauer b, Luisa Tesoriere a, Maria A. Livrea a, Christian Obinger b,* a Department of Pharmaceutical, Toxicological and Biological Chemistry, University of Palermo, Via Carlo Forlanini, 90123 Palermo, Italy b Department of Chemistry, Division of Biochemistry, BOKU—University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria Received 5 April 2005 Available online 16 May 2005 Abstract Hypochlorous acid (HOCl) is the most powerful oxidant produced by human neutrophils and contributes to the damage caused by these inflammatory cells. It is produced from H2O2 and chloride by the heme enzyme myeloperoxidase (MPO). Based on findings that betalains provide antioxidant and anti-inflammatory effects, we performed the present kinetic study on the interaction between the betalains, betanin and indicaxanthin, with the redox intermediates, compound I and compound II of MPO, and its major cyto- toxic product HOCl. It is shown that both betalains are good peroxidase substrates for MPO and function as one-electron reduc- tants of its redox intermediates, compound I and compound II. Compound I is reduced to compound II with a second-order rate constant of (1.5 ± 0.1) · 106 MÀ1 sÀ1 (betanin) and (1.1 ± 0.2) · 106 MÀ1 sÀ1 (indicaxanthin), respectively, at pH 7.0 and 25 °C. Formation of ferric (native) MPO from compound II occurs with a second-order rate constant of (1.1 ± 0.1) · 105 MÀ1 sÀ1 (betanin) and (2.9 ± 0.1) 105 MÀ1 sÀ1 (indicaxanthin), respectively.