Mentha Aquatica with Affinity to the GABA-Benzodiazepine Receptor ⁎ A.K

Total Page:16

File Type:pdf, Size:1020Kb

Mentha Aquatica with Affinity to the GABA-Benzodiazepine Receptor ⁎ A.K Available online at www.sciencedirect.com South African Journal of Botany 73 (2007) 518–521 www.elsevier.com/locate/sajb Compounds from Mentha aquatica with affinity to the GABA-benzodiazepine receptor ⁎ A.K. Jäger a, , J.P. Almqvist a,b, S.A.K. Vangsøe a,b, G.I. Stafford b, A. Adsersen a, J. Van Staden b a Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, 2100 Copenhagen O, Denmark b Research Centre for Plant Growth and Development, School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa Received 18 December 2006; received in revised form 8 March 2007; accepted 10 April 2007 Abstract Mentha aquatica L. is used in Zulu traditional medicine for spiritual purposes and an ethanolic leaf extract has previously shown strong affinity to the GABA-benzodiazepine receptor. Viridiflorol from the essential oil and (S)-naringenin from an ethanolic extract was isolated by bioassay- guided fractionation using binding to the GABA-benzodiazepine site. Viridiflorol had an IC50 of 0.19 M and (S)-naringenin of 0.0026 M. © 2007 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Convulsions; Epilepsy; GABA-benzodiazepine receptor assay; Mentha aquatica; Naringenin; Traditional medicine; Viridiflorol 1. Introduction effect, depending on the receptor subtype the compound is binding to. Mentha aquatica L. (English: water mint, Afrikaans: In the present study we isolated the compounds from M. kruisement, Zulu names: imbozisa (-amabunu), umayime and aquatica with affinity to the GABA-benzodiazepine site by umnukani) is a perennial herb growing in marshes and damp bioassay-guided fractionation. places from the South-western Cape to tropical Africa and Europe. 2. Material and methods The essential oil from M. aquatica contains mono-and sesquiterpenes with a high degree of chemo-variation (Hefen- 2.1. Plant material and extraction dehl, 1970; Umemoto et al., 1994; Jerkovic and Mastelic, 2001; Esmaeili et al., 2006). A number of flavonoids have also been Aerial parts of M. aquatica L. (Lamiaceae) were collected at isolated from the plant (Burzanskahermann et al., 1977). Cedara Agricultural College, Hilton, KwaZulu-Natal in In South Africa, the plant is traditionally used against colds, February 2006. A voucher specimen is deposited at the respiratory problems and protection against evil spirits (Pooley, University of KwaZulu-Natal Herbarium, Pietermaritzburg 2005). In a screening of South African sedative plants for (Voucher number, Stafford 84 NU). The material was dried in affinity to the GABA-benzodiazepine receptor, an ethanolic anovenat50°C. leaf extract of M. aquatica had high activity (Stafford et al., One gram of dried, powdered plant material was extracted 2005). When a compound binds to the GABA-benzodiazepine with 10 ml petroleum ether, ethyl acetate, ethanol or water site it can lead to either anti-convulsive activity or a sedative respectively for 30 min in an ultrasound bath. The extracts were filtered through paper and taken to dryness under vacuum (40 °C) before being redissolved at 10 mg/ml in ethanol. Abbreviations: GABA, γ-aminobutyric acid. Twenty grams of dried, powdered material was steam ⁎ Corresponding author. distilled with 500 ml distilled water for 4 h. The obtained E-mail address: [email protected] (A.K. Jäger). essential oil was dissolved at 10 mg/ml in ethanol. 0254-6299/$ - see front matter © 2007 SAAB. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.sajb.2007.04.061 A.K. Jäger et al. / South African Journal of Botany 73 (2007) 518–521 519 2.2. Isolation of viridiflorol from essential oil Powdered dry leaf material (250 g) was steam distilled with 2500 ml distilled water for 2 h, yielding a pale yellow oil. The oil was applied to a 80 g silica 60 (0.040–0.063 mm) column (65 cm long, 2 cm i.d.) and eluted with 100 ml of each com- bination of toluene:ethyl acetate (97.5:2.5; 95:5; 90:10; 85:15; 75:25; 50:50). Collected fractions (6 ml) were combined on basis of a TLC analysis, where the plate was eluted in toluene: ethyl acetate 93:7. The active fraction was subjected to GC-MS on an Agilent 6890N Network GC system coupled to a 5973 Network Mass Selective Detector. GC conditions: injector temperature: 150 °C; temperature programme: start 50 °C, 20 °C/min to 300 °C; column: HP5MS. An NIST library was used for comparison of MS data. The active fraction was also investigated by 13C-NMR (Varian Mercury Plus 300 MHz; CDCl3). Optical rotation was measured on a Perkin-Elmer 241 polarimeter. 2.3. Isolation of naringenin from an ethanolic extract Fifteen grams of dried, powdered plant material was extracted with 150 ml ethanol for 30 min in an ultrasound bath. The extract was filtered, taken to dryness under vacuum, Fig. 1. Structures of (A) viridiflorol and (B) (S)-naringenin. and then partitioned between ethyl acetate and water. The active ethyl acetate phase was subjected to solid-phase chromatogra- phy on a Bond Elut C2, eluted with water:methanol 3:1. This fuged at 0–4 °C for 10 min at 27,000×g. The pellet was fraction was then applied to a prep TLC plate (Merck Silica gel resuspended in Tris–citrate buffer (50 mM, pH 7.1, 2 mg 60, 0.5 mm thickness) and eluted in ethyl acetate:formic acid: original tissue per ml), and then used for the binding assay. glacial acetic acid:water (100:11:11:26). A strip at the side of Membrane suspension (500 μl) was added to 25 μlof[3H] the plate was sprayed with natural products — polyethylene flumazenil (Ro 15-1788, purchased from Perkin Elmer Life glycol reagent (Wagner and Bladt, 1996). Bands were scraped Sciences) and 25 μl test solution (0.01, 0.1, 1, and 10 mg/ml), off the plate and the silica eluted with ethanol. making a final concentration in the assay of 0.00045, 0.00445, The active compound was subjected to 1H-NMR (Varian 0.045 and 0.45 mg/ml, and was mixed and incubated for 40 min Mercury Plus 300 MHz; CDCl3) and optical rotation was in an ice-bath (0–4 °C). Total and unspecific binding was determined on a Perkin-Elmer 241 polarimeter. determined using buffer or diazepam (1 μM, final concentration in assay). After incubation, 5 ml of ice-cold buffer was added to 2.4. Membrane preparation the samples and the mixture poured directly onto Adventic glass fibre filters (GC-50) under vacuum, and immediately washed The preparation was performed according to Risa et al. with 5 ml of ice-cold buffer. The amount of radioactivity on the (2004) at 0–4 °C. Cerebral cortex from four rats was homo- filters was determined by conventional liquid scintillation genized for 5 s in 20 ml of Tris–citrate buffer (50 mM, pH 7.1) counting using Ultimo Gold XR as scintillation fluid. Specific using a small Ultra Turax. The suspension was centrifuged at binding was calculated as total binding minus unspecific 27,000×g for 15 min, and the pellet was washed three times binding. All experiments were done in triplicate. with buffer. The washed pellet was homogenized in 20 ml of buffer and the suspension was incubated in a water bath 3. Results and discussion (37 °C) for 30 min to remove endogenous GABA. The sus- pension was then centrifuged for 10 min at 27,000×g.Thefinal The four solvent extracts and the essential oil were tested in pellet was resuspended in 30 ml buffer and stored in aliquots at the GABA-benzodiazepine assay. The results for displacement −20 °C. of the radioactive ligand indicated that water (77%), ethanol extracts (77%) and the essential oil (64%) showed good 2.5. 3H-Ro 15-1788 (flumazenil) binding assay displacement, whereas the displacement obtained with the ethyl acetate (46%) and petroleum ether (31%) extracts was lower. The assay was carried out according to Kahnberg et al. This indicated that there were both polar and lipophilic active (2002) with modifications (Risa et al., 2004). The membrane compounds in M. aquatica, and it was therefore decided to preparation was thawed and washed with 20 ml Tris–citrate continue the isolation procedure using both the essential oil and buffer (50 mM, pH 7.1, 0–4 °C). The suspension was centri- ethanolic extracts. 520 A.K. Jäger et al. / South African Journal of Botany 73 (2007) 518–521 The sesquiterpene viridiflorol (yield: 45 mg) was isolated by Bioassay-guided isolation of the ethanol extract leads to the 1 bioassay-guided fractionation from the essential oil. The GC- isolation of the flavanone naringenin. The H-NMR data (H-3eq: MS analysis of the active compound from the essential oil 2.76, 1H, dd; H-3ax: 3.10, 1H, dd; H-2: 5.34, 1H, dd; H-6: 5.97, indicated that the compound was ledol, however not with a 1H, d; H-8: 5.99, 1H, d; H-3′, H-5′: 6.9, 2H, dd; H-2′, H-6′: 6.9, good library fit (28%). There are three naturally occurring 2H, dd) in comparison with previously published data (Du et al., isomers, ledol, viridiflorol and globulol. The optical rotation of 2004) determined the structure to be naringenin. An optical 25 the isolated compound was measured to be [α]589 =0.9°. (+/−)- rotation [α] 589 = −20.7 (EtOH) was determined, which Globulol has an optical rotation of 35–60° (Wu et al., 1996), corresponds to (S)-naringenin (Giorgio et al., 2004)(Fig. 1B). which eliminated the possibility that the isolated compound The IC50 values in the GABA-benzodiazepine assay were could be globulol.
Recommended publications
  • Nature Conservation
    J. Nat. Conserv. 11, – (2003) Journal for © Urban & Fischer Verlag http://www.urbanfischer.de/journals/jnc Nature Conservation Constructing Red Numbers for setting conservation priorities of endangered plant species: Israeli flora as a test case Yuval Sapir1*, Avi Shmida1 & Ori Fragman1,2 1 Rotem – Israel Plant Information Center, Dept. of Evolution, Systematics and Ecology,The Hebrew University, Jerusalem, 91904, Israel; e-mail: [email protected] 2 Present address: Botanical Garden,The Hebrew University, Givat Ram, Jerusalem 91904, Israel Abstract A common problem in conservation policy is to define the priority of a certain species to invest conservation efforts when resources are limited. We suggest a method of constructing red numbers for plant species, in order to set priorities in con- servation policy. The red number is an additive index, summarising values of four parameters: 1. Rarity – The number of sites (1 km2) where the species is present. A rare species is defined when present in 0.5% of the area or less. 2. Declining rate and habitat vulnerability – Evaluate the decreasing rate in the number of sites and/or the destruction probability of the habitat. 3. Attractivity – the flower size and the probability of cutting or exploitation of the plant. 4. Distribution type – scoring endemic species and peripheral populations. The plant species of Israel were scored for the parameters of the red number. Three hundred and seventy (370) species, 16.15% of the Israeli flora entered into the “Red List” received red numbers above 6. “Post Mortem” analysis for the 34 extinct species of Israel revealed an average red number of 8.7, significantly higher than the average of the current red list.
    [Show full text]
  • Phylogenetics of Selected Mentha Species on the Basis of Rps8, Rps11 and Rps14 Chloroplast Genes
    Journal of Medicinal Plants Research Vol. 6(1), pp. 30-36, 9 January, 2012 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR11.658 ISSN 1996-0875 ©2012 Academic Journals Full Length Research Paper Phylogenetics of selected Mentha species on the basis of rps8, rps11 and rps14 chloroplast genes Attiya Jabeen1, Bin Guo2, Bilal Haider Abbasi1, Zabta Khan Shinwari1 and Tariq Mahmood3* 1Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan. 2Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Norhtwest University, Xi'an-710069, P. R. China. 3Department of Plant Sciences, Quaid-i-Azam University, Islamabad-45320, Pakistan. Accepted 20 June, 2011 Mentha is a genus of family Lamiaecae, and is well known for its great medicinal and economic values. It is widely distributed over five continents (excluding Antarctica and South America) of the world. In order to construct the phylogeny and to investigate the genetic variability among seven Mentha species polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) (CAPS) marker technique was used. Three chloroplast genes rps8, rps11 and rps14 were used to amplify from the chloroplast genome of seven Mentha species. rps8 gene was tested on broad range of annealing temperatures but no amplification was observed while rps11 and rps14 regions of Mentha cpDNA were successfully amplified and subjected to PCR-RFLP. For restriction digestion of the amplified PCR product, twelve different restriction enzymes were used and the resulting restriction pattern was resolved on PAGE. Comparison of Nicotiana tabacum and Mentha rps11 and rps14 genes was also performed.
    [Show full text]
  • The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties
    molecules Review The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties Majid Tafrihi 1, Muhammad Imran 2, Tabussam Tufail 2, Tanweer Aslam Gondal 3, Gianluca Caruso 4,*, Somesh Sharma 5, Ruchi Sharma 5 , Maria Atanassova 6,*, Lyubomir Atanassov 7, Patrick Valere Tsouh Fokou 8,9,* and Raffaele Pezzani 10,11,* 1 Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar 4741695447, Iran; [email protected] 2 University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54600, Pakistan; [email protected] (M.I.); [email protected] (T.T.) 3 School of Exercise and Nutrition, Deakin University, Victoria 3125, Australia; [email protected] 4 Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Naples), Italy 5 School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; [email protected] (S.S.); [email protected] (R.S.) 6 Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria 7 Saint Petersburg University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; [email protected] 8 Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda BP 39, Cameroon 9 Department of Biochemistry, Faculty of Science, University of Yaoundé, NgoaEkelle, Annex Fac. Sci., Citation: Tafrihi, M.; Imran, M.; Yaounde 812, Cameroon 10 Phytotherapy LAB (PhT-LAB), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Tufail, T.; Gondal, T.A.; Caruso, G.; Via Ospedale 105, 35128 Padova, Italy Sharma, S.; Sharma, R.; Atanassova, 11 AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35128 Padova, Italy M.; Atanassov, L.; Valere Tsouh * Correspondence: [email protected] (G.C.); [email protected] (M.A.); [email protected] (P.V.T.F.); Fokou, P.; et al.
    [Show full text]
  • Irish Botanical News, Co-Opted October 1995 Mr P
    IRISH BOTANICAL NEWS Number 10 March 2000 Edited by: Dr Brian S. Rushton, University of Ulster Coleraine, Northern Ireland, BT52 1SA Published by: The Committee for Ireland Botanical Society of the British Isles 1 COMMITTEE FOR IRELAND, 1999-2000 BOTANICAL SOCIETY OF THE BRITISH ISLES In line with the Rules, one new committee member was elected at the Annual General Meeting held at the Portora Royal School, Co. Fermanagh on 6 November 1999. The Committee is now: Miss A.B. Carter, Chair (retiring October 2001) Dr S.L. Parr, Hon. Secretary (retiring October 2000) Mr S. Wolfe-Murphy (retiring October 2000) Miss A.M. McKee (retiring October 2000) Dr G. O’Donovan (retiring October 2001) Miss K. Duff (retiring October 2001) Mr G.V. Day (retiring October 2002) The following are co-opted members of the Committee: Dr D.W. Nash, Representative on BSBI Council Mr A.G. Hill, Representative on BSBI Records Committee, co-opted October 1999 Dr D.A. Doogue, Atlas 2000 Co-ordinator, Field Meetings Secretary, co-opted October 1995 Dr B.S. Rushton, Editor Irish Botanical News, co-opted October 1995 Mr P. Corbett, Observer, Environment & Heritage Service (NI) Representative Dr C. O’Criodain, Observer, National Parks & Wildlife Service, Republic of Ireland Representative Irish Botanical News is published by the Committee for Ireland, BSBI and edited by Dr B.S. Rushton. B.S. Rushton and the authors of individual articles, 2000. The cover illustration shows Taxus baccata L. (Yew) drawn by Pat McKee. All species names and common names in Irish Botanical News follow those in Stace, C.A.
    [Show full text]
  • OAEC Mother Garden Nursery 2020 Perennial Plants (Annual
    OAEC Mother Garden Nursery 2020 Perennial Plants (Annual vegetables, herbs, etc listed at the end) A B C D E 1 Latin Name Common Name/Variety ready by April 11 Size Price 2 Culinary Herbs (perennial) 3 Acorus gramineus Licorice Sweet Flag yes 4", gallon 4.25, 9.25 4 Acorus gramineus 'Pusillus Minimus Aureus' Dwarf Golden Sweet Flag yes 4", gallon 4.25, 9.25 5 Acorus gramineus variegatus Grassy Sweet Flag yes 4", gallon 4.25, 9.25 6 Agastache foeniculum Blue Anise Hyssop 9.25 7 Agastache foeniculum White Anise Hyssop yes gallon 9.25 8 Agastache scrophulariifolia Giant Anise Hyssop yes gallon 9.25 9 Allium schoenoprasum Chives yes 4" 4.25 10 Allium tuberosum Garlic Chives yes 4" 4.25 11 Aloysia citrodora Lemon Verbena yes gallon 9.25 12 Alpinia galanga Greater Galangal yes gallon 9.25 13 Alpinia officinarum Lesser Galangal 9.25 14 Armoracia rusticana Horseradish yes gallon 9.25 15 Artemisia dracunculus French Tarragon yes gallon 9.25 16 Clinopodium douglasii Yerba Buena 9.25 17 Clinopodium vulgare Wild Basil 9.25 18 Cryptotaenia japonica Mitsuba yes gallon 9.25 19 Cucurma longa Turmeric 9.25 20 Cymbopogon flexuosus East Indian Lemongrass yes gallon 9.25 21 Ephedra nevadensis Mormon Tea yes gallon 20.00 22 Eriocephalus africanus African Rosemary yes gallon 9.25 23 Hyssopus officinalis Hyssop Blue-Flowered yes gallon 9.25 24 Hyssopus officinalis Hyssop Pink-Flowered yes gallon 9.25 25 Hyssopus officinalis Hyssop White-Flowered yes gallon 9.25 26 Ilex paraguariensis Yerba Mate yes 2 gallon 25.00 27 Lavandula angustifolia English Lavender yes gallon 9.25 28 Lavandula angustifolia Pink Perfume yes gallon 9.25 29 Lavandula dentata var.
    [Show full text]
  • Master Data Ingredient / Monograph
    Master data/monograph – Mentha piperita (Pfefferminze) 1 Master data ingredient / monograph Ingredient/plant: Peppermint (Mentha piperita) Scientific name: Mentha piperita Order: Lamiales (Lippenblütlerartige) Family: Lamiaceae (Lippenblütengewächse) Subfamily: - Genus: Mentha Species: Mentha piperita Description: Peppermint (Mentha × piperita) is a (usually) sterile hybrid mint, a cross between watermint (Mentha aquatica) and spearmint (Mentha spicata). It is occasionally found wild with its parent species in central and southern Europe, but the first intentional crossbreed of watermint and spearmint was done in England. Being sterile, it spreads by rooting. Native to Great Britain and found in Europe and the United States. It prefers a moist soil and is generally found in damp places and marshes. The hairy stems are from 30-70 cm tall, rarely up to 100 cm, smooth, and square in cross section. The leaves are from 4-9 cm long and 1.5-4 cm broad, dark green with reddish veins, and with an acute apex and coarsely toothed margins. The flowers are purple, 6-8 mm long, with a four-lobed corolla about 5 mm diameter; they are produced in whorls around the stem, forming thick, blunt spikes. Flowering is from July to September. Peppermint is generally regarded as 'the world's oldest medicine', with archeological evidence placing its use at least as far back as ten thousand years ago. Cultivation Peppermint generally thrives in shade and expands quickly by underground rhizomes. If you choose to grow peppermint, it is advisable to plant it in a container; otherwise it can rapidly take over a whole garden. It needs a good water supply, and is ideal for planting in part-sun to shade areas.
    [Show full text]
  • Southern Garden History Plant Lists
    Southern Plant Lists Southern Garden History Society A Joint Project With The Colonial Williamsburg Foundation September 2000 1 INTRODUCTION Plants are the major component of any garden, and it is paramount to understanding the history of gardens and gardening to know the history of plants. For those interested in the garden history of the American south, the provenance of plants in our gardens is a continuing challenge. A number of years ago the Southern Garden History Society set out to create a ‘southern plant list’ featuring the dates of introduction of plants into horticulture in the South. This proved to be a daunting task, as the date of introduction of a plant into gardens along the eastern seaboard of the Middle Atlantic States was different than the date of introduction along the Gulf Coast, or the Southern Highlands. To complicate maters, a plant native to the Mississippi River valley might be brought in to a New Orleans gardens many years before it found its way into a Virginia garden. A more logical project seemed to be to assemble a broad array plant lists, with lists from each geographic region and across the spectrum of time. The project’s purpose is to bring together in one place a base of information, a data base, if you will, that will allow those interested in old gardens to determine the plants available and popular in the different regions at certain times. This manual is the fruition of a joint undertaking between the Southern Garden History Society and the Colonial Williamsburg Foundation. In choosing lists to be included, I have been rather ruthless in expecting that the lists be specific to a place and a time.
    [Show full text]
  • Natural Occurrence of Cucumber Mosaic Virus Infecting Water Mint (Mentha Aquatica) in Antalya and Konya, Turkey
    Color profile: Disabled Composite 150 lpi at 45 degrees Acta Bot. Croat. 71 (1), 187–193, 2012 CODEN: ABCRA25 ISSN 0365–0588 eISSN 1847-8476 DOI: 10.2478/v10184-011-0052-7 Short communication Natural occurrence of Cucumber mosaic virus infecting water mint (Mentha aquatica) in Antalya and Konya, Turkey MEHMET A. SEVIK Department of Plant Protection, Faculty of Agriculture, University of Ondokuz Mayis, Samsun, Turkey Abstract – Avirus causing a disease in mint (the aromatic and culinary plant) has recently become a problem in the Taurus Mountains, a mountain range in the Mediterranean region of Turkey. To detect the virus and investigate its distribution in the region, mint leaf sam- ples were collected from the vicinity of spring areas in the plateaus of Antalya and Konya in 2009. It was found that Cucumber mosaic virus (CMV) was detected in 27.08% of symptomatic samples tested by DAS-ELISA. To the best of our knowledge, this is the first report of CMV on mint plants in this region of Turkey. Key words: Disease, Cucumber mosaic virus, detection, Mentha aquatica Introduction Mentha is a genus of flowering plants in the family Lamiaceae including about 30 spe- cies found in the temperate regions of the world (DORMAN et al. 2003). Species such as M. aquatica L. and M. longifolia (L.) are used as wild vegetables and culinary herbs (NAGHIBI et al. 2005). M. aquatica (water mint) is a perennial plant. As the name suggests, it occurs in the shallow margins and channels of streams, rivers, pools, dikes, ditches, canals, wet meadows, marshes and fens (LING 2011).
    [Show full text]
  • Genetic Diversity and Natural Hybridization in Populations of Clonal Plants of Mentha Aquatica L
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Wulfenia Jahr/Year: 2012 Band/Volume: 19 Autor(en)/Author(s): Schanzer Ivan A., Semenova Maria V., Shelepova Olga V., Voronkova Tatyana V. Artikel/Article: Genetic diversity and natural hybridization in populations of clonal plants of Mentha aquatica L. (Lamiaceae). 131-139 © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 19 (2012): 131–139 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Genetic diversity and natural hybridization in populations of clonal plants of Mentha aquatica L. (Lamiaceae) Ivan A. Schanzer, Maria V. Semenova, Olga V. Shelepova & Tatyana V. Voronkova Summary: Analyses of genetic diversity in three populations of Mentha aquatica from Abkhazia, W Ukraine and S Russia with the use of ISSR markers reveal that these plants growing along river banks can form vegetative clones with ramets several meters distant from each other. Members of different clones (different genets) may be interspersed within a single growth patch. However, in the case of a putative long-distance dispersal, e.g. when a plant grown from a single seed establishes itself in a new unoccupied riverside habitat, a single clone may distribute itself for several kilometers along the river course by means of vegetative propagation only. In the absence of a mate, the self-incompatible M. aquatica cannot set seeds. Hybridization of M. aquatica with M. arvensis is confirmed both by field observations and molecular data. Keywords: Lamiaceae, Mentha aquatica, Mentha arvensis, ISSR, hybridization, population The size and structure of clones in vegetatively mobile plants as well as their impact on local population structure are still insufficiently known.
    [Show full text]
  • Phytochemical Comparison with Quantitative Analysis Between Two Flower Phenotypes of Mentha Aquatica L.: Pink-Violet and White
    AIMS Molecular Science, 4(3): 288-300. DOI: 10.3934/molsci.2017.3.288 Received 4 May 2017, Accepted 7 August 2017, Published 14 August 2017 http://www.aimspress.com/journal/Molecular Research article Phytochemical comparison with quantitative analysis between two flower phenotypes of Mentha aquatica L.: pink-violet and white Alessandro Venditti1,*, Claudio Frezza2, Diana Celona1, Fabio Sciubba1, Sebastiano Foddai2, Maurizio Delfini1, Mauro Serafini2, and Armandodoriano Bianco1 1 Dipartimento di Chimica, Sapienza Università di Roma, P.le Aldo Moro, 5-00185 Roma, Italy 2 Dipartimento Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro, 5-00185 Roma, Italy * Correspondence: Email: [email protected], [email protected]; Tel: +39 0649913229; Fax: +39 0649913841. Abstract: In this work, the first phytochemical comparison performed on the polar fractions of two different phenotypes of Mentha aquatica L. having pink-violet and white flowers, is reported. This comparison was conducted through both a classical phytochemical analysis and a metabolomic one by means of spectroscopic and spectrometric approaches. Twenty-seven compounds were identified in both phenotypes. Most of them were evidenced in both. Anyway, all these compounds possess chemotaxonomic, pharmacological and nutritional value. In particular, one compound represents a new phytochemical for the species and two other compounds are new phytochemicals for the genus, instead. The results obtained allowed us to ascertain, from a phytochemical standpoint, that also this species can be used as possible medicinal plant like all the other species of this genus and as a source of important nutritional factors due to the presence of compounds with high nutritional properties.
    [Show full text]
  • Plant List Mints Botanica Gmbh • Industrie Nord • 5643 Sins • Switzerland • • +41 41 757 00 00
    Plant list mints Botanica GmbH • Industrie Nord • 5643 Sins • Switzerland • www.botanica.ch • +41 41 757 00 00 The following list contains different mints. The mints are a genus of flowering plants of the family 1 Lamiaceae. All mint species thrive mostly in damp locations. Botanica processes the corresponding plants into extracts which are available in different carrier substances (water-soluble, oil-soluble etc.) - see extract finder. These extracts can be used for cosmetic and technical purposes. Botanica neither performs nor commissions tests on animals. Our raw materials are natural and can vary slightly from harvest to harvest without affecting the quality of the product. Further in- formation can be found in the corresponding specification. Please note that some plants are not available all year round. Please ask us about the availability. This list is not exhaustive and represents only a part of our plants. If you are looking for specific extracts for your formulation, we are looking forward to your contact. Plant list mints Botanica GmbH • Industrie Nord • 5643 Sins • Switzerland • www.botanica.ch • +41 41 757 00 00 English Latin German Bio Apple Mint Mentha Suaveolens Apfelminze, Hain-Minze Yes Chocolate Mint Mentha Aquatica Schokoladenminze Yes Orange Mint Mentha Citrata Orangenminze Yes Peppermint Mentha Piperita Pfefferminze Yes Spearmint Mentha Spicata Krauseminze Yes Water Mint Mentha Aquatica Wasserminze Yes The following mints can be grown on request in advance (at least 1 year in advance): English Latin German Bio Moroccan Mint Mentha Spicata Marokkominze Yes Pineapple Mint Mentha Suaveolens Ananasminze Yes Author: SB Version: 003 Date: 28.10.2019 Picture source: Botanica 2 .
    [Show full text]
  • Red List of Vascular Plants of Luxembourg
    Ferrantia fait suite, avec la même tomaison aux TRAVAUX SCIENTIFIQUES DU MUSÉE NATIONAL D’HISTOIRE NATURELLE DE LUXEMBOURG. Comité de rédaction: Eric Buttini Guy Colling Edmée Engel Thierry Helminger Marc Meyer Mise en page: Romain Bei Design: Service graphique du MNHN Ferrantia est une revue publiée à intervalles non réguliers par le Musée national d’histoire naturelle à Luxembourg. Prix du volume: 10 € Ferrantia peut être obtenu par voie d’échange. Pour toutes informations s’adresser à: Musée national d’histoire naturelle rédaction Ferrantia 25, rue Munster L-2160 Luxembourg tel +352 46 22 33 - 1 fax +352 46 38 48 Internet: http://www.naturmusee.lu email: [email protected] Page de couverture: Ophrys holoserica Foto: Sylvie Hermant 2002 Jasione montana Foto: Guy Colling Juli 2004 Arnica montana Weicherdange Foto: Jim Meisch Titre: Guy Colling Red List of the Vascular Plants of Luxembourg Date de publication: 15 janvier 2005 (réception du manuscrit: 18 avril 2002) Impression: Imprimerie Graphic Press Sàrl, Luxembourg © Musée national d’histoire naturelle Luxembourg, 2005 ISSN 1682-5519 Ferrantia 42 Red List of the Vascular Plants of Luxembourg Guy Colling Luxembourg, 2005 Travaux scientifiques du Musée national d’histoire naturelle Luxembourg To Lepopold Reichling Table of Contents Abstract 5 Résumé 5 Zusammenfassung 5 1. Introduction 6 2. The checklist of vascular plants 6 3. Evaluation methods 6 3.1 Time scale 6 3.2. The IUCN threat categories and selection criteria 6 3.3. The application of the IUCN-categories at the national level 9 3.4. Taxonomic difficulties 10 4. Examples of classification 11 4.1 Category RE (Regionally Extinct) 11 4.2 Category CR (Critically Endangered) 11 4.3 Category EN (Endangered) 12 4.4 Category VU (Vulnerable) 13 4.5 Category R (Extremely Rare) 14 5.
    [Show full text]